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Abstract Visual search studies are common in cognitive psy-
chology, and the results generally focus upon accuracy, re-
sponse times, or both. Most research has focused upon search
scenarios where no more than 1 target will be present for any
single trial. However, if multiple targets can be present on a
single trial, it introduces an additional source of error because
the found target can interfere with subsequent search perfor-
mance. These errors have been studied thoroughly in radiolo-
gy for decades, although their emphasis in cognitive psychol-
ogy studies has been more recent. One particular issue with
multiple-target search is that these subsequent search errors
(i.e., specific errors which occur following a found target)
are measured differently by different studies. There is current-
ly no guidance as to which measurement method is best or
what impact different measurement methods could have upon
various results and conclusions. The current investigation pro-
vides two efforts to address these issues. First, the existing
literature is reviewed to clarify the appropriate scenarios
where subsequent search errors could be observed. Second,
several different measurement methods are used with several
existing datasets to contrast and compare how each method
would have affected the results and conclusions of those stud-
ies. The evidence is then used to provide appropriate guide-
lines for measuring multiple-target search errors in future
studies.
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Significance

Multiple-target search studies are becoming more common in
cognitive psychology. These studies sometimes better parallel
existing, real-world conditions where multiple targets in a sin-
gle search represent a significant issue (e.g., airport security
screening, radiology). However, improper measurement
methods can overestimate or underestimate multiple-target
search errors, depending on the situation and the method used.
This inaccuracy is especially troubling when considering that
these situations are specifically designed to address real-world
policies. Thus, this study fills an important gap by providing
guidance and clarification on when and how multiple-target
search errors should be measured.

Visual search, or the act of finding targets among
distractors, is a common process conducted countless times
each day. As with any cognitive task, numerous factors influ-
ence performance and induce errors. Visual search is prone to
a particular type of error that has gone largely understudied in
the cognitive psychology literature: errors made when more
than one target is present in a display. Such errors are perva-
sive and have been suggested to account for up to one-third of
errors in radiology (Anbari, 1997; Berbaum, Franken,
Caldwell, & Schartz, 2010; Krupinski, 2010) and a potential
majority of errors in emergency medicine (Kuhn, 2002;
Voytovich, Rippey, & Suffredini, 1985). Many laboratory ex-
periments have used visual search or general attention tasks
with only one target present per display, and although this
manipulation controls for some factors, it ignores the potential
impact of multiple-target search errors. However, multiple-
target search accuracy can be more difficult to assess than
single-target search accuracy. Myriad method have been used,
each adapting to the particular situation. This investigation is
designed to assess various forms of measuring multiple-target
search errors. Specifically, this examination will focus on the
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differences in measurement style, any corresponding impact
different measures would have on existing interpretations of
data, and finally, a set of recommendations for any future
studies measuring multiple-target search errors. The investi-
gation will begin with a discussion of differences between
previous uses of the term multiple targets in the literature as
well as some of the factors known to influence multiple-target
search.

Multiple targets versus multiple categories

There is an important distinction in visual search studies be-
tween the possible target set and the possible number of tar-
gets present. The target set comprises the various identities of
possible targets during the search task, whereas the number of
targets present indicates the possible number of targets that
could appear in a single search display. Unfortunately, the
nomenclature does not always differentiate between these
two because “multiple targets” has been used to reference
both the target set and the number of targets present. Some
attention tasks may even include target sets with multiple ob-
jects, yet neither the target set nor the number of targets are
critical factors in the research. For example, a modified flanker
paradigm (e.g., Biggs et al., 2012; Cosman & Vecera, 2009,
2010a, 2010b; Lavie & Cox, 1997) often has participants
search for one of two possible targets. Although a target is
present in every display and there is more than one target type,
the research focus is on distractor processing and not target
processing. Multiple possible targets are used as a means to
vary responses and target-distractor compatibility conditions.
Therefore, these examples would not qualify as investigations
into multiple-target search.

Another core example of multiple targets includes the cost
associated with searching for different target types. For exam-
ple, participants are slower and less accurate when searching
for two target types versus a single target type—such as during
a search for guns and knives versus searching for either guns
alone or knives alone (Godwin, Menneer, Cave, & Donnelly,
2010; Godwin, Menneer, Cave, Helman, et al., 2010;
Menneer, Barrett, Phillips, Donnelly, & Cave, 2007;
Menneer, Cave, & Donnelly, 2009; Menneer, Donnelly,
Godwin, & Cave, 2010). These results are often discussed in
terms of “multiple target search” or “multiple category
search,” although others have used the label “hybrid search”
to describe multiple target types—that is, hybrid search de-
scribes a visual search through the display with additional
searches through the memory set of target types (Boettcher,
Drew, & Wolfe, 2013; Boettcher & Wolfe, 2015; Drew,
Boettcher, & Wolfe, 2015; Drew & Wolfe, 2014; Wolfe,
2012a; Wolfe, Aizenman, Boettcher, & Cain, 2016; Wolfe,
Boettcher, Josephs, Cunningham, & Drew, 2015). This evi-
dence does tap into a larger debate about whether simulta-
neous attentional control settings can be set for multiple target

types (cf. Irons, Folk, & Remington, 2012; Stroud, Menneer,
Cave, & Donnelly, 2012; Wolfe, 2012a). However, this exam-
ple once again demonstrates the impact of variability within
the target set and not the presence of multiple targets in a
single display.

The multiple target distinction—that is, between multiple
targets in the target set and multiple targets in a single dis-
play—is also important because many visual search studies
require only a present or absent decision (cf. Biggs, Cain,
Clark, Darling, & Mitroff, 2013; Hout & Goldinger, 2010,
2012; Nakashima, Kobayashi, Maeda, Yoshikawa, &
Yokosawa, 2013). The search task ends upon reaching this
decision, which is the most important difference between
these disparate uses of “multiple targets.” Specifically, search
must continue affer finding the target for a search display that
can contain more than one target. This component of visual
search has gone largely understudied, and it will be the focus
of this investigation. The phrase “multiple-target search” will
be used throughout the remainder of the article to describe
studies wherein more than one target can be present in a single
search display.

Multiple-target search or foraging?

Different circumstances fulfill the definition offered here for
multiple-target search, yet these circumstances are not all
equivalent. Perhaps the most notable distinction involves the
example of foraging. In this case, visual search proceeds in a
target-rich environment until the searcher elects to leave a
particular arca and move onto the next (e.g., Cain, Vul,
Clark, & Mitroff, 2012; Ehinger & Wolfe, 2016; Wolfe,
2012b). Results of foraging experiments are often compared
to the predictions of marginal value theorem (Charnov, 1976),
which suggests that an optimal searcher will abandon search
in the current location (i.e., in the current display) when the
rate of return reaches or is about to fall below the overall rate
of return for the environment. The eventual decision to termi-
nate a foraging search can be affected by various factors. For
example, if the searcher is looking for berries, systematic var-
iance in patch quality (e.g., changing seasons) can significant-
ly influence the decision to remain at a particular patch
(Fougnie, Cormiea, Zhang, Alvarez, & Wolfe, 2015; Zhang,
Gong, Fougnie, & Wolfe, 2015).

Foraging situations clearly fit the broader description of
multiple-target visual search as multiple targets—even dozens
of targets—can appear in a single search display. However,
this example is notably different from the multiple-target
search challenges present in airport security screening (for a
review, see Biggs & Mitroff, 2015a). One difference is in the
sheer number of targets. Even though it is theoretically possi-
ble that a bag going through airport security might contain
dozens of contraband items, the situation is less plausible than
a bush with many ripened berries.
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Still, the overall number of targets is not the most important
difference between these scenarios. The key difference be-
tween foraging and standard multiple-target search involves
the quitting rules, or the criterion by which the searcher
chooses to terminate search without having found all possible
targets. Quitting thresholds are particularly important in visual
search as they have been proposed as one of the primary
reasons searchers fail to find rarely appearing targets (Wolfe
& van Wert, 2010) in addition to imposing a significant cog-
nitive burden on the observer (Dougherty, Harbison, &
Davelaar, 2014). In foraging situations, searchers often volun-
tarily terminate search despite knowing that additional targets
are present. Search could be discontinued for a variety of
reasons, such as the rate of return falling below the optimal
level, but the key point is that the searcher knowingly does not
collect or identify all possible targets present.

Other multiple-target search scenarios, such as in radiology
or airport security screenings, do not have a similarly optimal
quitting threshold. These multiple-target search scenarios re-
quire searchers to continue searching until all possible targets
have been located—or what could be described as an exhaus-
tive search strategy. Thus, the key difference between foraging
and exhaustive multiple-target search is whether the quitting
rule involves optimal search strategies as in foraging or ex-
haustive search strategies as in airport security screenings.’

One example raises questions about this exhaustive search
rule as it pertains to foraging. Specifically, searchers will
switch freely between target types in a foraging environment
with many conspicuous targets, yet when focused attention is
required to identify individual targets, searchers tend to ex-
haust an entire category of targets before switching to another
(Kristjansson, Jéhannesson, & Thornton, 2014). This scenario
appears to be foraging with an exhaustive search rule, al-
though the critical distinction is that the exhaustive search
procedure is once more an optimal strategy—one searchers
are using to maximize yield through seemingly efficient
search procedures. Even if the searchers then select an exhaus-
tive or near-exhaustive search rule to select targets from a
particular category, the quitting threshold remains optimal,
and searchers could select a different strategy if a more

"t is hypothetically possible to have a multiple-target search scenario
with many different targets, as in foraging, and a need to find every single
target, as in exhaustive search. This instance then raises the question
whether foraging is better defined by the sheer number of targets or by
the optional (or optimal) quitting threshold. If foraging were defined by
the sheer number of targets, then the cutoft between foraging and
nonforaging search becomes an arbitrary number (e.g., nonforaging
search has under 10 targets in a display and foraging search has more
than 10 targets in a display). Conversely, the optimal versus exhaustive
quitting threshold provides a more meaningful and theoretical distinction
between the two. As such, the opinion put forth here is that “foraging”
requires an optimal quitting threshold, and even a search with dozens of
different targets and an exhaustive quitting rule would not truly be a
“foraging” search.
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effective one is identified. A true exhaustive search, however,
will always require that all targets be found with no option to
terminate search based on an optimal yield rate. Radiology
and airport baggage screening are exemplars of this exhaus-
tive search scenario because attaining an optimal yield does
not fulfill the purpose of the task or identify good perfor-
mance—there can be serious consequences with even a single
missed target.

Because most visual search operates on the exhaustive
search principle (i.e., the instructions are to find all possible
targets), foraging, while fitting the broader definition of
multiple-target search, will be considered a unique example
and outside the scope of this investigation. The focus will be
on multiple-target search studies with an exhaustive search
termination rule.

Known causes of multiple-target search errors

Multiple-target search errors remain largely understudied in
cognitive psychology, although the problem has received far
more significant attention from the radiological literature over
the last 50 years (for a review, see Berbaum et al., 2010). With
this previous evidence, there has been some significant head-
way in understanding the causes behind these errors. Notably,
the issue appears to be multifaceted, where multiple sources can
simultaneously contribute to the likelihood of these errors
(Cain, Adamo, & Mitroff, 2013). The original explanation in-
volved the possibility that searchers became “satisfied” upon
finding the first target and quit searching (Smith, 1967,
Tuddenham, 1962). This belief gave rise to the original moniker
for multiple-target search errors—“satisfaction of search,” or
SOS errors. However, significant evidence has demonstrated
that searchers continue to search after finding the first target
(Berbaum, Dorfman, Franken, & Caldwell, 2000; Berbaum
et al., 1991; Fleck, Samei, & Mitroff, 2010). Only recently
has evidence demonstrated that effort expended after finding
one target might be related to multiple-target search errors (for
a more thorough discussion, see Adamo, Cain, & Mitroff,
2016). Given the lack of a predominant relationship between
multiple-target search errors and the satisfaction explanation,
“subsequent search misses” (SSM; Adamo et al., 2013) has
been suggested as an alternative and more accurate label.
Another proposed explanation has been the perceptual set
bias (Berbaum et al., 2010), where the searcher becomes bi-
ased to look for additional targets consistent with the found
target. For example, a searcher might become biased to look
for other beverage containers after finding a water bottle—or
biased to look for guns after finding bullets. Although the idea
is logical and has been presented for many years, only recently
has any strong evidence come out in support of the perceptual
set bias. Using a substantially varied target set and the possible
presence of multiple-targets, the mobile application Airport
Scanner has proven to be a remarkably versatile research tool
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(Mitroff & Biggs, 2014; Mitroff et al., 2015). Airport Scanner
data is particularly useful in perceptual set bias assessments
because it included target types of similar and different colors
(i.e., a perceptual match or mismatch) as well as functional
similarity between target types (i.e., a conceptual match or
mismatch). In this larger data set, SSM errors were shown to
be fewer when the found target and subsequent target matched
in color (e.g., two blue targets) or when the two targets
matched conceptually (e.g., guns and bullets; Biggs et al.,
2015). This finding suggests that the found target may indeed
bias search priorities during subsequent search.

A third explanation involves the resource depletion argu-
ment (Berbaum et al., 1991; Cain & Mitroff, 2013).
According to this argument, the found target places a cogni-
tive burden on the searcher because he or she must then main-
tain the location and identity of the found target. This burden
limits the searcher’s cognitive capacity during subsequent
search and reduces accuracy (e.g., highlighting; Cain &
Mitroff, 2013). Additionally, searchers—even professional vi-
sual searchers such as airport security screeners—do not ex-
hibit as many SSM errors when presented with a single dis-
play multiple times rather than continuing to search the same
display after finding a target (Cain, Biggs, Darling, & Mitroff,
2014). Subsequent search accuracy thus improves without the
need to maintain either the location or identity of the found
target, which supports the idea that resource depletion is one
of the primary factors contributing to SSM errors. Numerous
situational factors can likewise affect SSM error rates, includ-
ing anxiety (Cain, Dunsmoor, LaBar, & Mitroff, 2011), task
structure (Clark, Cain, Adcock, & Mitroff, 2014), and
decision-making criteria (Biggs & Mitroff, 2015b).
However, these other factors can be generally aligned to sup-
port one or more of the three theoretical positions: satisfaction,
perceptual bias, or resource depletion.

Methods of measuring multiple-target search errors

The discussion thus far has centered on describing the specific
definition of multiple-target search, how the presence of mul-
tiple targets differs in foraging search, and the known causes
of SSM errors. This prerequisite information allows for a fo-
cused examination of the core element: how different studies
have measured multiple-target search errors, and which mea-
surement is best.

The most straightforward method would be to compare
search accuracy for a particular target on single-target trials
versus dual-target trials. This method has been used previous-
ly to measure SSM errors, albeit with the caveat that at least
one target had been detected on the dual-target trials (Fleck
et al., 2010). However, there is one particular problem with
this approach. SSM errors are not simply a measure of search
accuracy but rather a specific error that occurs after finding at
least one target in a multiple-target search. If the requirement

involves at least one found target, then the target of interest
could have been found first or second. For example, consider a
multiple-target search for a water bottle and a gun. If the crit-
ical question involves search accuracy for the gun after the
water bottle has been found, then the prerequisite is that the
water bottle must be found first.

This chief requirement establishes the first possible method
of measuring SSM errors, which will be described as the
“baseline method.” In the baseline method, single-target ac-
curacy for a given target is used as the baseline and compared
against dual-target accuracy for the same target—assuming
that another target had been found first on the dual-target trial.
However, assessing SSM errors across different target types
requires taking certain asymmetries into account. A second
method, known as the “weighted method,” does precisely that
by taking into account the number of instances where each
target type appeared first. For example, if you have two target
types (e.g., Target A and Target B), then measuring overall
SSM errors requires adjusting the baseline method for the
percentage of dual-target trials where Target A was found first
versus dual-target trials where Target B was found first.

Two more methods have been proposed during the course
of these studies, although neither has been explicitly used in
published empirical assessments. One measure will be de-
scribed as the “adjusted method,” which takes baseline accu-
racy into account differently than the baseline method. For
example, two target types can have significantly different
single-target accuracy rates, such as 95 % accuracy for
Target Type A and 35 % accuracy for Target Type B. Either
target might exhibit a 10 % decline in accuracy after another
target had been found, albeit the relative decline is substan-
tially different when compared to 95 % baseline accuracy
versus 35 % baseline accuracy. The adjusted method accounts
for this disparity by incorporating the relative difference into
the calculation [e.g., (35 %25 %) / 35 % = 28.57 % SSM
errors]. A final method takes into account not just single-target
accuracy but also attempts to incorporate the accuracy vari-
ability of multiple target types into the SSM calculation. This
method, described as the “dependent method,”” incorporates
single-target accuracy for both the target in question and the
found target. For example, if a searcher only has an 80 %
chance of finding Target A and a 50 % chance of finding
Target B during a single-target trial, then the searcher should
only have a 40 % chance of finding Target B after finding
Target A (e.g., 80 % * 50 % = 40 %). The intent is to incor-
porate multiple sources of error variance into the expected
baseline for comparison; that is, if a search has multiple tar-
gets, then it also has multiple individual searches that should
both impact the expected accuracy rate.

2 Credit for creating the dependent method, and the active/passive SSM
error distinction in the discussion section, belongs to Jeremy Wolfe.
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All four methods (baseline, weighted, adjustment, and de-
pendent) represent viable ways of measuring SSM errors.
Each has its own merits in theory and could apply to a wide
variety of situations. The intent of this investigation is to as-
sess each method within a real dataset and compare how each
measurement would lead to a particular interpretation of the
data.

Method

Both datasets used in these analyses come from previously
published studies (Biggs & Mitroff, 2014; Biggs et al.,
2015; Mitroff et al., 2015). They are used here for illustrative
purposes to assess how different SSM measures might have
influenced the corresponding interpretations of the results.
Basic methodological details are given to provide insight into
how these paradigms differ. Full methodological details are
described in the original publications.

Ts and Ls Search (Biggs & Mitroff, 2014)

This study examined different predictors of dual-target accu-
racy between professional and nonprofessional visual
searchers. The final dataset included 103 nonprofessional par-
ticipants (members of the Duke University community) and
72 professional participants (members of the Transportation
Security Administration). The primary hypothesis involved
whether similar factors predicted search accuracy in single-
target and multiple-target search for both professional and
nonprofessional searchers (see also Biggs et al., 2013).
Results indicated that similar factors could predict accuracy
in both single-target and multiple-target search, although pro-
fessional search experience continued to determine which fac-
tors best predicted search accuracy.

Search displays included an invisible grid with 25 items
randomly arranged upon the 8 x 7 positions. Individual items
were randomly offset from perfect grid alignment by 0-10
pixels (see Fig. 1). Target items were two perpendicular bars
formed into a perfect “T” shape, whereas distractor items were
two perpendicular bars offset to form pseudo-“L” shapes.
Target items appeared in one of two salience levels (high
salience: 57 %—65 % black; low salience: 22 %45 % black),
although distractors were drawn from the same salience range.
Experimental trials included 125 trials with a single, high-
salience target; 40 trials with a single, low-salience target; 40
trials with both a high-salience and a low-salience target (dual-
target trials); and 50 trials with no target present. This trial
distribution was based on previous manipulations that had
demonstrated significant SSM effects (e.g., Fleck et al.,
2010). Participants were informed that 0, 1, or 2 targets could
be present on any given trial, and responded to targets by
making a mouse click directly on a target to identify its
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clear done

Fig. 1 Sample figure of the stimuli used in the Biggs and Mitroff (2014)
“T”s and “L”s search. A perfect “T” target is displayed in the upper left-
hand corner of the display

presence. Participants ended a trial by clicking the “Done”
button at the bottom of the screen. The computer then
proceeded to the next trial.

Airport Scanner (Biggs, Adamo, Dowd, & Mitroff, 2015;
Mitroff, Biggs, Adamo, Dowd, Winkle, & Clark, 2015)

The mobile application Airport Scanner provides a highly
versatile platform capable of collecting a monumental amount
of data. Players consented to the terms and conditions of the
standard Apple User Agreement and those provided by Kedlin
Co. (https://www.airportscannergame.com) upon installing
the Airport Scanner application. The Duke University
Institutional Review Board approved the analytical
investigation of the original dataset.

During Airport Scanner gameplay, players act as security
officers at various airports and are tasked with finding
prohibited items in simulated X-rays of airport luggage.
Bags are viewed one at a time, and target presence is reported
by directly tapping onto each illegal item. Individual bags
could contain zero to three “illegal” target items and zero to
20 “legal” items, with the legal items serving as distractor
stimuli. The target set included 94 possible target items and
94 possible distractor items. These analyses focused only on
certain targets that appeared alongside distractor stimuli and
could be viewed without in-game upgrades—Ileaving a final
target set of 79 different possible target items. Both targets and
distractors appeared in a semitransparent state so that they
could overlap without occluding one another. Identity, color,
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and size of individual targets were assigned by Kedlin Co. for
gameplay purposes.

For the original study, the data included approximately 1.1
billion total trials. Significant filters were used to trim the data
down to only the most reliable information (for further details
on data trimming procedures in Airport Scanner, see Biggs,
Adamo, & Mitroff, 2014; Mitroff & Biggs, 2014; Mitroff
et al., 2015). Single-target accuracy data were collected from
those trials in which only one target was present, and included
1,795,907 total trials after filters were applied. Accuracy
values for individual targets were calculated based upon the
particular target type (Range = 703 to 114,390 appearances, M
= 22,733 appearances, SE = 3,724 appearances). Dual-target
trials included 126,579 valid trials after all data trimming (for
more details, see Biggs et al., 2015), including at least 136
appearances for each target item with a maximum of 15,086
appearances (M = 3,205 appearances, SE = 440 appearances).
The analyses presented here focus primarily on the identical
target analyses (see also Mitroff et al., 2015). Dual-target trials
rarely contained two identical targets (dual-target trials with
identical targets: 4.34 %, dual-target trials with different tar-
gets: 95.66 %), and so the dataset was limited only to those
target types contributing at least 20 valid cases to the dataset
after all filters were applied. This cutoff point (i.e., 20 valid
cases) is based on previous work involving rarely appearing
targets where 20 valid cases was considered sufficient for
meaningful analyses (see Fleck & Mitroff, 2007; Russell &
Kunar, 2012; Wolfe, Horowitz, & Kenner, 2005; Wolfe et al.,
2007). This approach left 33 target types available for the
SSM analyses.

SSM Calculations

For the baseline method (1), SSM errors are calculated as the
difference score between single-target accuracy for that par-
ticular target type and dual-target accuracy for the same target
type given that another target had been found first. For the
weighted method (2), SSM errors are calculated by adjusting
the observed SSM errors based upon the number of contrib-
uting cases. To do so, the proportion of cases where Target
Type A had been found first is compared to the proportion of
cases where Target Type B had been found first. SSM errors
are then calculated for each target type and the overall SSM
error rate is adjusted based upon the number of cases where
each target type had been found first. For the adjusted method
(3), the measurement is very similar to the baseline method.
The difference is that the single-target accuracy is used to
control for variance in single-target accuracy. For the depen-
dent method (4), the measurement is designed to take into
account accuracy differences in both the found target accuracy
and second target accuracy.

These formulas are represented below with the follow-
ing variables to illustrate each method: “A” represents the

single-target accuracy of Target Type A, “a” represents
the dual-target accuracy of Target Type A, “B” represents
the single-target accuracy of Target Type B, and “b” rep-
resents the dual-target accuracy of Target Type B. In these
cases, assume that “A” and “B” are the only two possible
target types, another target had been found first on the
dual-target trials, and a significant difference from zero
would represent significant SSM errors.

A-a (1)
(A —a) *(%b found first) + (B —b)*(%a found first) (2)
A-a

e (3)
(A*B)-a (4)
Results

Ts and Ls Search (Biggs & Mitroff, 2014)

The original study assessed how various performance metrics
related to multiple-target search accuracy between profession-
al visual searchers (members of the Transportation Security
Administration) and nonprofessional visual searchers (mem-
bers of the Duke community). With regard to SSM errors,
there are two important aspects to consider: whether signifi-
cant SSM errors were observed in general, and whether the
observed SSM errors differed significantly between groups.
The original results supported significant SSM errors in both
conditions, but significantly more SSM errors among the pro-
fessional searchers than the nonprofessional searchers.
Notably, the original study presented dual-target trials (i.e.,
trials on which two targets appeared in a single display) that
always contained one high-salience target and one low-
salience target. The high-salience targets were found first far
more often than the low-salience targets, but nonprofessional
searchers were even more likely to find the high-salience tar-
get first (M = 86.09 %, SE = 1.00 %) than professional
searchers (M = 82.74 %, SE = 1.30 %), «(173) = 2.07, p =
.04. Because of the significant difference, the original study
used a weighted SSM measure for analyses to control for
which first-found target contributed more to the SSM error
rate.

See Fig. 2 for the SSM errors as assessed by all four
measurements, and see Table 1 for statistical comparisons
between professional and nonprofessional searchers. The
baseline method yielded significant SSM error rates for
both conditions with a significant difference between the
groups. In this case, the baseline method delivers a con-
clusion similar to the weighted method, albeit with small-
er effect sizes. One possible explanation for the similarity
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Fig. 2 SSM error rates (in percentage with standard error bars) as
assessed by the four different measurement methods for the Biggs and
Mitroft (2014) study. Asterisks indicate a significant difference between
groups, whereas s indicates a nonsignificant difference

is the large discrepancy in finding the high-salience target
first. With one target type found so much more often by
both groups, the baseline method will yield error rates
similar to the weighted method. The weighted method still
has the advantage of accounting for more of the available
data (i.e., all dual-target trials with at least one target
found first), although, for practical purposes, the weighted
method is comparable to the baseline method when there
is a large discrepancy is the type of target found first.
The adjusted method yielded significant SSM error
rates for both professional and nonprofessional searchers,
but not a significant difference between groups. This data
would change the original conclusion of the study that
SSM errors were present and there was a significant dif-
ference between groups. Notably, the adjusted method
yielded the highest SSM error rates of any measurement
method. However, the effect size and statistical difference
analyses are very different due to the increase in variance.
This method was specifically intended to account for in-
dividual differences in performance (e.g., a searcher with

Table 1  Significance analyses for SSM errors using all four of the
different proposed methods to measure SSM errors from Biggs and
Mitroff (2014). Data in the group columns provide the corresponding
Cohen’s d of SSM error rates for each individual assessment (e.g., for
professional visual searchers using the baseline method). The
comparisons columns are included to assess whether each measurement
method would have demonstrated a significant difference in SSM error

a baseline accuracy rate of 65 % vs. a searcher with a
baseline accuracy rate of 95 %), but the result appears
to inflate the overall variance. It should also be noted that
the adjusted method was calculated only for the low-
salience targets, which does include the majority of the
data as participants located the high-salience targets first
far more often than the low-salience targets on dual-target
trials. With such a large discrepancy in the target type
found first, however, using the adjusted method to calcu-
late SSM errors when the low-salience target is found first
becomes problematic. Specifically, there are so few con-
tributing trials to the measurement that without some ad-
ditional accountability, as with the weighted method, the
error inflation becomes extremely large. The adjusted
method thus yields even larger SSM errors for the high-
salience second target—professional searchers: M =
23.81 %, SE = 3.51 %; nonprofessional searchers: M =
30.42 %, 3.40 %; t(173) = 1.32, p = .19, Cohen’s d =
0.21.

The dependent method yielded significant SSM error
rates for professional searchers, but nonsignificant SSM
error rates for nonprofessional searchers. Although the
comparison between groups remained statistically signifi-
cant, these results would change some existing conclu-
sions about this paradigm. In particular, this manipulation
has yielded significant error rates in several published
studies (Biggs & Mitroff, 2014, 2015b; Cain et al.,
2011; Fleck et al., 2010), yet those previous studies used
variants of the baseline and weighted methods. In turn,
the discrepancy raises the question as to whether signifi-
cant SSM errors would have been observed in these pre-
vious studies with the dependent method. The dependent
method also yielded lower SSM errors in general than any
of the other methods, which may indicate that the depen-
dent method is avoiding the potential inflation of error
variance by incorporating baseline accuracy for both the

rates between groups (7 tests), and the conclusion column provides a
qualitative comparison between the measurement method being
demonstrated and the conclusion of the original study (same implies that
the conclusion would have been the same as the original study, and
different implies that the conclusion would have been different from the
original study)

Group Comparisons

Professionals Nonprofessionals t tests Conclusion?
Baseline 1.72%% 1.04%#* #(173)=2.55,p=.01* Same
Weighted 2.07%%* 1.53%* #(173) =2.18, p = .03* -
Adjusted 1.39%%* 0.63** #(173)=1.59,p=.12 Different
Dependent 0.97#* 0.32 #(173)=2.29, p = .02* Different

p < .05, %p < 01.
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found target and second target into the formula for the
expected difference.

Airport Scanner (Biggs, Adamo, Dowd, & Mitroff, 2015;
Mitroff, Biggs, Adamo, Dowd, Winkle, & Clark, 2015)

In the original study, Biggs et al. (2015) and Mitroff et al.
(2015) used data from Airport Scanner to assess possible in-
fluences of the first found target upon subsequent search. One
particular comparison included any possible perceptual set
and conceptual set biases that might develop. For example,
if searchers first located bullets in an X-ray bag, would they
become more biased to look for guns over water bottles during
subsequent search? Airport Scanner provided an excellent me-
dium for such as assessment as the target set included dozens
of different items that varied in color and function (e.g., dif-
ferent types of explosives and different types of guns). This
highly varied target set allows for more nuanced empirical
examples when comparing how the type of found target might
influence each SSM measurement. The first comparisons for
this investigation will be primarily from the Mitroff et al.
(2015) analysis concerning SSM error rates with two identical
targets (see Fig.3), and the other comparisons will primarily
follow from the Biggs et al. (2015) analyses regarding the
impact of the first found target.

For the identical target analyses (see Fig. 4), the original
results demonstrated significant reductions in SSM error rates
when two targets were identical versus nonidentical using the
baseline method for SSM error calculations. Additionally, the
baseline method and the weighted method are identical for
these analyses because all targets are identical. The baseline
method yielded a significant SSM error rate (M = 6.53 %, SE
=1.62 %), #(32) = 4.04, p < .001, Cohen’s d = 1.43, and the
adjusted method yielded a qualitatively similar SSM error rate
(M=6.92 %,SE=2.47 %), 1(32)=2.80, p <.001, Cohen’s d =
0.99. These rates are still well below the SSM error rates for
nonidentical targets observed in the original study (M =
19.21 %, SE = 1.36 %), and so either method would suggest
a significant reduction, but not an elimination, of SSM errors.

However, the dependent method yielded a very different
interpretation (M = -4.24 %, SE =2.22 %), t(32) =191, p =
.03, Cohen’s d = .67. Not only was there a significant differ-
ence in SSM errors according to the dependent method, but
the difference actually went in the opposite direction—
searchers demonstrated significant improvements in search
accuracy following a found target when the subsequent target
matched the first identically. It is also worth noting that all
methods yield moderate or larger effect sizes despite the inter-
pretations being substantially different. One possible reason
might be the influence of single-target accuracy, which factors
differently into each formula. All three methods are positively
related to single-target accuracy, but the correlations are small-
er for both the baseline method, »(31) = .37, p = .03, and the

Pistol

Fig. 3 Examples from the mobile application Airport Scanner used to
collect the data presented in Biggs, Adamo, Dowd, and Mitroff (2015)
and Mitroff et al. (2015). The top image presents a dual-target bag with
two identical targets (both the pistol target type). The bottom image
presents a single-target bag with a hip flask target

adjustment method, #(31) = .31, p = .07, than the dependent
method, #(31) = .69, p < .001. These differences suggest an
asynchrony between the measures and how much low single-
target accuracy rates can influence the SSM error
measurement.

This influence becomes more potent when the targets are
not identical. For example, two targets can vary substantially
in single-target accuracy, such as pistol (M = 94.66 %) and hip
flask (M = 66.88 %). Both targets share the same color (blue),

Weighted Adjusted
Measurement Method

]

SSM Error Rate (%)
o & A NV o N B o o

Baseline Dependent

Fig. 4 SSM error rates (in percentage with standard error bars) as
assessed by the four different measurement methods for the Mitroff
et al. (2015) analysis involving identical targets. Please note that the
baseline and weighted methods involve identical calculations in this
particular circumstance, and the gray bar crossing the figure indicates a
zero difference, or what would be considered insignificant SSM errors
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and when eliminating the targets with a conceptual overlap
(i.e., no guns or gun-related items to avoid a conceptual rela-
tionship with the pistol), the remaining data provides some
insight into how found-target accuracy can influence the dif-
ferent SSM measures without the confounding influence of
perceptual or conceptual set biases. Twenty-one second tar-
gets remain with no conceptual relationship to the target and
enough trials to provide a valid SSM measure with both the
hip flask found first and the pistol found first. See Table 2 for
the results.

With the pistol as the first target, all three relevant methods
yielded significant SSM error rates—baseline method: M =
18.93 %, SE = 2.62 %, t(20) = 7.22, p < .001, Cohen’s d =
3.23; adjusted method: M = 26.15 %, SE = 5.07 %, #20) =
5.16, p < .001, Cohen’s d = 2.31; dependent method: M =
15.08 %, SE = 2.45 %, #20) = 6.15, p < .001, Cohen’s d =
2.75. With the hip flask as the first target, both the baseline
method (M = 17.35 %, SE = 2.79 %), 1(20) = 6.21, p < .001,
Cohen’s d = 2.78, and the adjusted method (M = 28.32 %, SE
=4.13 %), #(20) = 6.86, p < .001, Cohen’s d = 3.07, yielded
significant SSM errors. However, the dependent method
yielded a different interpretation (M = -6.51 %, SE =
3.12 %), #20) =2.09, p < .001, Cohen’s d = 0.93. Once again,
the dependent method suggests a significant improvement in
accuracy following the searcher finding a hip flask; only, un-
like the identical targets analysis, this instance comes without
any theoretical basis for the improvement. The weighted
method, which accounts differently for SSM errors based on
the number of contributing cases, also yielded significant
SSM error rates (M = 18.93 %, SE = 2.41 %), 1(20) = 7.86,
p <.001, Cohen’s d = 3.52.

The adjusted method is noteworthy here for its much
higher variance. Specifically, the adjusted measures differed
substantially based on the second target item. Some individual
items elicited relatively small SSM error rates (crowbar: M =
9.41 %; wine bottle: M = 8.91 %), whereas others had ex-
tremely low SSM error rates (blow gun: M = -54.65 %). The
blow gun in particular represents an important issue with the
adjustment method because it has very low single-target ac-
curacy (13.86 %), which significantly inflates the 7.57 %
change into a 54.65 % change. The formula thus preserves
the size of the change for items with relatively high single-
target accuracy, although it significantly inflates any differ-
ences for items with relatively low single-target accuracy.

General Discussion

Multiple-target search introduces a unique source of error not
present in single-target searches. Specifically, searchers have
to continue looking for additional targets after locating a first
target, which creates the possibility for additional errors dur-
ing subsequent search, or SSM errors (Adamo et al., 2013).

@ Springer

Measuring subsequent search errors introduces additional
challenges above and beyond simple accuracy measurements
in single-target search, and across several different studies,
many different methods have been used. This investigation
used four different measurement methods (baseline, weighted,
adjusted, and dependent) to contrast and compare the advan-
tages and disadvantages of each method.

The baseline method yielded several notable advantages.
Foremost, it offers greater simplicity than the other methods,
which provides numerous benefits in convenience alone. It is
also relatively straightforward to account for differences in the
found target type while using the baseline method—error cal-
culations can be limited only to those trials with a specific type
of target found first for the multiple-target search accuracy
rate. The greatest disadvantage of the baseline method is that
it carries an inherent ceiling effect. For example, single-target
accuracy of 20 % could have a maximum SSM error rate of
20 %. Thus, although the baseline method controls for relative
differences between target types due to single-target accuracy,
the baseline method is not ideal for situations where extremely
low accuracy would be expected from most target types.

The weighted method, meanwhile, holds two particular
advantages over the baseline method. First, the weighted
method captures more data by accounting for asynchronies
in target types. For example, nonprofessional searchers were
more likely to locate a high-salience target first than profes-
sional searchers (Biggs & Mitroff, 2014). Overall SSM error
calculations could be different between groups because each
group contributes a significantly different number of trials into
the calculation. The weighted method addresses this discrep-
ancy by limiting the influence of a particular target type to the
relative portion it contributes into the overall SSM error cal-
culation. Second, the weighted method captures a more com-
plete view of the data while also accounting for baseline dif-
ferences. More trials are factored into the SSM calculations,
which can increase the reliability of the measurement. The
primary disadvantage is that a target type commonly found
first can dramatically bias the overall SSM results and corre-
sponding conclusions in favor of that particular target type.
The weighted approach also accounts for the broad number of
trials contributing to the SSM error method, which could also
limit any investigation into the influence of a particular found
target type. For example, a conceptual set bias suggests that
searchers look for additional targets with a similar function to
the found target (Biggs et al., 2015). If a particular target type
factors more trials into the measurement method than another
target type, it would bias the SSM calculation in favor of the
target type contributing more trials without any regard to the
theoretical implications. Another disadvantage involves situ-
ations with many different target types. For example, a search
with only two target types presents limited found target and
second target combinations, whereas a search with dozens of
different targets yields an exponentially larger number of
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Table 2 SSM errors in Airport

Scanner using each measurement Found Target
method and divided by the first ‘ ) .
found target. Means are presented Pistol Hip flask Combined

in the upper half of the table (with

standard errors in parentheses), Means

and effect sizes are presented in Baseline

the lower half of the table. Effect Weighted )

sizes are the Cohen’s d for the .g

corresponding one-sample ¢ test Adjusted

with a hypothesized mean of zero Dependent

Effect sizes

Baseline 323
Weighted -
Adjusted 231
Dependent 2.75

18.93 % (2.62 %)

26.15 % (5.07 %)
15.08 % (2.45 %)

17.35 % (2.79 %) -
- 18.93 % (2.41 %)
28.32 % (4.13 %) -
6.51 % (3.12 %) .

2.78 -
- 3.52
3.07 -
-0.93 -

possible target combinations. The end result is an unwieldly
calculation that may overcomplicate the situation beyond
what the researcher intended to examine. As such, the weight-
ed method remains an ideal alternative to the baseline method
when: the search includes only a small number of possible
targets, one particular target type is found significantly more
often than another target type, and the primary goal involves
assessing overall SSM error rates without regard to a potential
influence on subsequent search of any one particular target
type.

The adjusted method offers a possible alternative to the
baseline and the weighted method that could specifically ap-
ply to visual search scenarios with low accuracy rates.
Specifically, it is designed to adjust the observed difference
so that the SSM calculation better reflects the change in accu-
racy relative to the baseline, single-target observation. The
greatest advantage of this method is that it could potentially
account for relative variance in a way neither the baseline nor
weighted methods could. Additionally, because the SSM cal-
culation is determined relative to the single-target search ac-
curacy, it does not have the inherent ceiling effect of the base-
line method. Unfortunately, the largest disadvantage is that it
may overinflate SSM error calculations. Across all analyses
reported here, the adjusted method yielded the largest SSM
error rates. Because standard deviations were also inflated, the
effect sizes were not impacted as much as the overall means.
Another consideration is that the inflated variance applies pri-
marily to target types with low accuracy while having rela-
tively no impact on target types with high accuracy. Thus, the
adjusted method only seems appropriate when the search task
only contains target types with low baseline accuracy rates to
counter the ceiling effects inherent to the baseline method.

The fourth proposed measurement was the dependent
method. This approach could theoretically address the prob-
lem of inflated error variance from a different direction than
the adjusted method. Specifically, the dependent method takes
the multiple-target aspect into account and establishes a

baseline rate that accounts for variability in both the found
target and the second target. Its greatest advantage is that it
may avoid inflated effect sizes and could provide a more via-
ble means to control error variance as contributed by both
targets rather than primarily calculating SSM errors off a sin-
gle target type. However, this method appears to overadjust
and could yield deceptively low SSM error rates due to the
inflated influence of the first found target. If the found target
has high baseline accuracy (e.g., the pistol form Airport
Scanner), then the method appears to be a viable option. If
the found target has a lower accuracy rate, then this method
might create a baseline estimate so low that observing signif-
icant SSM errors becomes highly unlikely. Thus, this mea-
surement method would best be reserved for special cases
where any found target has relatively high accuracy and the
goal is to control for inflated variance.

In addition to which particular method should be used, it is
important to consider the situational-specific variables and
determine whether it is even appropriate to measure SSM
errors. Notably, multiple types of targets are neither a neces-
sary nor sufficient condition for an investigation into subse-
quent search misses. Both datasets used here included multi-
ple target types; albeit the “T”’s and “L”s search (Biggs &
Mitroff, 2014) only varied target salience, whereas Airport
Scanner (Biggs et al., 2015; Mitroff et al., 2015) uses dozens
of different target types. However, some investigations accu-
rately assess SSM errors using only a single-target type
(Adamo et al., 2016). Multiple target types can dramatically
influence visual search, although insofar as SSM errors are
concerned, multiple target types largely complicate the possi-
ble measurements.

The most important aspect of any SSM investigation is that
the display can contain multiple targets within a single search
display. Granted, the ratio of single-target trials to multiple-
target trials will directly affect the likelihood of observing
SSM errors (e.g., Fleck et al., 2010). The ratio can alter
searchers’ expectations, which in turn will affect search

@ Springer



1362

Atten Percept Psychophys (2017) 79:1352-1365

behaviors. The more important delineation involving
multiple-target search involves multiple-target search versus
foraging. This distinction is due to the nature of quitting be-
haviors in multiple-target search versus foraging. In multiple-
target search investigations where one might expect to observe
SSM errors, the quitting rule needs to be exhaustive—that is,
continue searching until all targets have been found.
Participants thus terminate search under the impression that
no more targets were present in the display. By comparison,
foraging search commonly involves nonexhaustive search—
that is, choosing to terminate search despite knowing that
additional targets are present. Foraging termination rules often
involve factors such as the current or recent yield rates for

——Baseline = — Weighted

40% A
30%
20%
10%

0%

-10%

SSM Error Rate

-20%

-30%

-40%

60% 70% 80% 90% 100%

Second Target Accuracy

40% C
30%
20%
10%

0%

-10%

SSM Error Rate

-20%

-30% \

-40%

0% 10% 20% 30% 40%

Second Target Accuracy

Fig. 5 Four hypothetical scenarios are depicted for each of the four
measurement methods: baseline, weighted, adjusted, and dependent.
For all scenarios, the x-axis represents second target accuracy (after a
first target had been found), the y-axis represents SSM error rates, and
the accuracy rate for the other target type not depicted is 90 %, whether
found first or second during the search. The top two scenarios (A and B)
presume a relatively high accuracy for the target type during single-target
trials (90 %) and demonstrate how the SSM measurement methods
change as the accuracy for that target type changes from 60 % to 100 %
during subsequent search after a found target. The bottom two scenarios
(C and D) presume a relatively low accuracy for the target during single-
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targets (e.g., number of berries picked from a bush; Wolfe,
2012b), but participants will generally quit when return rates
fall below an optimal level. This specific instance is substan-
tially different from an exhaustive, multiple-target search such
as airport security screenings or radiology. In these examples,
it is critical that the searcher find all targets, and while various
factors can impact when the searcher chooses to terminate
search (Biggs & Mitroff, 2015a), the underlying principle re-
mains that the searcher does not terminate search with the
knowledge that more targets are present in the display.

To aid in visualizing these differences between the
methods, consider the graphs in Fig. 5. Each demonstrates
how much the measurement method can impact the exact

— -+ Adjusted
40% B
30% | N
20%
10%

0%

-10%

-20%

-30%

-40%

70% 80% 90%
Second Target Accuracy

60% 100%

40% D
30% \
20%
10%

0%

-10%

-20%

-30% \

-40%

0% 10% 20% 30% 40%

Second Target Accuracy

target trials (30 %) and demonstrate how the SSM measurement methods
change as the accuracy for that target type changes from 0 % to 40 %
during subsequent search after a found target. The left two scenarios (A
and C) demonstrate the change in SSM error rate when the other target
type not depicted was found first on 90 % of multiple-target trials (i.c., the
depicted second target accuracy contributes 90 % of the SSM
calculations). The right two scenarios (B and D) demonstrate the change
in SSM error rate when the depicted type was found first on 90 % of the
multiple-target trials (i.e., the depicted second target accuracy contributes
10 % of the SSM calculations)
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same hypothetical data. The baseline method appears to be the
most consistent measurement across all cases, and the depen-
dent method appears to be similarly consistent, but more con-
servative. The weighted method always takes the most data
into account as it provides an overall SSM error rate based on
multiple target types. However, it also biases the overall SSM
error rate based upon which target type was found first more
often. This caveat makes using the weighted method specific
to certain situations where the researcher intends to collect an
overall error rate across multiple target types despite any bias
based upon target type. Finally, the adjusted method is easily
the most liberal measurement method. This wider range could
be very useful when dealing with a sample of very low single-
target accuracy rates, but for most instances, it appears more
likely that the adjusted measurement method will yield an
overestimation of SSM error rates.

The best and most reliable approach for future interpre-
tations may then be to use both the baseline method and
the dependent method when appropriate and possible.
They produce very similar results with the dependent
method being the more conservative of the two. In this
way, the converging evidence could help differentiate be-
tween a “passive” SSM error and an “active” SSM error.
The baseline measurement might be best at determining
the whether there is any performance decline during sub-
sequent search by establishing a baseline comparison
from single-target search. These SSM errors could be
deemed “passive” as they could be due to theoretical dif-
ferences or expected, less-than-perfect performance
rates—that is, similar to an expected accuracy rate of less
than 100 % in single-target search, subsequent search
could experience the same decline. Thus, passive SSM
errors could be the result of compounded error rates
across multiple periods of search performance, and the
baseline method is the best approach for a simple deter-
mination of whether SSM errors are present in a given
scenario. Conversely, the dependent method could estab-
lish the line for active SSM errors—that is, the dependent
method is so conservative that any significant change in
SSM errors is almost certainly due to a theoretical and
distinguishable impact upon the search scenario. This pos-
sibility is evident even in the Airport Scanner data
depicted in Fig. 4. If the second target is identical to the
first target, then there are likely to be strong priming ef-
fects (Huang, Holcombe, & Pashler, 2004; Kristjansson &
Campana, 2010; Maljkovic & Nakayama, 1994). This the-
oretical difference is reflected in the strong reduction of
SSM errors for nonidentical versus identical targets as
reported in Biggs et al. (2015). The baseline method thus
establishes a reduction, and the dependent method further
highlights a theoretical cause for the reduction in SSM
errors. In cases where one of the two methods might not
be feasible though, researchers should—as always—

consider differences in effect sizes when attempting to
reach any conclusions.

In summary, there are several guidelines to consider
when determining whether the task is subject to SSM
errors, and what type of measurement to use:

1. It must be a multiple-target search. Multiple-category
searches or hybrid searches, which use different types of
targets in the target set, are neither necessary nor sufficient
to investigate SSM errors.

2. In addition to multiple-target trials, single-target trials are
necessary to establish expected accuracy rates for this
particular target type.

3. While searching a particular display during multiple-
target trials, at least one target must be found to initiate
the subsequent search period.

4. The search must use an exhaustive search termination
rule, where the goal is to find all targets present.

5. Different measurement methods can be used, although
using a method other than the baseline method should
have an empirically driven rationale. When possible, use
both the baseline method and the dependent method to
differentiate between passive and active SSM errors.

For example, a search could have only one target type
and still qualify as a “multiple-target search” if a single
display, not the target set, can contain multiple targets.
Also, not every search display needs to contain multiple
targets. Searchers’ expectations have already been shown
to significantly alter the likelihood of observing SSM er-
rors (Fleck et al., 2010), and the ratio of single-target to
multiple-target trials remains an important manipulation to
consider in multiple-target search. As for the specific
measurement method, the baseline method appears to be
the most direct and convenient approach to measuring
SSM errors. However, as specific situations arise, there
are alternative methods that could account for certain lim-
itations of the baseline method.
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where (Biggs, Adamo, Dowd, & Mitroff, 2015; Biggs & Mitroff, 2014;
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