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ANTIBACTERIAL INNATE IMMUNITY
Microbial invasion into sterile body

compartments causes infectious diseases
that are locally addressed by cells of the
innate immune system (1). Although ac-
tors of humoral immunity such as natu-
ral antibodies, pentraxins and factors of
the complement system contribute to
fight microbes in the early steps of innate
immune response, cellular immunity
does play a key role (2). As sensors of
pathogenic microbial agents, innate im-
mune cells recognize microbial-associated
or pathogen-associated molecular pat-
terns (PAMPs) by intracellular or cell
surface receptors. PAMPs are microbial
molecules such as the endotoxin of
gram-negative bacteria (lipopolysaccha-

ride [LPS]), the lipoteichoic acid of gram-
positive bacteria and many other compo-
nents (for example, lipoproteins, outer-
membrane proteins, flagellin, fimbriae
and peptidoglycan). In addition, bacter-
ial lysis results in the release of internal
motifs (for example, heat-shock proteins,
RNA, and DNA fragments), which are
additional PAMPs recognized by im-
mune cells. These cells express pattern
recognition receptors (PRRs), specifically
recognizing PAMPs. The activation of
PRRs initiates the innate immune antiin-
fectious response and the early produc-
tion of cytokines, which orchestrate this
response (3). Among PRRs, the discovery
of Toll-like receptors (TLRs) and nu-
cleotide oligomerization domain (NOD)-

like receptors (NLRs) has led to an un-
derstanding of the interaction between
microorganisms and hosts, as well as the
very early steps of the innate immune re-
sponse. TLRs are expressed either on the
cell surface (TLR1, -2, -4, -5 and -6) or
within endosomes (TLR3, -7, -8 and -9).
NLRs are cytoplasmic sensors. In addi-
tion to cytokine production, the interac-
tion of different PAMPs with their re-
spective TLRs or NLRs initiates
numerous intracellular signaling path-
ways that result in the activation of im-
mune and inflammatory genes, including
costimulatory molecules, adhesion mole-
cules and antimicrobial mediators (2,4,5).

After infection, after PAMP recogni-
tion by immune cells, there are two well-
 characterized steps of the immune re-
sponse illustrated by the production of
pro- and antiinflammatory cytokines. In
the most severe cases of infection (e.g.,
during sepsis), an overzealous release of
proinflammatory cytokines and inflam-
matory mediators by activated leuko-
cytes, epithelial cells and endothelial
cells, known as a “cytokine storm,”
leads to deleterious effects such as organ
dysfunction and even death. Almost
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concomitantly, this proinflammatory re-
sponse is accompanied by the release of
antiinflammatory cytokines and neuro-
mediators aimed to dampen the inflam-
matory process. The side effect of this
antiinflammatory response is the alter-
ation of immune status known as the
“compensatory antiinflammatory re-
sponse syndrome” (6), favoring the oc-
currence of nosocomial infections (7,8).
The early cellular immune response in-
volves the contribution of mast cells,
mononuclear phagocytes and polymor-
phonuclear phagocytes (9). More re-
cently, it became evident that natural
killer (NK) cells were also key players in
early immunity (10). The fact that TLRs
were recently discovered to be expressed
by NK cells has opened a new interest
for their putative involvement in innate
immune response to bacterial infections.
It seems that in contrast to phagocytes,
the activation of NK cells by PAMPs can
only occur within a complex crosstalk
with other immune cells that offer the
cytokine microenvironment required for
NK cell responsiveness (11). Accord-
ingly, similar to any other cellular or
molecular participant in infectious dis-
eases, NK cells can play an “angel” or
“devil” role, depending on the circum-
stances. The same actors, which con-
tribute to fight infection, can act in syn-
ergy, leading to acute deleterious
inflammation. This is particularly the
case of γ-interferon (IFN-γ), which is one
of the main cytokines produced by NK
cells (12).

The concept of NK cells was first re-
ported in 1975 by Hans Wigzell’s group,
which established that leukemia cell
lines could be lysed by cells with the
morphology of small lymphocytes and
devoid of T- and B-cell characteristics
(13). Their expression of Fcγ receptors
(14), and their capacity to kill target cells
through antibody-dependent cell cyto-
toxicity, was demonstrated thereafter
(15). Soon after, it was reported that NK
cells were also active against virus-in-
fected cells (16), opening a new field of
investigation to be explored. In contrast,
it took more time to accept the role of

NK cells in bacterial infection. The lack
of natural antibacterial activity against
Salmonella typhimurium of beige mice,
known to be deficient in NK activity, was
not recognized as evidence supporting
the role of NK effector cells in natural an-
tibacterial activity (17). The first report
on the role of NK cells during bacterial
infection was related to their capacity to
lyse either Shigella flexneri–infected HeLa
cells (18), Legionella pneumophila–  infected
monocytes (19) or Mycobacterium
avium–infected monocytes (20). The latter
study also reported that NK cells could
help macrophages to inhibit growth or
kill intracellular bacilli (21). Similar find-
ings were reported for Mycobacterium lep-
raemurium (22). The key in vivo role of
NK cells during a bacterial infection was
initially established in M. avium infec-
tion: an in vivo depletion of NK activity
using antibodies provided direct evi-
dence on their role in the control of intra-
cellular mycobacterial pathogens (23).
Since then, the role of NK cells in bacter-
ial infection has been clearly established,
including the cytokine microenviron-
ment and the cellular crosstalks required
for an active contribution of these cells in
innate antibacterial immunity (Figure 1).

It is possible that all NK cell subsets
are not equivalent in their antibacterial
activity. However, human and mouse
NK cell subsets will not be detailed in
this review (for detailed reviews about
NK cell subsets, see Huntington et al. [24]
and Wilk et al. [25]). For example, it has
been shown that in response to BCG
(bacillus Calmette-Guérin), human
CD56BRIGHT NK cells were cells mainly
involved in IFN-γ production, whereas
the CD56DIM subset contained higher lev-
els of perforin and granzyme A (26). In
addition, NK cell differentiation and
function are influenced by tissue envi-
ronment. Specific cellular and molecular
environments in the uterus, liver, spleen,
lungs or blood influence the precise na-
ture of NK cells. Furthermore, differ-
ences have been noticed between species.
However, it should be mentioned that
most studied human and murine NK
cells are generally derived from different

compartments. Most parameters of
human NK cells have been acquired
from cells derived from the blood com-
partment, whereas murine NK cells are
mostly derived from spleen. It is interest-
ing to note that the blood environment in
mice and humans are greatly different,
with murine plasma favoring the re-
silience of mice to bacterial infection (27).

BACTERIAL SENSING BY NK CELLS AND
EXPRESSION OF PRRS

A large part of the knowledge on TLR
expression in human NK cells was ini-
tially acquired in studies on the basis of
mRNA detection. In human NK cells, di-
vergent observations were reported. In
pooled purified NK T cell–like (NKT
cell–like) and NK cells (CD3+CD56+ and
NK CD3–CD56+, respectively), the ex-
pression of all TLR mRNA (TLR1–9) was
found (28), but in isolated NK cells,
mRNA expression levels of TLR1 were
highest, followed by moderate levels of
TLR2, TLR3, TLR5 and TLR6 (29). One
group demonstrated a lack of TLR9
mRNA expression in two different sorted
populations (NKT cell–like CD3+CD56+,
NK CD3–CD56dim and NK
CD3–CD56bright) (10). Regarding murine
NK cells, divergences in mRNA expres-
sion were also reported. One study re-
ported that all TLR mRNAs were ex-
pressed in splenic murine NK cells (30),
whereas in the other, only TLR2, TLR4,
TLR8 and TLR9 were found, but not
TLR3 and TLR7 (31).

Of course mRNA expression is not al-
ways a reflection of the protein expres-
sion, because of posttranscriptional,
translational and posttranslational
events. Furthermore, cellular localization
may also influence the cell surface ex-
pression. Studying human uterine NK
cells, Eriksson et al. (32) showed that
TLR2 was not localized on the cell sur-
face but was expressed intracellularly.
For circulating human NK cells, the sur-
face expression of this receptor remains
controversial. Flo et al. (33) failed to de-
tect TLR2 expression by flow cytometry
on a freshly isolated human NK cell sur-
face using two different monoclonal anti-



2 7 2 |  S O U Z A - F O N S E C A - G U I M A R A E S E T  A L .  |  M O L  M E D  1 8 : 2 7 0 - 2 8 5 ,  2 0 1 2

N K  C E L L S  I N  B A C T E R I A L  I N F E C T I O N

bodies. In contrast, Becker et al. (34)
showed that after 24 h of culture, puri-
fied NK cells displayed TLR2 surface ex-
pression, as revealed by staining with a
polyclonal antibody. Interestingly, TLR3
expression by human NK cells was
shown to be expressed both on the cell
surface (35) and intracellularly (36).
TLR9 was found either in all human
blood NK cells (36) or only in a small
subpopulation, of which the percent
could be increased after yellow fever
vaccination (37). Concerning mouse
spleen NK, a recent study showed that
cell surface expression of TLR2 was pres-
ent on ~65% of negatively selected
freshly isolated NK cells and was not sig-
nificantly modified after 48 h of culture
in the presence of IL-2 and IFN-α with or
without the Vaccinia virus (31).

The presence of any TLRs can be
demonstrated indirectly by the activation
of NK cells by TLR agonists (Table 1).
For example, flagellin, the ligand of
TLR5, favors NK cell recruitment in
lymph nodes, upregulates CD69 expres-
sion on NK cells and induces NK-cell
proliferation and IFN-γ production (38).
In contrast, flagellin abrogates
cytosine–phosphate–guanine (CpG)
oligonucleotide-induced cytolytic activ-
ity of NK cells (39). However, CpG
oligonucleotide, a TLR9 ligand, failed to
directly activate isolated NK cells (28,29)
because most of these activations are ac-
cessory cells and/or accessory cytokine-
 dependent (see below).

The method for NK cell purification is
a technical limitation that can explain
some of the controversial observations.
Often used, the positive selection with
magnetic microbeads may either induce
cellular activation and modification of
cell surface marker expression (40) or be
associated with the presence of contami-
nating dendritic cells (41). Divergent re-
sults are similarly obtained in vivo de-
pending on the antibody used for NK
cell depletion (42). For example, in vivo
cell depletion with anti-NK1.1 antibod-
ies leads to the elimination of both NK
and NKT cells, whereas the use of the
anti–asialo monosialotetrahexosylgan-

glioside (GM1) antibody depletes NK
cells and basophils (43). Thus, the pu-
rification method (and possible cellular
activation) may indeed contribute to the
controversial reports published when
studying the expression of TLRs in NK
cells. Furthermore, analysis performed
either extemporaneously or after cell
culture can also lead to divergent re-
sults.

Others PRRs have been expressed by
NK cells, including the families of cyto-
plasmic sensors, the NOD-like receptors
(NLRs) and the retinoic acid inducible
gene I (RIG-I)-like receptors. NLRs in-
clude NOD1, NOD2 and NOD-like re-
ceptor family, pyrin domain containing 3
(NLRP3). NOD1 is a receptor for small
motifs derived from peptidoglycan, such
as diaminopimelic acid-containing mu-

ramyl tripeptide (mur-tri-DAP), more
frequently found among gram-negative
bacteria. NOD2 is a receptor for mu-
ramyl dipeptide (MDP), the smallest ac-
tive part of peptidoglycans from both
gram-negative and gram-positive bacte-
ria. NLRP3 is a key member of the in-
flammasome and a sensor for many toxic
agents. Human NK cells express high
levels of intracellular NOD2, and
NLRP3, whereas NOD1 is expressed at
very low levels (36). Human NK cells
naturally internalize MDP, which to-
gether with IFN-α and IL-12 stimulate
the secretion of IFN-γ (44). Studies on the
activation of NK cells by synthetic dou-
ble-strand RNA (poly I:C) led to the con-
clusion that RIG-I–like receptor expres-
sion but not TLR3 was involved in NK
cell activation (45). The use of mice defi-

Figure 1. Activation of NK cells by bacterial PAMPs. NK cells are activated within a network
of accessory cells that sense bacterial PAMPs. Activation of accessory cells leads to the
production of cytokines that contribute to the functional activation of NK cells, while sens-
ing of PAMPs by NK cells themselves further enhances NK cell reactivity. All listed cytokines
have been shown to amplify NK cell activity, either alone or in synergy. Negative signals
can be directly delivered to NK cells (for example, IL-10 and TGF-β produced by Tregs,
prostaglandins or glucocorticoids) or indirectly by downregulating the function of acces-
sory cells. PGN, peptidoglycan; OmpA, outer-membrane protein A, MØ, macrophages;
PMN, polymorphonuclear leukocytes (neutrophils); B, B lympocytes; MAST, mast cell; EPITH.,
epithelial cell; PGE2, prostaglandin E2; PGD2, prostaglandin D2.
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cient for MDA5 (another member of the
RIG-I–like receptor family, a key intracel-
lular sensor of double-stranded RNA),
and that of mice deficient for interferon-
promoter stimulator-1 (an adaptor mole-
cule of the MDA5 pathway), led to the
conclusion that this pathway was mainly
involved in accessory cells (46,47).

In addition, toxins released by bacteria
can directly activate NK cells. Some of
them are known as superantigens. In
1982, we showed for the first time that
the streptococcal erythrogenic toxin, re-
named streptococcal pyrogenic exotoxin
A (SPEA) later, was able to induce in vivo
circulating IFN-γ (48). The first link of
this toxin with NK cells was probably re-
ported in 1991 by Sacks et al. (49), who
showed that SPEA increased NK cell cy-
totoxic activity. The capacity of SPEA to
activate NK cells and induce IFN-γ was
further confirmed (50). Staphylococcal
enterotoxin B is another superantigen
able to induce the release of IFN-γ by pu-
rified NK cells (51). In contrast to staphy-
lococcal enterotoxin B, studies suggest
that NK cells were not directly activated
by staphylococcal enterotoxin A. Staphy-
lococcal enterotoxin A–activated T cells
and monocytes contribute to the cytokine
environment required for the activation
of NK cells (52,53). A similar observation
was reported for listeriolysin O, a cy-
tolytic virulence factor of Listeria monocy-
togenes that induced IFN-γ production by
NK cells through the stimulation by IL-12
and IL-18 produced by macrophages
(54). The exotoxin A produced by
Pseudomonas aeruginosa was shown to ac-
tivate in vivo NK cell cytotoxicity (55). In
contrast, in vitro studies on peripheral
blood mononuclear cells revealed that P.
aeruginosa exerts an inhibitory action on
NK cells, preventing IFN-γ production
and cytotoxicity (56).

If NK cells are key actors of the innate
immune defense, it makes sense that
some pathogens have developed strate-
gies to limit the action and activation of
these cells. This is the case of the leuko-
toxin produced by Actinobacillus actino-
mycetemcomitans, which inhibits the up-
regulation of cell surface markersTa
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associated with NK cell activation (57).
More drastically was the case of Yersinia
pestis, in which the yersinial outer mem-
brane protein-11 (YopM) molecule, a
41.5-kDa virulence protein, interferes
with innate immunity by causing a
global depletion of NK cells, possibly by
affecting the expression of IL-15 receptor
α and IL-15 (58).

NK CELLS AS A SOURCE OF
INFLAMMATORY CYTOKINES AND
ANTIMICROBIAL MEDIATORS

NK cells produce cytokines that con-
tribute to the inflammatory environment
during an infection. IFN-γ, granulocyte-
macrophage colony-stimulating factor
(GM-CSF), and tumor necrosis factor
(TNF)-α are the main cytokines gener-
ated by activated NK cells (24,59). For
example, in the cecal ligation and punc-
ture (CLP) model of polymicrobial peri-
tonitis, it was established that liver NK
cells were the main source of IFN-γ (60).
Whether these cytokine productions are
accessory cell–dependent remains a con-
troversial issue. Nonetheless, there are
numerous reports showing that purified
NK cells can directly respond to PAMPs
in the absence of accessory cells, but in
the presence of cytokines such as IL-2,
IL-12, IL-15 or IL-18 (see Table 1).
Whereas most cytokines are undetect-
able in the bloodstream of healthy sub-
jects during homeostasis, there is a low
and different expression in various tis-
sues. This expression creates a microen-
vironment that modulates the precise
nature of different NK cells. During in-
fection and sepsis, a large panel of cy-
tokines is generated, offering NK cells
the appropriate environment to respond
to PAMPs, allowing contribution to the
cytokine cascade and eventually to the
cytokine storm (1,61).

Activation of NK cells can lead to dif-
ferent changes including cytotoxity asso-
ciated with the release of perforin and
granzyme and the production of cy-
tokines. The secretion of cellular granules
containing cytotoxic mediators (for exam-
ple, perforin and granzyme) and cy-
tokines (for example, IFN-γ) are not

achieved similarly. The release of cyto-
toxic molecules is polarized toward a tar-
get cell, whereas that of cytokines is not
(62). NK cells can be rapidly activated by
some of the cytokines present in the early
stages of infection, such as IL-12, IL-15 or
IL-18, allowing the secretion of large
amounts of IFN-γ and GM-CSF. NK cells
also generate other cytokines such as IL-5
(63), IL-6 (64), IL-10 (65,66), transforming
growth factor (TGF)-β (67), IL-12 (68), IL-
13 (69), IL-16 (25), IL-17 (70) and IL-22
(71). Similarly, NK cells are source of var-
ious chemokines such as XCL1, CCL1,
CCL2 and CXCL16 (72); CXCL8, CCL8,
CCL26 and CCL17 (25); CXCL10 (73);
CCL3 and CCL4 (74); and CCL5 (75). NK
cells also release soluble TNF-α (76) and
express its membrane form (77), as well
as other members of the TNF family (that
is, lymphotoxin [LT]-α, LT-β, Fas ligand,
CD27L, CD30L, OX40L, 4-1BB ligand
(4-1BBL), TNF-related  apoptosis-inducing
ligand (TRAIL) and LIGHT (homologous
to lymphotoxins, exhibits inducible ex-
pression, competes with HSV glycopro-
tein D for HVEM, a receptor expressed
on T-lymphocytes) (72,78).

The fact that NK cells are an important
source of proinflammatory cytokines,
particularly IFN-γ, illustrates how these
cells are both contributing to the antiin-
fectious process and amplifying the in-
flammatory response that can lead to
organ failure and death, as seen in
polymicrobial sepsis. NK cells have been
identified in numerous studies as the
main source of IFN-γ during infection by
different bacterial pathogens such as
Francisella tularensis (79), L. monocytogenes
(80–82), Chlamydia pneumoniae (83), and
Yersinia enterocolitica (84) and in experi-
mental endotoxin-induced lethal shock
(85) and polymicrobial sepsis (86) (Tables 1
and 2). The protective role of IFN-γ was
shown in murine salmonellosis, particu-
larly in synergy with TNF-α when in-
jected 6 h before S. typhimurium (87). This
beneficial role was also demonstrated in
IFN-γ receptor–deficient mice, which
were more sensitive to group B Strepto-
coccus (88) or to ascendens stent peritoni-
tis (89) than wild-type mice. In contrast,

neutralization of IFN-γ prevented lethal-
ity in primate gram-negative bacteriemic
shock (90) and protected mice infected
intravenously with Staphylococcus aureus
(91). The deleterious role of IFN-γ was
demonstrated by its capacity to increase
death when injected in mice, particularly
when acting in synergy with TNF-α (12).
This deleterious effect was also shown in
the CLP model of polymicrobial peritoni-
tis (92) and in a CLP model followed by
a P. aeruginosa infection (93). Polymicro-
bial peritonitis performed in IFN-γ
 receptor–deficient mice (94) or in rats
given anti–IFN-γ antibodies (95) led to
the similar demonstration of this nega-
tive role. In mice injected with LPS, the
ambiguous role of IFN-γ was demon-
strated: IFN-γ protected against LPS-
 induced lung edema but acted in syn-
ergy with LPS to enhance the occurrence
of death (96).

NK cells were also recognized as a
source of α-defensins and cathelicidin
(LL37), well-known antibacterial pep-
tides (97). NK cells can also generate in-
doleamine 2,3-dioxygenase (IDO) and ni-
tric oxide (NO), two other mediators
known to limit the infectious process
(98,99). So far, the generation of IDO by
NK cells has not been demonstrated in
the context of bacterial infection, but has
been in a transplantation model after
IL-4 treatment (100). Similarly, the pro-
duction of NO has not been demon-
strated in infectious models, but rather in
response to IL-2 (101), IL-12 and TNF-α
(102). In both cases, the authors showed
activation of inducible NO synthase. In
addition, NK cells express endothelial
NO synthase and thus can constitutively
produce NO (103). Most interestingly, it
was recently shown that NK cells can
also be a source of resolvin E1, suggest-
ing that they can also contribute to the
resolution phase of inflammation (104).

NK CELLS AND ACCESSORY
CYTOKINES

Despite the fact that NK cells are
equipped to recognize bacterial patterns,
it is well established that accessory cells
contribute both indirectly (through
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 soluble factors) and directly (through
cell-to-cell contact) to trigger the cellular
response. Several studies have demon-
strated the NK cell activation by TLR ag-
onists can occur in the absence of acces-
sory cells but in the presence of their
soluble cytokines. IL-2, IFN-α/β, IL-12, 
IL-15, IL-18 and IL-21 are the main cy-
tokines that trigger NK cells, either alone
or in a synergistic combination (105,106).
Other cytokines have also been reported

to amplify the survival, the proliferation,
the IFN-γ production or the cytotoxicity
of NK cells. This is the case for TNF-α
(107), IL-4 (100,108), IL-1β (109), IL-7 (71),
IL-23 (110) and IL-33 (111). NK cells re-
spond to chemoattractant signals deliv-
ered by numerous chemokines, particu-
larly CCL2 (macrophage-chemoattractant
protein [MCP]-1), CCL3 (macrophage in-
flammatory protein [MIP]-1α), CCL4
(MIP-1β), CCL5 (regulated upon activa-

tion, normal T-cell expressed and [pre-
sumably] secreted [RANTES]), CCL7
(MCP-3), CCL8 (MCP-2) and CXCL10
 (interferon γ–induced protein [IP]-10) (112).
In the case of CCL6 (C10), transgenic
mice overexpressing this chemokine
were shown to be protected against an
otherwise lethal CLP, associated with an
enhanced recruitment of NK cells in the
peritoneal cavity (113). Furthermore,
these chemokines enhance the cytolytic

Table 2. Some examples of cellular crosstalk allowing NK cell response during bacterial infections or PAMP challenge.

Cellular crosstalk with NK cells and type of 
infection or activation NK cell functions References

Dentritic cells
LPS Proliferation, cytotoxicity, Goodier et al. J. Immunol. 2000, 165, 139a

IFN-γ production
LPS or M. tuberculosis CD69 expression, Gerosa et al. J. Exp. Med. 2002, 195, 327

IFN-γ production
TLR3, -4, -7 and -9 agonists IFN-γ production and cytotoxicity Lucas et al. Immunity. 2007, 26, 503
L. monocytogenes IFN-γ production Lucas et al. Immunity. 2007, 26, 503; Kang et al.

Immunity. 2008, 29, 819; Humann and Lenz. 
J. Immunol. 2010, 184, 5172

Pam2Cys lipopeptides CD69 expression, cytotoxicity Azuma et al. PLoS One. 2010, 5, e12550
and IFN-γ production

Chlamydia muridarum IFN-γ production Jiao et al. J. Immunol. 2011, 187, 401
Monocytes/macrophages

CpG DNA IFN-γ production Chace et al. Clin. Immun. Immunopathol. 1997, 84, 185
Legionella pneumophila IFN-γ production and cytotoxicity Blanchard et al. Infect. Immun., 1988, 56, 1187
L. monocytogenes IFN-γ production Wherry et al. Infect. Immun. 1991, 59, 1709; Tripp et

al. PNAS. 1993, 90, 3725
P. aeruginosa exotoxin A IFN-γ production and cytotoxicity Michalkiewicz et al., Immunol. Lett. 1999, 69, 359
S. aureus; L. johnsonii CD69 expression, Haller et al. Clin. Diag. Lab. Immun. 2002, 9, 649

IFN-γ production
LPS CD69 expression Scott et al. Clin. Exp. Immunol. 2004, 137, 469
TLR2, -3 and -4 agonists IFN-γ production Tu et al. J. Exp. Med. 2008, 205, 233
Salmonella CD69 expression, cytotoxicity Lapaque et al. J. Immunol. 2009, 182, 4339

and IFN-γ
Kupffer cells

TLR2, -3 and -4 agonists IFN-γ production Tu et al. J. Exp. Med. 2008, 205, 233
Poly I:C + D-GalN in vivo IFN-γ production Hou et al. Hepatology. 2009, 49, 940

Neutrophils
Legionella IFN-γ production Sporri et al., J. Immunol. 2008, 181, 7121
LPS + IL-2 or IL-15/IL-18 IFN-γ production Costantini et al. Blood. 2011, 117, 1677

T-lymphocytes
Staphylococcal enterotoxin B–activated T cells IFN-γ production and cytotoxicity D’Orazio et al. J. Immunol. 1995, 154, 1014
LPS-treated γδ T cells IFN-γ production Andrews et al. Immunol. Cell. Biol. 2011, 89, 739

B-lymphocytes
L. monocytogenes IFN-γ production Bao et al. Eur. J. Immunol. 2011, 41, 657

Mast cells
LPS, Poly(I:C), CpG IFN-γ production Vosskuhl et al. J. Immunol. 2010, 119, 25

Epithelial cells
Chlamydia trachomatis IFN-γ production Hook et al. FEMS Immunol. Med. Microb. 2005, 45, 113

aThe second number in each reference citation indicates the volume; the last number indicates the beginning page number.
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response of NK cells. Whereas IL-15 is
the prerequisite cytokine for NK cell
maturation and differentiation from
bone marrow cells (114), it is also re-
quired for an optimal IFN-γ production
(115). Interestingly, IL-15 can be deliv-
ered to NK cells in a trans- presentation
manner (116,117). IL-15 and IL-2 share a
common receptor chain (IL-2Rβ) (118),
and NK cells are also responsive to IL-2
(119). Such a responsiveness is not only
an illustration of the crosstalk between
NK cells and T lymphocytes, the main
source of IL-2, but also with dendritic
cells (DCs), which have been shown to
contribute to NK cell activation through
the release of IL-2 (120). IL-12 was recog-
nized as an important cytokine to fight
infectious diseases (121,122), particularly
through its capacity to induce IFN-γ pro-
duction, as shown in mice infected with
Y. enterocolitica (84) or S. typhimurium
(123). Salmonella was also shown to in-
duce the production of IL-1β and IL-23
by macrophages favoring the production
of IFN-γ by NK cells (124). A similar syn-
ergy between IL-1β and IL-12 leading to
an enhanced production of IFN-γ was
also reported in response to LPS and L.
monocytogenes (109). It is interesting to
note that in return, IFN-γ can favor the
production of IL-12, as shown during
the activation of macrophages by My-
cobacterium bovis (125). Similarly, IL-18,
known to contribute to the antiinfectious
response and neutralization during an
infection with Y. enterocolitica or S. ty-
phimurium, was shown to be deleterious
(126). This study suggested that the role
of IL-18 depends on its capacity to in-
duce the production of IFN-γ. In IL-
18–deficient mice injected with Propioni-
bacterium acnes, IFN-γ production in
response to LPS was markedly reduced
and NK cell activity was significantly
impaired (127). Interestingly, during in-
fection, MyD88-deficient NK cells fail to
produce IFN-γ (128). Because MyD88 is a
signaling molecule shared by most TLR
and also by IL-18 receptor, it is conceiv-
able that its absence could affect both
pathways during an immune response
to infection. The use of IL-12/IL-18 dou-

ble KO mice and combined experiments
with anti–IL-12 and anti–IL-18 antibod-
ies demonstrated that both IL-12 and IL-
18 cooperate to activate NK cells
(127,129). A recent report showed that
IL-18 primes NK cells to become respon-
sive to IL-12 and to release IFN-γ (130).
A coordinated action with other cy-
tokines such as IFN-α/β has been
demonstrated during viral infection.
TLR4 agonists can also generate the re-
lease of IFN-α/β; it is most probable that
IFN-α/β also contributes to the activa-
tion of NK cells during bacterial infec-
tion (131).

Of course, NK cells are also responsive
to antiinflammatory mediators such as
IL-4 (106), IL-10 (132), TGF-β (133),
prostaglandin E2 (134,135), prostaglandin
D2 (136) and glucocorticoids (137,138). In
mice, in vivo blocking of IL-10 reverted
the hyporesponsive status of NK cells in
the lungs or the liver (139,140). In pa-
tients with chronic hepatitis B virus infec-
tion, in ex vivo experiments, blockade of
IL-10 or TGF-β restored the altered capac-
ity of NK to produce IFN-γ (141). How-
ever, IL-10 may not always be a direct in-
hibitor for NK cells. Particularly, IL-10
was shown to enhance IL-18–induced
IFN-γ production and IL-18– and 
IL-12–induced NK cell cytotoxicity and
proliferation (142,143). Such a paradoxi-
cal effect of IL-10 was confirmed when
regulatory DCs were added to NK cells
(144). These cocultures led to enhanced
NK cell–dependent cytotoxicity and IFN-γ
production. When regulatory DCs were
derived from IL-10 KO mice, their ampli-
ficatory role was significantly lower.

NK CELLS WITHIN A CELLULAR
CROSSTALK

The activation of NK cells in bacterial
infection has often been linked to a cellu-
lar crosstalk with accessory cells that al-
lows NK cell activation after direct inter-
action or accessory and NK cells with
PAMPs (145). Several accessory cells
have been described as a source of acti-
vating signals for NK cells, such as DCs,
polymorphonuclear neutrophils,
macrophages, mast cells, epithelial cells

and B and T lymphocytes, including reg-
ulatory T-cells (Tregs) (see Table 2).

In vitro production of IFN-γ by spleen
cells stimulated with S. typhimurium re-
quires the help of adherent cells or ad-
herent cell-derived factors (146). In this
early study, NK cells were not identified
as a source of IFN-γ, and adherent cells
could have been either DCs or
macrophages, making this report among
the first to demonstrate that a cellular
crosstalk was required for IFN-γ produc-
tion. Since then, the requirement of ac-
cessory cells for NK cell activation was
well documented (see Newman and
Riley [145] for a review). DCs were iden-
tified as a key partner for NK cells, par-
ticularly because they are a major source
of IL-12 and can also produce IL-15,
IL-18 and IFN-α (11,147). For example,
proliferation, cytotoxic activity and IFN-γ
production by LPS-stimulated NK cells
depended on major histocompatibility
complex (MHC) class II+ B7+ CD14– ac-
cessory cells, most probably DCs (148).
Studying the response of NK cells to L.
monocytogenes, it was demonstrated that
both cytokines and cell contact with in-
fected DCs were required for optimal
IFN-γ production by NK cells (149).
CX3CL1 (fractalkine) expressed on ma-
ture DCs is another player in the
synapses formed between DCs and NK
cells (150). Such contact was visualized
by clustering of DCs, not only with NK
cells, but also with granulocytes and
monocytes/macrophages (151) and in-
volved the priming of NK cells by IFN-
α/β and a trans-presentation of IL-15
(147).

Although the contribution of mono-
cytes was shown to counteract the ef-
fects of DCs (148), other reports demon-
strated a positive effect of monocytes/
macrophages. For example, in Legionella
pneumophila or L. monocytogenes infec-
tion, macrophages favored the produc-
tion of IFN-γ by NK cells (152,153). In
vitro, the presence of macrophages was
fundamental for the expression of CD69
by NK cells in the presence of LPS (154).
Crosstalk between human NK cells and
macrophages infected with intracellular
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Salmonella was also demonstrated. These
macrophage-activated NK cells caused
the secretion of IFN-γ and degranula-
tion. The NK cell activation required the
release of IL-2, IL-12, IL-15 and IL-18
and contact between NK cells and in-
fected macrophages (155). Liver
macrophages (Kupffer cells) were also
shown to crosstalk with NK cells during
activation in the presence of TLR2, TLR3
or TLR4 agonists, either in vitro or in
vivo (156,157). The activation was shown
to depend on IL-18 and cell-to-cell con-
tact. Similar to the reciprocal activation
identified between DCs and NK cells
(158), the crosstalk between
macrophages and NK cells is bidirec-
tional. For example, NK cells promote
phagocytosis of Escherichia coli by the
macrophages through a CD40/CD154
interaction (154). NK cell activation
leads to a dramatic reduction in the
number of intramacrophagic live Salmo-
nella (155). In a CLP model of peritonitis,
macrophage phagocytosis, NO produc-
tion and IL-6 levels were decreased in
NK cell–depleted mice compared with
controls (159). Indeed, coculture of NK
cells and macrophages significantly in-
creased activation levels of both cell
types, an activation determined to be
cell-to-cell contact–dependent (154). Of
note is that the activation of monocyte
and macrophages by TLR agonists leads
to the expression of MHC class I–related
chain A (MICA), a ligand for NK group
2 (NKG2) of receptors, member D
(NKG2D) and the ligand for the NKG2D
receptor, constitutively expressed on all
NK cells (160,161). The NKG2D receptor
is expressed predominantly on NK cells,
NK T cells and T cells. This receptor rec-
ognizes infected cells through surface
ligand expression on stressed cells. The
proposed role of the NKG2D receptor in
innate immune responses to cellular and
tissue stress is based on the ability of the
receptor to stimulate cytotoxic effects of
NK and T cells and the production of
IFN-γ and TNF-α. In P. aeruginosa lung
infection, NKG2D is also involved in ep-
ithelial cell sloughing (162), whereas on
the other hand, IFN-γ production by NK

cells and bacterial clearance depends on
the NKG2D ligand (163).

Neutrophils are central players during
innate immunity against infection. Their
interaction with NK cells is not surpris-
ing. During L. monocytogenes infection,
granulocytes produce IL-12 and favor
IFN-γ production by NK cells (164). Dur-
ing L. pneumophila infection, neutrophils
immediately produce IL-18, which is in-
dispensable for NK cell activation (165).
As mentioned above for macrophages,
NK cells can also activate neutrophils
and promote their survival; upregulate
cell surface expression of CD64, CD11b
and CD69; and enhance the production
of superoxide anions and heparin-
 binding epidermal growth factor (166).
This property observed when NK cells
were exposed to IL-15 and IL-18 partially
depended on their production of GM-
CSF. The detailed nature of the bidirec-
tional crosstalk between neutrophils and
NK cells is now provided in an extensive
review (167).

Similarly, mast cells are key actors of
innate immunity, thanks to their capacity
to release preformed cytokines, particu-
larly TNF-α (168). It was reported that,
in the presence of agonists for TLR3,
TLR4 and TLR9, mast cells in coculture
experiments stimulated NK cells to pro-
duce IFN-γ in a contact-dependent and
TNF-α–independent manner (169).

Lymphocytes also interact with NK
cells. B-lymphocytes were recognized
long ago as accessory cells for the pro-
duction of IFN-γ by NK cells (170). In
return, IFN-γ inhibits polyclonal B-cell
proliferation but favors the IgG2a re-
sponse (171). Recently, it was reported
during a L. monocytogenes infection that
a subpopulation of B-lymphocytes
(PDCA-1+ Siglec-H– CD19+) activated
NK cells via secretion of IFN-α (172).
T lymphocytes also dialogue with NK
cells in a reciprocal fashion. For exam-
ple, NK cells derived from pleural fluids
of patients with tuberculosis pleurisy in-
duce T-lymphocyte activation through
ICAM-1 engagement (173). After lethal
injection of LPS, IL-18 was shown as
fundamental to trigger γδT cells to pro-

duce IL-17A, which together with IL-18,
contribute to the IFN-γ production by
NK cells (174). Tregs constitute another
T-cell subtype characterized as
CD4+CD25+Foxp3+ and able to secrete
antiinflammatory cytokines (for exam-
ple, IL-10 and TGF-β1) and thus behav-
ing as suppressor cells. Alteration of the
immune system after sepsis is in part
consecutive to the action of Tregs (175).
Tregs and their cytokines behave as in-
hibitors of NK cell function (cytotoxicity
and IFN-γ production) (176,177). Of
course, cells other than Tregs can down-
regulate NK cell function through the
production of IL-10, despite its contra-
dictory properties on NK cells (see
above); this is particularly the case of
macrophages (148) and B-lymphocytes
(178). Myeloid-derived suppressor cells
can impair NK cell development and
function (179) as well as Kupffer cells
(156) and alveolar macrophages (135)
via the release of IL-10, TGF-β or
prostaglandin E2.

Most interestingly, nonimmune cells
can release NK-activating cytokines. This
is the case of epithelial cells, which on in-
fection with Chlamydia trachomatis can re-
lease IL-18, thus favoring the production
of IFN-γ by NK cells (180). In addition,
epithelial cells upon infection can in-
crease their expression of NKG2D ligand,
thus favoring a crosstalk with NK cells
(162).

BENEFITS VERSUS DISADVANTAGES OF
NK CELL ACTIVATION DURING
BACTERIAL INFECTION

As previously mentioned, NK cells are
closely associated with both the fight
against bacterial infection and the dam-
ages associated with an overzealous in-
flammatory response. According to ex-
perimental models, a beneficial or a
deleterious contribution has been attrib-
uted to NK cells (Table 3). For example,
when L. monocytogenes infection was in-
vestigated, Dunn and North (181) showed
that the early production of IFN-γ by NK
cells was essential for resistance to liste-
riosis. In contrast, Teixeira and Kauf-
mann (80) reported that NK cell deple-
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tion led to an enhanced listerial clearing.
The fact that the route of infection (sub-
cutaneous and intravenous, respectively)
and the mouse strains were different
may explain such a discrepancy. Indeed,
it was proposed that CD8+ T lympho-
cytes may play a more important role
than NK cells after intravenous L. mono-
cytogenes infection (81). In addition, phe-

notypic differences in NK cells were il-
lustrated in C3H/HeN and BALB/c mice
with P. aeruginosa chronic lung infection
(182).

In the CLP model of peritonitis, NK
cells were shown to contribute to the
early local and systemic control of the
bacterial burden (183). In this study, how-
ever, depletion of NK cells by anti–asialo

GM1 antibodies did not significantly
modify the survival curves. In contrast,
NK cells contribute to the overzealous
production of inflammatory cytokines as-
sociated with mortality of septic shock
(86,184). Most interestingly, in the latter
study, the beneficial effect of the deletion
of NK cells by either anti–asialo GM1 or
anti-NK1.1 antibodies was only seen

Table 3. Examples of the half-angel half-devil role of NK cells during bacterial infections.

Role of NK cells and 
experimental model Proof for NK cell role Reference

Beneficial
M. avium NK cell lysis of infected monocytes, Katz et al. J. Clin. Immunol. 1990, 10, 71a; 

NK cell lysis of infected macrophages, Bermudez et al. J. Leuk. Biol. 1990, 47, 135; 
Anti-NK1.1 depletion Harshan et al. Infect. Immun. 1991, 59, 2818

Mycobacterium lepraemurium NK cell lysis of infected macrophages Denis Int. J. Immunopharmacol. 1991, 13, 881
Mycobacterium tuberculosis Lysis of infected MØ by NK cells, Vankayalapati et al. J. Immunol. 2005, 175, 4611; 

Rag KO mice Feng et al. J. Immunol. 2006, 177, 7086
Mycobacterium bovis IL-15 transgenic mice, Umemura et al. J. Immunol. 2001, 167, 946;  

reduced intracellular bacterial growth Denis et al. Tuberculosis. 2007, 87, 53
L. monocytogenes Anti–NK cell depletion Dunn and North Infect. Immun. 1991, 59, 2892
S. typhimurium Anti–asialo GM-1 depletion Schafer et al. Infect. Immun. 1992, 60, 791
Salmonella choleraesuis Anti–IL-15 administration Hirose et al. J. Leuk. Biol. 1999, 66, 382
Salmonella enterica Anti-NK1.1 depletion Ashkar et al. Infect. Immun. 2009, 77, 214
Chlamydia trachomatis Anti–asialo GM-1 depletion, Tseng et al. Infect. Immun. 1998, 66, 5867; 

lysis of infected epithelial cells Hook et al. Clin. Exp. Immunol. 2004, 138, 54
Chlamydia muridarum Anti–asialo GM-1 depletion Jiao et al. J. Immunol. 2011, 187, 401
Staphylococcus aureus Anti-NK1.1 depletion, Nilsson et al. Clin. Exp. Immunol. 1999, 117, 63; 

IL-15 KO mice Small et al. J. Immunol. 2008, 180, 5558
Polymicrobial peritonitis Anti–asialo GM-1 depletion Godshall et al. Shock. 2003, 19, 144
Bordetella pertussis Anti–asialo GM-1 depletion Byrne et al. Eur. J. Immunol. 2004, 34, 2579
Chlamydophila abortus Anti–asialo GM-1 depletion Buendia et al. J. Comp. Path. 2004, 130, 48
Shigella flexneri Rag KO mice Le-Barillec et al. J. Immunol. 2005, 175, 1735
Legionella pneumophila Anti–asialo GM-1 depletion Spörri et al. J. Immunol. 2006, 176, 6162
Haemophilus influenza IL-15 KO mice Miyazaki et al. J. Immunol. 2007, 179, 5407
Pseudomonas aeruginosa NKG2D activation and bacterial clearance Wesselkamper et al. J. Immunol. 2008, 1891, 5481
Francisella tularensis Anti–asialo GM1 depletion (granuloma formation) Bokhari et al. Infect. Immun. 2008, 76, 1379

Deleterious
Pseudomonas aeruginosa Anti-NK1.1 depletion,  Newton et al. Nat. Immun. 1992, 11, 335; 

role of NKG2D in epithelial cell injury Borchers et al. Infect. Immun. 2006, 74, 2578
L. monocytogenes Anti-NK1 + depletion Teixeira and Kaufmann J. Immunol. 1994, 152, 1873
LPS-induced Shwarzman reaction Anti-NK1.1 or anti–asialo GM-1 Heremans et al. Eur. J. Immunol. 1994, 24, 1155
LPS-induced lethal shock NK1 + cells depletion Emoto et al. J. Immunol. 2002, 169, 1426
E. coli Anti–asialo GM-1 depletion Badgwell et al. Surgery. 2002, 132, 205
Polymicrobial peritonitis β2M KO + anti–asialo GM-1, Sherwood et al. Lab. Invest. 2004, 84, 1655; 

anti-NK1.1 or anti–asialo GM-1 Etogo et al. J. Immunol. 2008, 180, 6334
Severe sepsis Enhanced levels of Granzyme Zeerleder et al. Clin. Immunol. 2005, 116, 158
Streptococcus pyogenes Anti–asialo GM-1 depletion Goldmann et al. J. Infect. Dis. 2005, 191, 1280
Streptococcus pneumoniae Scid mice + anti–asialo GM-1 Kerr et al. Microbes Infect. 2005, 7, 845
H. pylori Increased infiltration of NK cells Kuo et al. World J. Gastroenterol. 2005, 11, 4357
Mycobacteria induced-colitis IL-10 KO mice Singh et al. BMC Immunol. 2008, 9, 25
Ehrlichia chaffeensis NK cell depletion Stevenson et al. Am. J. Pathol. 2010, 177, 766

aThe second number in each reference citation indicates the volume; the last number indicates the beginning page number.
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when mice were treated with antibiotics.
Furthermore, in this CLP model, when
bacterial clearance was investigated, dis-
cordant results were obtained depending
on the nature of the antibodies used for
the NK cell depletion (42).

Deleterious effects of NK cell activation
were reported after infection with both
gram-negative (for example, E. coli [185]
and Ehrlichia chaffensis [186]) and gram-
positive bacteria (for example, Streptococ-
cus pneumoniae [187] and Streptococcus pyo-
genes [188]) independent of the site of
infection (systemic, peritoneal or pul-
monary). Most interestingly, NK cells
may also contribute to adverse evolution
of the infectious diseases as shown by
their association with a Helicobacter
 pylori–dependent state of early-stage high-
grade gastric mucosa–associated lym-
phoid tissue lymphoma (189) and
 Mycobacteria-mediated colitis in suscepti-
ble hosts (190). Of course and as expected,
NK cells contribute to the deleterious ef-
fects seen after LPS injections (85,191).
Deleterious contribution of NK cells was
also demonstrated in the case of murine
polytrauma (192) and in the model of
 cytokine-induced fatal shock (193).

In contrast, numerous reports have
clearly defined beneficial roles of NK
cells in various models of bacterial in-
fectious diseases (see Table 3). For ex-
ample, the protective role of NK cells
was demonstrated in infections induced
by M. avium, M. lepraemurium or M. tu-
berculosis (20–23,194,195). The protective
role of NK cells was also demonstrated
in models of infection with different
strains of Salmonella (196–198). Similarly,
NK cells were shown to play a critical
protective role against S. aureus in septic
arthritis and pulmonary models of in-
fection (199,200). In the later case, an el-
egant study revealed that H1N1 in-
fluenza virus infection leads to
weakened NK cell activity, particularly
in terms of TNF-α production, render-
ing the host more susceptible to a sec-
ondary lung infection by S. aureus (201).
The defect of NK cells particularly af-
fected the phagocytic function of alveo-
lar macrophages.

IMMUNE STATUS OF NK CELLS DURING
SEPSIS

In humans, sepsis is associated with a
severe lymphopenia that also affects cir-
culating NK cells (202). The decreased
number of circulating NK cells persists
over 1 wk (203). The most severe deple-
tion of NK cells was found among the
patients with the highest mortality (204).
During sepsis, the “compensatory antiin-
flammatory response syndrome” is illus-
trated by a reprogramming of immune
cells (205). Immune status of NK cells is
also affected during sepsis. NK cell cyto-
toxic activity in adult and newborn sep-
sis patients was decreased (206–208). A
similar observation was reported in
trauma (209) and burn patients (210). It
was suggested that circulating endotoxin
is involved in the suppression of NK cell
activity observed in burns (210). In the
thermally injured patients with the most
severe depressed levels of NK cell activ-
ity, IL-2 and IFN-α failed to amplify this
response (211). Similar observations were
reproduced in animal models after sur-
gery or injection of LPS or other TLR ag-
onists (212–214). Whereas these observa-
tions were reported for spleen and liver
NK cells, the peak of the CLP-induced
acute lung injury was associated with se-
vere dysfunction of lung NK cells (215).
In this study, the authors showed a de-
crease in cell cytotoxicity, a decrease of
the percentage of perforin-positive NK
cells and a decrease of IFN-γ–positive
cells. We recently showed that IFN-γ and
GM-CSF ex vivo productions were altered
in splenic NK cells after polymicrobial
sepsis murine model (CLP) (Souza-
 Fonseca-Guimaraes F, Parlato M, Fitting
C, Cavaillon J-M, Adib-Conquy M. NK
cell tolerance to Toll-like receptor ago-
nists mediated by regulatory T cells after
polymicrobial sepsis [submitted]). En-
hanced apoptosis of spleen NK cells was
reported after CLP and was reversed by
injection of IL-15 (216).

CONCLUDING REMARKS
NK cells initially described for their

role in immunosurveillance against tumor
cells are fully part of the innate immune

response against infection, whatever the
type of pathogen (145). Unanswered
questions remain: How do PAMPs acti-
vate NK cells? If the full signaling cascade
downstream of TLRs is present, why do
purified NK cells respond poorly to the
PAMPs, and how do the accessory cy-
tokines allow them to be activated? If
some TLRs are not expressed on the cell
surface, what type of PAMP internaliza-
tion process allows their activation? A
great number of intracellular molecules
downregulate the TLR-dependent signal-
ing pathways, providing negative signals
to turn off cellular activation (217). Are
these molecules also acting within NK
cells, explaining their dysfunctions no-
ticed in sepsis (207,215)? NK cells are able
to release IDO and NO. Could these mol-
ecules be part of their arsenal to fight
pathogens? Would it be possible in the fu-
ture to act on NK cells, either to boost
their beneficial role during infection or to
limit their deleterious effects during sep-
sis or other acute inflammatory syn-
drome? In other words, would it be possi-
ble to limit the half-devil role of NK cells
to only favor their half-angel side?
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