
Behavior Research Methods & Instrumentation
1982, Vol. 14(6),539-544

Software synchronizing of video displays
and Z-80 processing in the Model III TRS-80

JOSEPHG.DLHOPOLSKY
St. John's University, StatenIsland, New York 10301

A machine language technique is described whereby the z.ao microprocessorof the Model III
TRS-aO can be programmed to monitor position of the electron beam during CRT scanning.
This technique provides the opportunity to synchronize the appearance of video displays
with z.ao processing. The programmer can therefore be assured of crisp stimulus displays
and precisely recorded reaction times. The computer's real-time clock operates on video cir­
cuitry as part of a routine that is initiated by a maskable interrupt. The real-time clock
interrupt can be vectored from its normal use to a routine that signals the z.ao when the
electron beam is at a known screen location. A machine language program and a TRSDOS
BASIC program that demonstrate the technique are described.

Observers have noted a lack of precision in micro­
computers in synchronizing the appearance of a stimulus
on the video screen with processing taking place in the
central processing unit (CPU) (Lincoln & Lane, 1980;
Merikle, Cheesman, & Bray, 1982; Reed, 1979). Reed
(1979) reports a hardware modification that overcomes
the problem in the Apple II microcomputer. The modifi­
cation makes the video circuitry's vertical synch pulse
available to the computer's CPU. Since this pulse occurs
between video frames, it signals the CPU when the
electron beam is at a known location. Grice (1981)
reports a similar hardware modification for the Model I
TRS-80.

Software techniques have been more limited, in that
the design of the internal wiring of many microcomputers
precludes software access to the vertical synch pulse.
However, Merikle et al. (1982) report a machine lan­
guage routine that allows the PET/CBM microcomputer's
CPU to detect the vertical synch pulse. This technique
is preferable to hardware modifications, since mistakes
cause no costly damage (they are undone by pressing the
reset key) and no expertise in electronic rewiring or
circuit design is needed.

The Model III TRS-80 is an improvement over the
Model I because video synchronization can be carried
out using a software technique similar to that described
for the PET computer. 1 This article reports such a
technique.

The video screen on the TRS-80 has a scanning
frequency of 60 Hz. Effectively, this means that every
1/60 sec a new "page" is drawn on the video screen.
The TRS-80's video display is memory mapped. There
are 1,024 locations in random-access memory (RAM)
for each character location on the video screen. The
so-called video RAM addresses are 3COO to 3FFF
hexadecimal (hex) or 15360 to 16383 decimal (dec).
Most TRS-80 programmers are aware that whenever the
TRS-80's CPU, the Z-80, is instructed to load a value

into a video RAM location, the corresponding ASCII
character appears on the video screen. However, the
video circuitry and the l·80 in fact operate indepen­
dently. The video RAM serves as an interface into which
the l-80 loads data and from which the video circuitry
reads data when it is prepared to display each succeed­
ing line on the screen.

Once one recognizes that the l-80 does not actively
place characters on the screen, a number of problems
become apparent. For one, the researcher may wish to
display an alphabetic character for 4 msec. Accordingly,
the l-80 can be programmed to store the appropriate
ASCII code in video RAM for exactly 4 msec. The
video circuitry, however, is operating at its constant pace
of 60 Hz. If the electron beam happens to be at the
correct location when the stimulus appears for 4 msec
in video RAM, the stimulus will appear on the screen.
But it will stay on the screen until the electron beam
returns to that location to erase it 17 msec later, not the
intended 4 msec. If the electron beam happens to be
just past the correct location when the ASCII code
appears in video RAM. it will take 17 msec to return
to the point at which the stimulus is intended to appear.
In that time, the 4-msec exposure will have elapsed and
the ASCII code will no longer be in video RAM. So, the
stimulus will not appear at all.

One can partially surmount the lack of synchroniza­
tion between the l-80 and the video circuitry by limit­
ing stimulus exposures to multiples of 16.667 msec.
Although they do not offer a great range, the resultant
values include 17.33.50,67,83,100,117,133,167,
183, and 200 msec, sufficient for many tachistoscopic
purposes. By choosing multiples of 16.667 msec, one is
assured that the stimulus will appear for the desired
exposure. The only drawback is that the larger the verti­
cal dimension of the stimulus, the more likely it is that
the stimulus will be drawn in parts. For example, the
tail end of a vertical bar may be drawn on the screen

Copyright 1982 Psychonomic Society, Inc. 539 0005-7878/82/060539-06$00.85/0

540 DLHOPOLSKY

first, followed by the top portion, which will be com­
pleted 17 msec later. This may not be desirable if short
stimulus exposures are used.

When measuring response latencies, one has an
additional problem. If the subject is to detect a stimulus
and then make an appropriate response, the Z·80 loads
the stimulus ASCII values into video RAM. It then
waits for the exposure interval to pass, erases or masks
the stimulus by loading blanks or masking characters
into the appropriate video RAM, and then starts to
count millisecondsuntil the subject's response isdetected.
The millisecond value is then adjusted for the execution
time for all commands after the appearance of the
stimulus on the screen. The resultant latency ignores
the fact that a single alphanumeric character might have
appeared at any time within the first 17 msec of the
exposure interval or that a multiline stimulus was com­
pleted only near the end of the first 17 msec of the
exposure interval.' Lincoln and Lane (1980) indicate
that the resultant error variance is small compared to
subject-related error variance. However, there are occa­
sions when the magnitude of this error variance may be
close to a hypothesized treatment effect.

The problem could be solved if one were able to have
the video circuitry inform the Z-80 when the electron
beam is aimed at a known position. The Z-80 could
then wait for the beam to advance to the correct line
and load the stimulus data into video RAMwithin micro­
seconds of the beam's approach to the critical position.
Alternatively, the Z·80 could load the stimulus data
while the electron beam was in a noncritical location,
for example, during the beam's vertical retrace. The
precise time that the stimulus appears would be known,
and the millisecond timer would be adjusted accord­
ingly. In either case, the stimulus would appear complete
and unbroken on the screen for the precise interval. The
Z-80 could then erase the stimulus and wait for the
subject's response. Knowing exactly when the stimulus
appeared, the Z·80 could then report a response latency
with microsecond precision. All this sounds quite
involved and unbelievably precise, but each of the
Z-80 instructions that carries out the necessary pro­
cesses has a known processing duration of from 1.98 to
10.4 microsec at the 2.02752-MHz frequency of the
TRS·80 Model III's system clock (Zaks, 1980).

The TRS-80 was not designed to serve as a research
device for experimental psychologists. A means of syn­
chronizing the Z-80 with the video circuitry was not
consciously designed into the computer. However, there
is a conceptually simple way to solve the problem."
The procedure makes use of the Model III real-time
clock (RTC) and the routines must be written in Z-BO
machine language.

The Model III's RTC is software driven. The Z-80
increments the clock at precise intervals by virtue of an
RTC interrupt that operates at 30 Hz. When an RTC
interrupt occurs, the Z-80 processing is vectored to a

machine language routine at an interrupt handling
address. This routine increments a 33.3-msec clock
at address 4216 hex (16918 dec) and adjusts seconds,
minutes, and hours accordingly. After the RTC is
updated, the Z·80 returns to whatever process it was
carrying out before the interrupt occurred. By means of
the interrupt, the Z·80 spends most of its time execut­
ing the current computer program, suspending this
processing for a small fraction of 1 msec every 33.3 msec
to update the clock.

The 30-Hz operating frequency of the interrupt is
derived from the 60·Hz video scan frequency. This
provides the means by which video synchronization can
be achieved, because the interrupt occurs when the
electron beam is at a known position every other screen
page.

In order to alter the RTC interrupt for use in video
synchronization routines, the programmer needs to
"steal" the interrupt from the RTC handling routine.
The RTC interrupt normally vectors the Z-80 to RAM
address 4046 hex (16454 dec). This address and the two
following it contain the codes for a JP 2935H instruc­
tion. This instruction tells the Z-80 where in RAM to
jump in order to update the RTC. Normally, RAM
address 2935 hex (13609 dec) is the beginning of this
routine. To use the RTC interupt for video synchroni­
zation, the programmer must change the 2-byte address
in 4047 and 4048 hex from the RTC interrupt handling
address to the address of the machine language routine
that carries out the experimental objective.

17 MSEC VERTICAL LINE (Figure 1) is an assembly
language routine that demonstrates the techniques for
accomplishing this task. It is designed to be called from
a BASIC program, written in TRSDOS 1.3 BASIC. The
object code for this routine should be loaded beginning
at memory location FEOO hex (65024 dec) in a 48-KB
Model III TRS·80. For computers with 16-KB or 32-KB
RAM, the program will operate if all of the relevant
addresses are changed to lower ones. The object code
can be prepared on disk or cassette from the source
listing in Figure 1 by using the appropriate editor/
assembler software. Alternatively, the user may write
a BASIC program that POKEs the decimal values of the
object code into the correct memory addresses. The
RAM addresses appear in the first column of Figure 1;
the decimal object codes may be derived from the
hexidecimal codes in the second column."

17 MSEC VERTICAL LINE carries out the following
processes. Line 150 disables all maskable interrupts,
including the RTC interrupt. This is necessary to assure
that an interrupt does not occur while the RTC interrupt
is being revectored. Lines 160 and 170 change the RTC
interrupt handling routine address to START (at FEOF
hex, 65039 dec), which is the beginning of the stimulus
display routine of 17 MSEC VERTICAL LINE. tine 180
enables the interrupts. Lines 190 and 210 execute a
pause that essentially causes the Z-80 to wait for the

TRS-80 VIDEO SYNCHRONIZATION 541

0FE00H ;RAM of ..outine
0060H ;Delay RAM

;Disable inte~.. upts
HL,START;New RTC int add
(4047H),HL;Ne~ RTe int vect

;Enable inte.. rupts
BC,3378 ;50 msec delay
DELAY

;Retu.. n to BASIC
;DRAW BAR ROUTINE

BC, (0FFE0H);Pause
DELAY
DE,40H
B,10H ;Counts lines
IY,3C20H;Video RAM
A,191 ;Print bar CHRS
(IY) ,A
IV,DE ;Skip to next line
LOOPA
BC, (0FFDBH);Finish 16.7 msec
DELAY
B,10H ;Sets counts..
A,128 ;Blank cha.. actsr
IY,3C20H;Points video RAM
(IY),A ;Draws blank
IY,DE ;Jump to next lire
LOOPS
HL,3529H;Normal RTC int
(4047H) ,HL

0FE00H

;17 MSEC VERTICAL LINE
;By Joseph G. Dlhopolsky, Ph.D.

ORG
DELAY EQU

01
LD
LD
EI
LD
CALL
RET

START DI
LD
CALL
LD
LD
LD
LD

LOOPA LD
ADD
DJNZ
LD
CALL
LD
LD
LD

LOOPB LD
ADD
DJNZ
LD
LD
EI
RET!
END

00100
00110
00120
00130
00140
00150
00160
00170
001Bl2l
00190
121021210
00210
1210220
00230
00240
00250
00260
00270
00280
00290
00300
00310
1210320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440

E.... o .. s

FE00
0060
FE011l F3
FEI1l1 210FFE
FE04 224740
FE07 FB
FE0S 01320D
FE0B CD601210
FE0E C9
FE0F F3
FE10 ED4BE0FF
FE14 CD6000
FE1? 11400111
FE1A 0610
FE1C FD21203C
FE20 3EBF
FE22 FD?71110
FE25 FD19
FE2? 10F9
FE29 ED4BDBFF
FE2D CD6000
FE30 0610
FE32 3£S0
FE34 FD21203C
FE38 FD7700
FE3B FD19
FE3D 10F9
FE3F 212935
FE42 224740
FE45 FB
FE46 ED4D
FE00
00000 Total

LOOPB FE38
LOOPA FE22
START FE0F
DELAY 0060

Figure I. Source code for 17 MSEC VERTICAL LINE. The first column contains the hexa­
decimal addresses for the object code that appears in the second column. The program lines, to
which the text refers, are in the third column. The fourth column contains the assembly lan­
guage instructions. Comments appear on the far right,

RTC interrupt. When the interrupt occurs, the Z-80
processing is vectored to START at Line 220.

Line 220 disables interrupts again. This is necessary
for a number of reasons. For one, if response latency is
to be measured by a software timer, any interrupt
processing causes an underestimation of the subject's
latency. Most software-based millisecond timers are
calibrated in reference to the known execution times of
Z-80 instructions. When an interrupt is encountered in
the course of measuring response latency, the milli­
second timer will effectively stop until the interrupt is
serviced, but real-time will continue.

A second reason for disabling interrupts is that most
routines take longer than the 33.3 msec before the next
RTC interrupt occurs. Failing to disable interrupts in
this case leads to an endless loop.

Lines 230 and 240 execute a delay before the stim­
ulus data are loaded into video RAM. The duration of
the delay is determined by a constant that is stored in
two addresses: the least significant byte (LSB), in

address FFEO hex (65504 dec), and the most significant
byte (MSB), in FFEI hex (65505 dec). For most experi­
mental purposes, this delay is unnecessary. It is included
in this demonstration routine in order to allow the
programmer to observe the location of the electron
beam at different times within the 17-msec duration of
each page. The BASIC program described later demon­
strates the implementation of this delay.

Without going into elaborate detail about the remain­
ing instructions, the START routine begins with the
occurrence of the RTC interrupt; the CPU pauses for the
designated interval and then loads Code 191 into the
video RAM addresses for a full-length vertical bar in the
center of the screen. Code 191 in the TRS-80 is inter­
preted as a solid block composed of 2 by 3 pixels. It takes
380 microsec to complete this loading. So, in effect,
the stimulus can be loaded into video RAM right in front
of the electron beam. Once the bar is drawn, the pro­
gram pauses (Lines 320 and 330) for the remainder of
the 17-msec existence of the screen page and then loads

542 DLHOPOLSKY

blanks (Code 128) into the video RAM locations of the
to-be-erased bar (lines 340-390). With the next pass of
the electron beam 17 msec from the first RTC interrupt,
the bar will be erased.

Line 420 enables interrupts, and line 430 returns
from the current interrupt, bringing the Z-80 back to the
instruction in Line 210_ line 210 is designed to return
control to the BASIC program from which the machine
language routine was called.

In order to understand what is being seen on the
screen during the operation of 17 MSEC VERTICAL
LINE, the characteristics of the video screen need to be
described. The video circuitry acts as if there are actually
22 lines on the screen, even though only the first 16 are

. actually displayed. The remaining six lines (lines 17-22)
are devoted to vertical retrace and can be considered
invisible. Data loaded into video RAM while the elec­
tron beam is aimed at these lines will not appear on the
screen until the beam reaches the designated screen
location. Each visible and invisible line takes .758 msec
(16.667/22) to draw.

The RTC interrupt occurs at the beginning of line 17.
The following six invisible lines take a total of 4.545 msec
(.758 X 6) to complete before the electron beam reaches
the top of the screen for the first visible line. It takes
about 100 microsec from the RTC interrupt before the
Z-80 begins the interrupt handling routine. This leaves
about 4.4 msec for 17 MSEC VERTICAL LINE to load
the bar into video RAM before the beam reaches the
first visible line. This leaves plenty of time.

If the programmer chooses a longer delay, the elec­
tron beam will have started its trip down the screen
when the bar is loaded into video RAM. Therefore, the
top portions will be missing, the length of missing
material being related to the duration of the initial
pause.

Some experiments might make use of physically larger
stimuli. In the present example, it took 380 microsec
to load 16 bytes into video RAM: about 24 microsec/
byte. A stimulus made up of more than 702 bytes could
not be stored in video RAM fast enough to beat the
beam to the end of the screen. While 702 bytes is a
sizable stimulus, some research may demand a program
that changes the contents of all 1,024 video RAM
addresses.

Other subroutines for loading data into selected video
RAM locations may be faster than the one described
here. One simple solution for large screen changes is to
make all desired video changes on an invisible page of
memory. For example, addresses FCOO hex through
FFFF hex (64512 through 65535 dec) comprise
1,024 bytes. All intended video changes can be made in
analogous areas of this invisible page. When the changes
are completed, the video synch routine can be engaged
to transfer the block of data to video RAM, using the
assembly language LDIR command. To use this instruc­
tion, the loSO's BC, DE, and HL registers need to be

initialized as follows. The BC register counts out the
number of bytes and should be set at 1,024 dec. The
DE register is set to the first video RAM address, 3COO
hex (15360 dec). Finally, the HL register is set to the
first address of the invisible page (FCOO hex, 64512 dec
in the present example). Execution of the LDIR instruc­
tion then transfers all the data in the invisible page to
video RAM. This is carried out at 10.4 microsec/byte.
A single video line's data take 665 microsec to transfer;
all 16 lines take 10.6 msec. If the video synch routine
has the typical 4.4-msec jump on the electron beam,
the entire page can be transferred before the beam gets
to the ninth visible line. This means that the video RAM
loads will always be ahead of the electron beam.

For more complicated stimulus displays, additional
invisible pages of memory can be used and rapidly pre­
sented. Twenty such pages would not be unreasonable
in a computer with 48 KB of RAM, leaving room for the
program, data, and disk operating system (if there is
one). This means that the TRS-80 could act as a 20-field
tachistoscope, in which all 20 pages could be sequentially
displayed in .33 sec.

Figure 2 shows the listing of a BASIC program,
Z-80 VIDEO SYNC DEMONSTRATION, that can be
used to demonstrate the operation of 17 MSEC VER­
TICAL LINE. The program is written in TRSDOS 1.3
BASIC, which differs in some respects from Level II
BASIC. It may also differ from the BASIC enhance­
ments of other disk operating systems. If they exist, the
differences are likely to be in the following areas:
(1) the representation of hexadecimal values, (2) the
means for calling a Z-80 routine, and (3) the adopted
conventions for string and integer variables.

All the hexadecimal values may be changed to their
decimal equivalents to solve the first problem. To solve
the second problem, the manual for the disk operating
system in use will contain information for calling a Z-80
routine. lines 120 and 130 load the machine language
disk me, and line 410 calls the routine. These lines may
need to be changed to conform to any non-TRSDOS
operating system being used. The last problem is a con­
vention adopted by the author, which could present
problems for users unfamiliar with it. Model III TRS-80
BASIC allows the programmer to define ranges of
variables as strings, integers, singleprecision, and double
precision. Once such variables are so defined, they need
not have identifying codes in the remainder of the pro­
gram (e.g., AAS, IA%, XA# can appear as AA, lA, and
XA and still be interpreted as string, integer, and double­
precision variables, respectively). This saves memory
space and programming time. The BASIC program
described here defmes all variables beginning with the
letters A through H as string variables (see tine 110) and
all variables from I through N as integers. The remaining
variables are single precision.

To execute the BASIC program, the object code for
17 MSEC VERTICAL LINE must be in a floppy disk

TRS-80 VIDEO SYNCHRONIZATION 543

10 ' Z-80 VIDEO SYNCH DEMONSTRATION
48 K DISK MODEL III TRS-80
Written for TRSDOS 1.3

20' Revised 8208.21

100 CLEAR500:CLS
110 DEFSTRA-H:DEFINTI-J
120 CMD"L"."BEAMCAL/CI'1D":'Loads 17 MSEC VERTICAL BAR
130 DEFUSR0=&HFE00:'Defines origin of machine code
200 CLS:INPUT"How many flashes":JA
2H' INPUT"Length of pause before drawing line luseci":JB
240 P0=JB-40:'Corrects for machine language routIne overhead
242 OA=IP0-2.461/14.8:'Converts to BC register value
244 GOSUB9000:'Rounding
246 JC=INT (GAl
250 J0=JCAND255:'LSB
252 Jl=I-256ANDJCI/256:IFJl(0THENJl=256+Jl:'MSB
260 POKE&HFFE0,J0:POKE&HFFEl.Jl:'LSB & MSB for DELAY call
270 P0=50000/3-P0-403.5:'Gets rest of 16.7 msec
272 OA=IP0-2.46J/14.8:'Converts to BC register value
274 GOSUB9000:'Rounding
276 JD=INT <OAI
280 J0=JDAND255:'LSB
282 Jl=I-256ANDJDJ/256:IFJl<0THENJl=256+Jl:'MSB
291<1 F'OKE&HFFDB.J0:F'OKE~,HFFDC,Jl: 'LSB ~, ~lSB for rest of 17 msec
300 GOSUB9200:CLS
310 CLS:'Lines 310-340 draw screen dIsplay
320 FORJ=29T0989STEP64
322 PRINT@J,CHR$(170J:
324 PRINT@J+6,CHR$11491:
326 NEXT
.':.':,l!' F'RI NT@16. "V I DED L HJE" :
331 J0=I:FORJ=26T0538STEP64
332 PRINT@J.J0::PRINT@J+4,STRINGS(5.95,;
~~~ J0=J0+1:NEXT
334 FORJ=601T0985STEP64
335 PRINT@J,J0::PRINT@J+5.STRINGSI5.95J;
336 J0=J0+1:NEXT
34(' PRINT;il361 ,'Fause from Real Ti me":
342 PRINT@425,"Clock interrupt:":
344 PRINT:il488.JB: "+ Hllil usee";
400 FORJ=lTOJA:'Start flash sequence loop
4IY.f JI<I=USRiilll<l):'Calls 17 ~lSEC VERTICAL LINE
430 NEXT: , Ne:-:t flash
440 GOSUB9200:CLS:GOT0210:'Wait fo~ respon:e then start over
9~l~'0 I FOA- I NT lOA): . 49999THENOA=!NT lOA) ELSEOA= I NT IOA+1 J
91il10 RETURN
92~!1'1 A=IN!<EYS
9210 PFINTOJ962. " ( F RES 5 AN', t' E Y T 0 CON T
IN U E)";
92213 A=I Nf<EYS
9230 IFA=""THEN9220ELSERETURN

Figure 2. Source code for Z-SO VIDEO SYNC DEMONSTRATION, a BASIC program
that calls 17 MSEC VERTICAL LINE and demonstrates video synchronization based on the
real-time clock interrupt.

file named BEAMCAL/CMD. When starting up the com­
puter under TRSDOS, the user must reserve high mem­
ory for the machine languageroutine by answering65000
to the MEMORY SIZE query. Z-80 VIDEO SYNC
DEMONSTRATION loads the object code from floppy
disk and then asks the user two questions. The first
question, "How many flashes?", allows the user to call
the machine language routine a number of times in sue­
cession. 17 MSEC VERTICAL LINE displays the bar for
17 msec and then erases it. So multiple flashesare helpful.

The second question, "Length of pause before draw­
ing line?", allows the user to select the initial microsecond

pause that will be taken by the machine languageroutine.
By selecting values in excess of about 4,400 microsec,
the user can demonstrate the location of the electron
beam at the .end of the pause: The portion of the bar
above the electron beam will not appear on the screen,
even though it existed in video RAM for a time.

Upon answering the computer's queries, the user can
implement the demonstration by pressing any key. The
program POKEs the correct values in RAM locations for
use by 17 MSEC VERTICAL LINE and draws a screen
display that helps to locate and interpret the length of
the 17-msec bar (Figure 3). For calibration purposes,



544 DLHOPOLSKY

VIDEO LINE 1

2

3

4

5 .....

6 -1

7 ....

8 ....

9 ....

10 1--11-1
11

12 ...

13 .....

14 -1

15 .....

16 1-1

Figure 3. A negative-image representation of the video
screen during the execution of Z·BO VIDEO SYNC DEMON­
STRATION. Each horizontal line divides a video character line
into an upper two-thirds and a lower one-third. The thick
central vertical bar depicts the location of the 17·msec display
that is carried out by the machine language routine, 17 MSEC
VERTICAL LINE.

the short horizontal lines indicate the general location of
each video line. About two-thirds of the video line is
located above the horizontal line, and one-third below it.
All alphanumeric characters appear in the space above
the horizontal line; some graphics characters span both
above and below the horizontal line.

In research applications, an experimental trial will be
set up before the video synchronization routine replaces
the RTC interrupt. Often, this can be done within the
BASIC portion of the program. All stimulus data can be
placed in invisible memory locations. Then, control may
be passed to the machine language routine that loads
the stimulus data into video RAM in synchronization
with the electron beam.

During program development, the programmer should
determine the time it will take to carry out all the
machine language instructions up to those that begin
the stimulus transfer to video RAM. This time should be
added to 100 microsec, the approximate time it takes
before the interrupt servicing routine begins. The resul-

tant value can be divided by .758 microsec to determine
at which line the electron beam is expected to be aimed
when the stimulus appears in video RAM. It is then a
simple step to calculate the delay between the stimulus's
appearance in video RAM and its appearance on the
screen. Consequently, the software video synchroniza­
tion described here provides the programmer with the
capability to control stimulus exposure and record
response latency with precision that approaches a frac­
tion of 1 msec.

REFERENCES

GRICE, G. R. Accurate reaction time research with the TRS·80
microcomputer. Behavior Research Methods & Instrumenta­
tion, 1981,13,674-676.

LINCOLN, C. E., & LANE, D. M. Reaction time measurement
errors resulting from the use of CRT displays. Behavior
Research Methods &Instrumentation, 1980,12,27-39.

MERIKLE, P. M., CHEESMAN, J., & BRAY, J. PET Flasher:
A machine language subroutine for timing visual displays and
response latencies. Behavior Research Methods & Instrumenta­
tion, 1982,14,26-28.

REED, A. V. Microcomputer display timing: Problems and solu­
tions. Behavior Research Methods & Instrumentation, 1979,
11, S72-S7S.

ZAKS, R. How to program the Z-80. Berkeley: Sybex, 1980.

NOTES

1. Some readers may wonder if the real-time clock-based
video synchronization described in this article might be possible
for the Model I TRS-80. Unfortunately, it is not. The real-time
clock in the older model does not operate from the vertical
synch pulse but from a 4-MHz clock in the disk controller cir­
cuits. Also, the computer's internal circuits do not allow mask­
able interrupts of the type used in the Model Ill's real-time
clock interrupt. The hardware modification described by Grice
(1981) remains the only viable method for the Model I.

2. The TRS-80 video screen actually performs as if it has
22 lines, even though only 16 lines appear on the screen. The
remaining six lines are devoted to vertical retrace of the electron
beam. As a result, a full screen can be drawn in about 12.1 msec,
not 17 msec. This is followed by a 4.5-msec pause, during
which there is no change in the screen display.

3. The author is indebted to Mike Berger, Model III design
engineer, who, in a personal communication, provided much
of the information about the operation of the TRS-80's real­
time clock and interrupt.

4. The author will provide a 5.25-in. double-density floppy
disk containing the object and source codes for 17 MSEC VER­
TICAL LINE and the sample BASIC (TRSDOS 1.3) program
that implements it, Z-80 VIDEO SYNC DEMONSTRATION.
The cost is $10.

(Received for publication August 27,1982;
revisionaccepted October IS, 1982.)




