Skip to main content
Log in

Synthesis, crystal structures, spectral, electrochemical and magnetic properties of di-µ-phenoxido-bridged dinuclear copper(II) complexes with N-salicylidene-2-hydroxybenzylamine derivatives: axial coordination effect of dimethyl sulphoxide molecule

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The template reaction of salicylaldehyde and its substituted derivatives and 2-hydroxy-5-bromobenzylamine or 2-hydroxy-5-chlorobenzylamine with copper(II) acetate in dimethyl sulphoxide (dmso) afforded eight dinuclear Cu(II) complexes, [Cu2(L)2(dmso)2] (H2 L = N-salicylidene-2-hydroxy-5-bromobenzylamine, N-salicylidene-2-hydroxy-5-chlorobenzylamine and their 5-bromo, 5-nitro and 5-methyl-substituted salicylidene derivatives). These Cu(II) complexes were characterised by IR and UV-VIS-NIR spectroscopy, electric conductivity, cyclic voltammetry, and temperature dependence of magnetic susceptibilities (4.5–300 K). In the THF solution, the complexes are nonelectrolytes and exhibit a characteristic CT band due to phenoxido-bridging at 360–384 nm. In the cyclic voltammograms, an irreversible reduction process was observed at −1.18–1.54 V vs Fc/Fc+. Single-crystal X-ray crystallography revealed that two Cu(II) ions were bridged by the two phenoxido-oxygen atoms of the two Schiff-base ligands with axial coordination of dmso molecules forming a square pyramid with a Cu-Cu distance of 3.0628(8)–3.0931(6) °A. In accordance with the crystal structures, the magnetic interaction between the two Cu(II) ions is relatively anti-ferromagnetic with −2J value of 386–575 cm−1. The axial coordination effect of the dmso molecule was discussed in relation to the correlation between the Cu-O-Cu angle and the −2J value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brychcy, K., Dräger, K., Jens, K. J., Tilset, M., & Behrens, U. (1994). Komplexe mit makrocyclischen Liganden. I. Zweikernige Kupfer(II)-Komplexe mit vollständig π-konjugiertem Makrocyclus vom Schiff-Basen-Typ: Synthesen, Structuren, elektro- und magnetochemische Eigenschaften. Chemische Berichte, 127, 465–476. DOI: 10.1002/cber.19941270304.

    Article  CAS  Google Scholar 

  • Cai, L., Xie, W., Mahmoud, H., Han, Y., Wink, D. J., Li, S., & O’Connor, C. J. (1997). Synthesis and characterization of a constricted and rigid ligand system for five-coordinate binuclear complexes. Inorganica Chimica Acta, 263, 231–245. DOI: 10.1016/s0020-1693 (97)05650-8.

    Article  CAS  Google Scholar 

  • Chiari, B., Piovesana, O., Tarantelli, T., & Zanazzi, P. F. (1988). Out-of plane coordination and exchange coupling in oxygenbridged copper(II) dimers. Inorganic Chemistry, 27, 4149–4153. DOI: 10.1021/ic00296a014.

    Article  CAS  Google Scholar 

  • Dai, J., Akiyama, S., Munakata, M., & Mikuriya, M. (1994). A novel oxo-bridged dinuclear vanadium(V,V) complex of Schiff base and its conversion with mononuclear vanadium(IV) complex. Polyhedron, 13, 2495–2499. DOI: 10.1016/s0277-5387(00)83089-2.

    Article  CAS  Google Scholar 

  • Dai, J., Wang, H., & Mikuriya, M. (1996). Electrochemistry of vanadium complexes of o-N-salicylideneaminoethylphenol. A well characterized cyclic mechanism for the gain or loss of vanadyl oxygen. Polyhedron, 15, 1801–1806. DOI: 10.1016/0277-5387(95)00434-3.

    Article  CAS  Google Scholar 

  • Galy, J., Jaud, J., Kahn, O., & Tola, P. (1979). Crystal structure and magnetic properties of Cu2(fsa)2en, CH3OH, with H4(fsa)2en = N,N′-bis(2-hydroxy, 3-carboxybenzilidene)-1,2-diaminoethane. Inorganica Chimica Acta, 36, 229–236. DOI: 10.1016/s0020-1693 (00)89398-6.

    Article  CAS  Google Scholar 

  • Hernández-Molina, R., & Mederos, A. (2003). Acyclic and macrocyclic Schiff base ligands. In J. A. McCleverty, & T. J. Meyer (Eds.), Comprehensive coordination chemistry II: From biology to nanotechnology (Vol. 1: A. B. P. Lever (Ed.), Fundamentals: Ligands, complexes, synthesis, purification, and structure, Chapter 1.19, pp. 411–446). Oxford, UK: Elsevier.

    Google Scholar 

  • Horikoshi, R., & Mikuriya, M. (2005). One-dimensional coordination polymers from the self-assembly of copper(II) carboxylates and 4,4′-dithiobis(pyridine). Bulletin of the Chemical Society of Japan, 78, 827–834. DOI: 10.1246/bcsj.78.827.

    Article  CAS  Google Scholar 

  • Hoskins, B. F., McLeod, N. J., & Schaap, H. A. (1976). The structure determination of a binuclear copper(II) complex of a tetra-Schiff base macrocycle. Australian Journal of Chemistry, 29, 515–521. DOI: 10.1071/ch9760515.

    Article  CAS  Google Scholar 

  • Kakuta, Y., Myojo, C., Yoshioka, D., Zhu, Z., & Mikuriya, M. (2008). Synthesis and crystal structure of N-salicylidene-2-hydroxy-5-chlorobenzylamine. Analytical Sciences: X-ray Structure Analysis Online, 24, x267–x268. DOI: 10.2116/analscix.24.x267.

    Article  CAS  Google Scholar 

  • Kakuta, Y., Kurushima, M., Yoshioka, D., & Mikuriya, M. (2010). Preparation and crystal structure of a phenoxobridged dinuclear copper(II) complex with N-salicylidene-2-hydroxy-5-bromobenzylamine. X-ray Structure Analysis Online, 26, 49–50. DOI: 10.2116/xraystruct.26.49.

    Article  CAS  Google Scholar 

  • Kakuta, Y., Sakiyama, H., Masuda, N., & Mikuriya, M. (2013). DFT calculation on di-µ-ohenoxido-bridged dinuclear copper( II) complexes with N-salicylidene-2-hydroxybenzylamine analogues. In M. Melník, P. Segľa, & M. Tatarko (Eds.), Recent Developments in Coordination, Bioinorganic, and Applied Inorganic Chemistry (Monograph Series: International Conferences on Coordination and Bioorganic Chemistry: XXIV. International Conference on Coordination and Bioinorganic Chemistry, Smolenice Castle, Slovakia, June 2–7, 2013, pp. 284–287). Bratislava, Slovakia: Slovak University of Technology.

    Google Scholar 

  • Lacroix, P., Kahn, O., Theobald, F., Leroy, J., & Wakselman, C. (1988). Role of the CF3 attractive group on the electrochemical and magnetic properties of copper(II) dinuclear compounds with Robson-type binucleating ligands. Inorganica Chimica Acta, 142, 129–134. DOI: 10.1016/s0020-1693(00)80671-4.

    Article  CAS  Google Scholar 

  • Lambert, S. L., & Hendrickson, D. N. (1979). Magnetic exchange interactions in binuclear transition-metal complexes. 20. Variation in magnetic exchange interaction for a series of metal (II) complexes of a binucleating ligand. Inorganic Chemistry, 18, 2683–2686. DOI: 10.1021/ic50200a009.

    Article  CAS  Google Scholar 

  • Mandal, S. K., Thompson, L. K., Nag, K., Charland, J. P., & Gabe, E. J. (1987). Copper(II) complexes of a macrocyclic binucleating ligand which exhibit two-electron oxidation and two-electron reduction. Structure of [Cu2(C24H34N4O2) (CH3OH)2](ClO4)2, a macrocyclic dicopper (II) complex in volving coordinated methanol. Canadian Journal of Chemistry, 65, 2815–2823. DOI: 10.1139/v87-468.

    Article  CAS  Google Scholar 

  • Mandal, S. K., Thompson, L. K., Newlands, M. J., & Gabe, E. J. (1989). Structural, magnetic, and electrochemical studies on macrocyclic dicopper(II) complexes with varying chelate ring size. Inorganic Chemistry, 28, 3707–3713. DOI: 10.1021/ic00318a020.

    Article  CAS  Google Scholar 

  • Mandal, S. K., Thompson, L. K., Newlands, M. J., Gabe, E. J., & Nag, K. (1990). Structural and magnetic studies on macrocyclic dicopper(II) complexes. Influence of electron-withdrawing axial ligands on spin exchange. Inorganic Chemistry, 29, 1324–1327. DOI: 10.1021/ic00332a007.

    CAS  Google Scholar 

  • Mikuriya, M., Shigematsu, S., Kawano, K., Tokii, T., & Oshio, H. (1990). Synthesis, structure, and magnetic properties of a novel manganese(IV) complex with the Schiff-base ligand containing two phenolic oxygens. Chemistry Letters, 19, 729–732. DOI: 10.1246/cl.1990.729.

    Article  Google Scholar 

  • Mikuriya, M., Kakuta, Y., Kawano, K., & Tokii, T. (1991). Ferromagnetically coupled binuclear iron(III) complexes and antiferromagnetically coupled binuclear copper(II) complexes. The importance of the metal-O-metal angle. Chemistry Letters, 20, 2031–2034. DOI: 10.1246/cl.1991.2031.

    Article  Google Scholar 

  • Mikuriya, M., Dai, J., Kakuta, Y., & Tokii, T. (1993). Synthesis and characterization of a series of mononuclear manganese(IV) complexes with o-(salicylideneaminomethyl)phenol and its substituted derivatives. Bulletin of the Chemical Society of Japan, 66, 1132–1139. DOI: 10.1246/bcsj.66.1132.

    Article  CAS  Google Scholar 

  • Mikuriya, M., Kakuta, Y., Nukada, R., Kotera, T., & Tokii, T. (2001). Synthesis and structural characterization of di-µ-phenoxo-bridged dinuclear iron(III) complexes with ferromagnetic or weak antiferromagnetic coupling. Bulletin of the Chemical Society of Japan, 74, 1425–1434. DOI: 10.1246/bcsj.74.1425.

    Article  CAS  Google Scholar 

  • Mukherjee, R. (2003). Copper. In J. A. McCleverty, & T. J. Meyer (Eds.), Comprehensive coordination chemistry II: From biology to nanotechnology (Vol. 6: D. E. Fenton (Ed.), Transition metal groups 9–12, Chapter 6.6, pp. 747–910). Oxford, UK: Elsevier.

    Google Scholar 

  • Sheldrick, G. M. (1997). SHELXS-97 and SHELXL-97. Program for crystal structure resolution and analysis. Göttingen, Germany: University of Göttingen.

    Google Scholar 

  • Speier, G., Tisza, S., Tyeklar, Z., Lange, C.W., & Pierpont, C. G. (1994). Coligand-dependent shifts in charge distribution for copper complexes containing 3,5-di-tert-butylcatecholate and 3,5-di-tert-butylsemiquinonate ligands. Inorganic Chemistry, 33, 2041–2045. DOI: 10.1021/ic00087a047.

    Article  CAS  Google Scholar 

  • Tandon, S. S., Thompson, L. K., Bridson, J. N., McKee, V., & Downard, A. J. (1992). Dinuclear copper(II) and polymeric tetranuclear copper(II) and copper(II)-copper(I) complexes of macrocyclic ligands capable of forming endogenous alkoxide and phenoxide bridges. Structural, magnetic, and electrochemical studies. Inorganic Chemistry, 31, 4635–4642. DOI: 10.1021/ic00048a035.

    CAS  Google Scholar 

  • Tandon, S. S., Thompson, L. K., & Bridson, J. N. (1993). Dinuclear copper(II) and mixed-valence copper(II)-copper(I) complexes of 34-membered macrocyclic ligands (H2M1, H2M2) capable of forming endogenous phenolate and pyridazino bridges. X-ray crystal structures of the dinuclear copper(II) complexes [Cu2M1][BF4]2·H2O and [Cu2M2][BF4]2·CH3OH, which exhibit a remarkable ligand twist. Inorganic Chemistry, 32, 32–39. DOI: 10.1021/ic00053a006

    Article  CAS  Google Scholar 

  • Thompson, L. K., Mandal, S. K., Tandon, S. S., Bridson, J. N., & Park, M. K. (1996). Magnetostructural correlations in bis(µ2-phenoxide)-bridged macrocyclic dinuclear copper(II) complexes. Influence of electron-withdrawing substituents on exchange coupling. Inorganic Chemistry, 35, 3117–3125. DOI: 10.1021/ic9514197.

    Article  CAS  Google Scholar 

  • Tuna, F., Pascu, G. I., Sutter, J. P., Andruh, M., Golhen, S., Guillevic, J., & Pritzkow, H. (2003). Synthesis, crystal structures and magnetic properties of new oxalatoand phenolato-bridged binuclear copper(II) complexes with Schiff-base ligands. Inorganica Chimica Acta, 342, 131–138. DOI: 10.1016/s0020-1693 (02)01155-6.

    Article  CAS  Google Scholar 

  • Wada, S., Saka, K., Yoshioka, D., & Mikuriya, M. (2010). Synthesis, crystal structures, and magnetic properties of dinuclear and hexanuclear copper(II) complexes with cyclam-based macrocyclic ligands having four Schiff-base pendant arms. Bulletin of the Chemical Society of Japan, 83, 364–374. DOI: 10.1246/bcsj.20090284.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Mikuriya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakuta, Y., Masuda, N., Kurushima, M. et al. Synthesis, crystal structures, spectral, electrochemical and magnetic properties of di-µ-phenoxido-bridged dinuclear copper(II) complexes with N-salicylidene-2-hydroxybenzylamine derivatives: axial coordination effect of dimethyl sulphoxide molecule. Chem. Pap. 68, 923–931 (2014). https://doi.org/10.2478/s11696-013-0528-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-013-0528-0

Keywords

Navigation