showed a marked deficit in passive avoidance behavior, none of the correlations between passive avoidance responding and taste aversion behavior approached statistical significance.

It can be concluded that hippocampal lesions, either near total or more discrete, may disrupt bait-shyness behavior under some conditioning methodologies and test procedures. The existence of separate associative processes in the brain remains a plausible hypothesis but one which fails to receive conclusive support from existing data on the hippocampus. As Best and Orr (1973) noted, such a hypothesis would be greatly strengthened by the demonstration of a lesion effect in which taste aversion conditioning is disrupted without a significant effect on conditioning reinforced by electric shock. Initial evidence for such an effect has been recently reported with lesions restricted to the anterior region of the olfactory bulbs (Elkins & Hobbs, 1974).

REFERENCES


Murphy, L. R., & Brown, T. S. Hippocampal lesions and learned taste aversion. Physiological Psychology, 1974, 2, 60-64.


(Received for publication July 16, 1974; revision accepted October 8, 1974.)

ERRATA

DIVAC, I., WIKMARK, R. G. E., and GADE, A. Spontaneous alternation in rats with lesions in the frontal lobes: An extension of the frontal lobe syndrome. Physiological Psychology, 1975, 3 (1), 39-41. Page 41, Column 1, a line should be inserted between the second and third lines from the bottom reading: “Damage to the septal nuclei or the hippocampus, two . . .”

On the same page, the fourth reference in Column 2 should read as follows: Divac, I. Frontal lobe system and spatial reversal in the rat. Neuropsychologia, 1971, 9, 175-183.

GULLIKSEN, HAROLD, & VONEIDA, THEODORE. An attempt to obtain replicate learning curves in the split-brain cat. Physiological Psychology, 1975, 3 (1), 77-85. The first line of the first paragraph on page 33 should read as follows: “This study of learning curves in normal and split-brain cats investigated primarily the extent to which the course of learning using one hemisphere of a split-brain animal may be regarded as repeating or replicating the course of learning the same problem using the other hemisphere.”