
INTRODUCTION
Prostate cancer (PC) is among the most

commonly diagnosed malignancies and
is the second leading cause of cancer-
 related deaths in men (1–6). Although
progress in developing early detection
tests has led to improved clinical treat-
ments of patients diagnosed with low-
grade and organ-confined PCs by radical
prostatectomy and radiotherapy, the pro-
gression to locally advanced, invasive
and metastatic castration-resistant
prostate cancers (CRPCs) usually leads to
disease relapse (1,2,5,7–9). In fact, despite

the fact that the patients with locally ad-
vanced PCs initially respond to androgen
deprivation by surgical or chemical cas-
tration, androgen-independent (AI) le-
sions may eventually develop and
progress despite low levels of circulating
androgens (9–11). The CRPCs are refrac-
tory to conventional treatments by anti-
hormonal therapy, radiotherapy and
chemotherapy (1–5,7–9,12). More specifi-
cally, the first-line systemic docetaxel-
based chemotherapies used as care for
the patients with high-risk or metastatic
CRPCs are only palliative and typically

culminate in the death of patients after
about 12–19 months (1–3,5,8,13).

Numerous investigations have been
made to define the molecular transform-
ing events occurring in prostatic epithe-
lial cells and their local microenviron-
ment that may contribute to PC initiation
and progression to locally invasive and
metastatic disease stages as well as their
acquisition of an AI phenotype in humans.
It has been shown that the sustained acti-
vation of epidermal growth factor recep-
tor (EGFR), hedgehog, Wnt/β-catenin,
hyaluronan (HA)/CD44, transforming
growth factor (TGF)-β/ TGF-βR receptors
and stromal cell–derived factor-1 (SDF-1)/
CXC chemokine receptor 4 (CXCR4) fre-
quently occurs during PC progression to
locally invasive and metastatic CRPCs
(5,13–29). These tumorigenic cascades can
account for the sustained growth, sur-
vival, invasion, metastases and treatment
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morigenic and invasive capacities and survival advantages during PC progression. Consequently, the molecular targeting of
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and docetaxel-based chemotherapies, thereby preventing disease relapse and the death of PC patients.
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resistance of PC cells. Moreover, the alter-
ations leading to an enhanced expression
and/or hypersensibility of androgen re-
ceptor (AR) also may occur in PC cells
(9–11). The majority of PC patients also ex-
press diverse fusion genes resulting from
the chromosomal rearrangements of the
5′-untranslated region of the androgen-
regulated gene TMPRSS2 and v-ets avian
erythroblastosis virus E26 transforma-
tion-specific (Ets) family genes including
Erg, Etv1 or Etv4 (30–38). These fusion
genes encode for oncoproteins that can
provide key roles for PC progression 
and treatment resistance (30–42). More
specifically, it has been shown that the
overexpression of a truncated form of 
transcriptional regulator ERG from the
 TMPRSS2-ERG fusion gene, which occurs
in up to approximately 40% of PCs but is
not detected in the normal prostate, may
contribute to PC development (33,35–41).
The truncated ERG oncoprotein can co-
operate with the PTEN (phosphatase
tensin homolog deleted on chromosome
10) downregulation- induced phos-
phatidylinositol 3-kinase (PI3K)/Akt acti-
vation and induce the PC cell invasion
and angiogenesis-like wild-type onco-
genic ERG transcription factor (33,35–41).
In addition, the changes in the tumor re-
active stroma, including the release of dif-
ferent growth factors by activated myofi-
broblasts, typically take place during PC
progression under normoxic and hypoxic
conditions and may promote the malig-
nant transformation of PC cells and
neoangiogenesis (5,11,13,43–47).

In addition, a growing body of experi-
mental evidence has also revealed that
the accumulation of genetic and/or epi-
genetic alterations occurring in prostatic
stem/progenitor cells and changes in
their local microenvironment during the
lifespan may result in their malignant
transformation into highly tumorigenic
and migrating PC stem/progenitor cells,
also designated as PC- and metastasis-
initiating cells, that provide critical func-
tions for tumor formation and metastases
(Figure 1) (5,13,48–77). More particularly,
the acquisition of a more malignant
 behavior by tumorigenic PC stem/
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 progenitor cells during disease progres-
sion, including a migratory ability during
the epithelial-mesenchymal transition
(EMT) program, may lead to their inva-
sion, dissemination through the periph-
eral circulation and metastases at distant
sites, including bones, treatment resist-
ance and disease relapse (Figure 1) (5,13,
46,47, 50–52, 56–60, 63–65,67,68,72–78). In
this matter, we review the most recent ad-
vancements on the establishment of the
cellular origin of PCs and key signal

transduction elements that can cooperate
for the acquisition of more malignant phe-
notypes by PC stem/ progenitor cells and
their progenies during prostate carcino-
genesis, metastases at bones and other
distant sites and treatment resistance. The
provided information should help to de-
sign novel effective multitargeted ap-
proaches for improving the current anti-
hormonal treatments and docetaxel-based
chemotherapies to treat the PC patients at
early and late stages, including patients

Figure 1. Molecular oncogenic events associated with PC initiation and progression to a
locally invasive disease stage and bone metastasis and novel targeting therapies. The
scheme shows the PC initiation through the accumulation of genetic and epigenetic al-
terations in prostate-resident adult stem cells resulting in their malignant transformation
into tumorigenic PC stem/progenitor cells also designated as PC-initiating cells. The
transformation of tumorigenic PC stem/progenitor cells into migrating PC stem/progeni-
tor cells, which may be induced through the sustained activation of distinct growth fac-
tor signaling pathways during the EMT program and PC progression, is also shown. Fur-
thermore, the possible invasion of certain tumorigenic and migrating PC stem/progenitor
cells in the activated stroma, which may lead to their dissemination through the periph-
eral circulation at distant sites including bones along chemoattractant ligand gradient
systems such as SDF-1/CXCR4, is illustrated. The activation of metastasis-initiating cells
under specific microenvironmental conditions prevalent at bone induced via the release
of diverse paracrine growth factors and cytokines by fibroblasts and bone cells, and that
is associated with the formation of secondary tumor formation at bone, is also illustrated.
The release of growth factors and cytokines such as SHH, TGF-α, TGF-β and MIC-1 by PC
cells that can induce in a paracrine manner the differentiation of either osteoblast or os-
teoclast precursors into osteoblasts or osteoclasts, thereby causing the osteoblastic le-
sion (new bone formation) or osteolytic lesion (bone destruction) in certain cases, is also
indicated. In addition, the molecular targeting of distinct gene products deregulated in
PC- and metastasis-initiating cells, which might constitute a potential strategy to improve
current treatments, eradicate the total PC cell mass and prevent disease relapse, is also
indicated.



with a high risk of disease recurrence or
relapse after treatment initiation.

MOLECULAR TRANSFORMING EVENTS
DURING PROSTATE CARCINOGENESIS
AND METASTASES

Cellular Origin and Heterogeneity of
PC

PC is a complex, multifactorial and
heterogenous disease. Among the factors
predisposing to PC development, there
are intense oxidative stress, inflamma-
tory atrophies and fibrosis associated
with severe tissue injuries, hormonal
deregulation, and, more particularly,
 advancing age (1,10,13,44,79–83). Al-
though the cellular origin for different
PC subtypes remains not precisely
 established, a growing body of evidence
suggests that the accumulation of dis-
tinct genetic and/or epigenetic alter-
ations in prostatic stem/progenitor cells,
and more particularly during chronolog-
ical aging and intense tissue injuries,
may result in their malignant transfor-
mation into highly tumorigenic PC
stem/progenitor cells (5,13,48–77). It has
been proposed on the basis of the cell
lineage markers that PCs may originate
from the malignant transformation of
CD133/CD44/α2β1-integrinhigh prostatic
stem/progenitor cells or Sca+ immature
cells in mouse localized in the basal ep-
ithelial compartment or their early prog-
enies with an intermediate phenotype
endowed with stem cell–like properties
(5,13,48–77). In fact, in analogy with the
normal prostate regeneration process,
basal PC stem cells could generate mod-
erately differentiated transit amplifying
(TA)/intermediate progenitor cells with
a malignant phenotype that can con-
tribute to PC progression (Figure 1)
(54,58,60–63,84–96). Alternatively, the
specific alterations in basal prostatic
stem cells could be insufficient for their
malignant transformation but result in
the generation of distinct highly prolifer-
ative TA progenitor cells that accumu-
late in the suprabasal or luminal com-
partment and acquire a malignant
behavior and that are the cell types of

origin for particular PC subtypes
(55,97–100). Hence, the highly tumori-
genic PC stem/progenitor cells with a
basal or intermediate phenotype, which
are endowed with a high self-renewal
capacity and aberrant differentiation po-
tential, could act as PC- and metastasis-
 initiating cells and provide critical func-
tions for primary and secondary tumor
growth (Figure 1). In support with this
model of prostate carcinogenesis, a
 subpopulation of human PC stem/
 progenitor cells expressing stem cell–like
markers such as telomerase, CD133,
CD44high, α2β1-integrinhigh, nestin, alde-
hyde dehydrogenase (ALDHhigh), ATP
binding cassette (ABC) multidrug trans-
porter ABCG2high, Oct3/4, Sox2 and/or
Nanog, but a low or undetectable AR
level comprising about 0.1–3% of the
total tumor PC cell mass has also been
detected in malignant prostatic adeno-
carcinomas and metastatic neoplasms
(48–53,64–69,81). Importantly, the PC
stem/progenitor cells were able to give
rise in vitro and in vivo to the bulk mass
of differentiated PC cells expressing se-
cretory luminal phenotypes, including
AR and prostatic acid phosphatase, and
reconstitute the tumors in vivo with a
histological architecture of a Gleason
grade comparable to the patient’s origi-
nal tumors (49,51–53,64,65,101). For in-
stance, CD133/α2β1-integrinhigh PC stem
cells isolated from primary PC (P4E6),
when orthotopically grafted in a ma-
trigel plug containing human prostatic
stroma, were able to form multiple in-
traprostatic tumors in nude mice in vivo,
showing a histology such as the original
Gleason 4 grade PC (49). Furthermore, it
has been shown that certain established
human PC cell lines, including a new
IGR-CaP1 cell line derived from primary
prostatic epithelial neoplasm as well as
metastatic and AI PC3 and DU145 cell
lines, may represent a heterogeneous
population of PC cells. The presence of a
subpopulation of highly tumorigenic
and migrating PC stem/progenitor cells
expressing stem cell–like markers such
as CD133, CD44high,  ALDHhigh and/or
CXCR4 may be responsible for their ca-

pacity to form tumors and metastasize
in animal models in vivo with a high in-
cidence (56–58,60, 65, 70, 102).

In addition, it has also been observed
that the malignant transformation of pro-
static epithelial cells with an intermedi-
ate phenotype localized in the suprabasal
or luminal compartment, which can ex-
press the stem cell–like, basal (CK5/14
and p63) and luminal (CK8/18 and AR)
markers and persist after the degrada-
tion of the basal epithelial cell layer and
castration, may contribute to PC develop-
ment (51,54,55,61,62,87,100,101, 103–106).
For instance, it was reported that the
hedgehog signaling elements, receptor
Patched 1 (PTCH1) and glioma-
 associated oncogene homolog 1 (GLI)
transcription factor, were frequently colo-
calized with a p63 basal marker in
CD44/CK8/ 14-expressing prostatic hy-
perplasia basal cells and PC cells but
were rarely detected in normal basal cells
(55). These data suggest that the activa-
tion of the hedgehog pathway may in-
duce a transitory differentiation of pro-
static stem/ progenitor cells into
CD44+/p63–/+ hyperplasia basal cells
with an intermediate phenotype
(CK8/14), and this early transforming
event may culminate in tumorigenesis by
giving rise to CD44+ PC cells expressing
PTCH1 and GLI (55). Moreover, it has
also been reported that a rare subpopula-
tion of self-renewing castration-resistant
prostatic epithelial cells (CARNs) ex-
pressing the homeodomain-containing
transcription factor Nkx3.1 and found in
the luminal compartment after castration
in a mouse model could reconstitute
prostate ducts in renal grafts (100). The
inducible conditional deletion of the
phosphatase tensin homolog deleted on
chromosome 10 (PTENflox/flox) and
Nkx3.1CreERT2 tumor suppressor gene in
CARNs in castrated male mice was also
accompanied by the formation of PCs
with evidence of microinvasion, suggest-
ing that the malignant transformation of
CARNs localized in the luminal com-
partment may contribute to PC develop-
ment in this mouse model (100). Further
studies, however, are necessary to more
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precisely establish the hierarchical organ-
ization and specific functions of PC
stem/progenitor cells with the basal or
intermediate phenotype in prostate initi-
ation and progression as well as after
castration in different human PC sub-
types and animal models of PC. In this
regard, we review frequent molecular
transforming events associated with PC
initiation and progression to locally inva-
sive, metastatic CRPCs, treatment resist-
ance and disease relapse.

Frequent Gene Products and
Molecular Pathways Altered in 
PC-Initiating Cells and Their Progenies
during Prostate Carcinogenesis and
the Epithelial-Mesenchymal Transition
Process

Recent progress has led to the identifi-
cation of gene products and molecular
pathways that are often deregulated in
PC-initiating cells with stem cell–like
properties and their progenies during
human prostate carcinogenesis and that
may contribute to their malignant trans-
formation. More particularly, the im-
munohistochemical and gene-profiling
analyses of nonmalignant and malignant
prostatic tissues from patients combined
with gain- and loss-of-function studies
and development of PC cells and trans-
genic mouse models have revealed that a
downregulation of distinct tumor sup-
pressor proteins and upregulation of dif-
ferent oncogenic products in PC stem/
progenitor cells and their progenies may
provide critical roles for PC etiopatho-
genesis and progression (Figure 2)
(29,46,47,57,58,60,63,70–74,76,77, 97–99,
102,107–119). For instance, the characteri-
zation of transgenic mouse models rele-
vant to prostate carcinogenesis has indi-
cated that the downregulation of specific
tumor suppressor proteins, including
PTEN, Nkx3.1, cyclin-dependent kinase
inhibitor p27KIP1, p53 and retino blastoma
(pRb), as well as the overexpression of
oncogenes such as TMPRSS2-ERG fusion
in PC cells, may cooperate for PC initia-
tion and progression (35,41,63,97–99,
109–119). More specifically, the studies
using the cell lineage markers have indi-
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cated that the Sca-1+ PC stem/progenitor
cells in the basal compartment or their
more cell lineage–committed progenies
with an intermediate phenotype can act
as the PC-initiating cells in a prostate-
conditional probasin (PB)-Cre4 PTEN–/–

transgenic mouse model of PC (97,98).
Moreover, although the PB-TMPRSS2:ERG
transgenic mice engineered to express
the TMPRSS2-ERG fusion in adult
prostate did not develop preneoplastic
prostatic intraepithelial neoplasm (PIN)
lesions, it was observed that the crossing
of these mice with germline PTEN+/– or

prostate-specific PB-Akt-1+/+ transgenic
mice resulted in the development of PIN
lesions more rapidly compared with
germline PTEN+/– or PB-Akt-1+/+ trans-
genic mice used as littermate controls
(35). In the same way, the prostate-
 specific ERG overexpression in the
germline PTEN+/– transgenic mouse was
also accompanied by a marked accelera-
tion of the progression of high-grade
PINs to invasive prostatic adenocarcino-
mas relative to PB-ERG or germline
PTEN+/– transgenic mice used as litter-
mate controls (41). Interestingly, it has

Figure 2. Frequent oncogenic pathways involved in the malignant transformation of PC
stem/progenitor cells and their progenies during PC progression and metastases. The acti-
vation of the EGFR, sonic hedgehog SHH/PTCH/GLI, Wnt/β-catenin, HA/CD44, TGFβ/TGFβR,
ECM component/β1-integrin and SDF-1/CXCR4 signaling pathways, which may con-
tribute to the sustained growth, survival and migration of PC stem/progenitor cells and
their progenies and possible interactions between these signaling cascades, are shown.
The activation of the downstream signaling elements including PI3K/Akt, mitogen-acti-
vated protein kinases, NF-κB and focal adhesion kinase (FAK), which in turn contribute to
the upregulation of the expression of different target genes involved in the malignant
transformation of PC stem/progenitor cells and their progenies during the EMT process
and treatment resistance, are indicated. More specifically, the inhibition of p21CIP1 and
p27KIPI inhibitors of cyclin-dependent kinases induced through these growth factor cas-
cades may cooperate to promote the cell cycle progression and growth of PC cells,
while the enhanced expression of antiapoptotic factors such as Bcl-2, Bcl-xL and inhibitor
of apoptosis protein (IAP) and phosphorylation of Bad may promote their survival. In addi-
tion, the potential stimulation of HIFs via the activation of mTOR and under hypoxic condi-
tions, which may contribute to the enhanced glycolysis and acquisition of a more malig-
nant behavior and chemoresistance of PC cells and tumor angiogenesis, is also
illustrated. 



also been noticed that the expression of
murine ERG was markedly increased at
the mRNA level in tumors formed in
prostate-conditional compound
PTEN–/–;p53–/– transgenic mice compared
with PTEN –/–;p53+/+ transgenic mice and
wild-type mice (41). Moreover, the ERG
overexpression in benign prostate hyper-
plasia (BPH)-1 and PC3 cell lines also
promoted their migration in vitro with-
out affecting their proliferation, at least
in part by upregulating CXCR4 and a
disintegrin and metalloproteinase with
thrombospondin motif protein
(ADAMTS1) (41). Together, these data
suggest that the TMPRSS2-ERG fusion
overexpression may cooperate with the
PTEN downregulation-induced
PI3K/Akt stimulation at early and late
stages of the prostate carcinogenesis.
Moreover, the loss of PTEN combined
with p53-induced enhanced expression
of ERG at a late stage of PC might pro-
mote the transition to invasive disease
states, at least in part by upregulating
CXCR4 expression. However, further
studies are essential to more precisely
 establish the implication of the chromo-
somal rearrangements, including 
TMPRSS2-ERG gene fusion, in the acqui-
sition of a more malignant behavior by
PC stem/progenitor cells and their prog-
enies as well as the molecular mecha-
nisms at the basis of their cooperative in-
teractions with other oncogenic events
during human PC progression and
metastases.

In addition, a gene expression analysis
has identified a gene signature composed
of 66 genes that characterizes the tumori-
genic PC cells from patient tumors that
express stem cell–like markers and that
are able to form the prostaspheres ex vivo
(71). This gene signature comprises a
subset of genes encoding for diverse
growth factors (neuropilin-1 [NRP-1],
growth differentiation factor-1 [GDF-1]
and jagged 1 ligand for the receptor
Notch), the proteins that are implicated
in cell adhesion and cytoskeletal mainte-
nance, transcriptional regulators (c-myc
binding protein [MYCBP], v-myb avian
myeloblastosis viral oncogene homolog-

like 1 [MYBLI], DNA-binding protein in-
hibitors ID1 and ID3, FBJ murine os-
teosarcoma viral (v-fos) oncogene ho-
molog (FOS), E74-like factors ELF3 and
ELF4 and Krueppel-like factors 2 and 5)
and factors involved in protein biosyn-
thesis and metabolism (71). It was also
observed that an increase of expression
levels and/or activities of telomerase
and diverse signaling elements of growth
factor pathways often occurs during PC
etiopathogenesis and progression (Fig-
ure 2) (29,46,47,57, 58,60,71–74,76,77,102,
107,108). These growth factor cascades in-
clude EGFR, hedgehog, Wnt/β-catenin,
extracellular matrix (ECM) components/
integrins, HA/CD44, interleukin (IL)-
6/IL-6R and/or SDF-1/CXCR4 as well
as their downstream effectors including
PI3K/ Akt/ mammalian target of ra-
pamycin (mTOR), nuclear factor (NF)-κB,
focal adhesion kinase (FAK), hypoxia-
 inducible factors (HIFs) and Myc (29,46,
47,57,58,60, 71–74,76,77,102,107, 108). The
integration of these oncogenic pathways
may cooperate for the sustained growth,
survival and acquisition of a migratory
phenotype by tumorigenic PC stem/ pro-
genitor cells and their progenies during
the EMT process as well as their resist-
ance to current antihormonal treatments,
radiotherapy and chemotherapy (Fig-
ures 1 and 2) (5,11,13,17,44,51,58,120–128).
Consistently, the analyses of differently
expressed gene patterns of CD133+/α2β1-
integrinhigh PC stem/progenitor cells ver-
sus committed and differentiated
CD133–/α2β1-integrin–/low PC cells as
well as normal prostatic CD133+/α2β1-
 integrinhigh stem cells from malignant
and benign tissues of patients have re-
vealed that multiple genes associated
with inflammation, such as NF-κB and
IL-6, cellular adhesion (focal adhesion
signaling) and metastases, were overex-
pressed in CD133+/α2β1-integrinhigh PC
stem/progenitor cells (76). The treatment
with Wnt3a ligand of dissociated C4.2b
PC cells derived from spheres has also
been observed to enhance their ability to
form prostaspheres and sphere size,
which was associated with a significant
increase of CD133–, CD44–, nuclear 

β-catenin-positive PC cells detected
within prostaspheres (108). In the same
pathway, the activation of PI3K/Akt/
Fox03a signaling components has also
been shown to contribute to the prostas-
phere formation and maintenance of
PTEN+ DU145 and PTEN– PC3 cells
(129). Moreover, it was reported that the
AR– IGR-CaP1 cell line and its clonally
derived subclones showing mutated p53
and high telomerase activity and ex-
pressing high levels of different stem
cell–like markers (such as CD133, CD44
and CXCR4), basal epithelial markers in-
cluding cytokeratins CK5/CK14 and
hedgehog signaling elements rapidly
formed subcutaneous or intraprostatic
xenografts in nude mice (70).

The detection of elevated expression
levels of different embryonic stem
cell–like transcription factors such as
Oct3/4, Nanog, Sox2 and/or Polycomb
group protein Bmi-1 in PC-initiating
cells has also been observed to con-
tribute to their high self-renewal capac-
ity and tumorigenic potential and confer
them with survival advantages and an
invasive capacity (72–74,77). For in-
stance, the PC cells with an EMT pheno-
type and stem cell–like features, includ-
ing an increased expression of Notch1,
Oct3/4, Nanog, Sox2 and/or Lin28B, 
exhibited enhanced clonogenic and
prostasphere-forming ability and tu-
morigenicity in mice that were associ-
ated with a decreased expression of mi-
croRNAs, miR-200 and/or let-7 family
member (73). The PC cell subpopula-
tions expressing the stem cell–like
marker CD44 and high levels of Nanog
and hedgehog signaling element Bmi-1
from both primary and established PC
cell lines also were able to invade
 Matrigel in vitro through induction of
the EMT program, whereas CD44– PC
cell fractions were noninvasive (72). It
was also noticed that the invasive PC
cells with stem cell–like phenotypes from
DU145 and primary PC cells were more
tumorigenic than noninvasive PC cells in
nonobese diabetic–severe combined im-
munodeficiency (NOD/SCID) mice (72).
Moreover, the analyses of the differen-
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tially methylated genes in invasive PC
cell subpopulations with stem cell–like
properties from LNCaP and DU145 cell
lines indicated that the epigenetic
changes were detected in bone marrow
X-linked (BMX) nonreceptor tyrosine ki-
nase, transcription factor Sox1 and
IL-6/signal transducer and activator of
transcription 3 (STAT3) pathway in these
invasive PC cells (77).

All together, these data suggest that
the intrinsic properties of immature PC
stem/progenitor cells as well as their ac-
quisition of a high self-renewal capacity
and migratory ability through the en-
hanced expression of different growth
factor pathways and stemness gene
products during the EMT process may
confer them with greater tumorigenic
and invasive properties compared with
the differentiated PC cells (Figures 1
and 2). In this review, we are reporting
the changes that often occur in the local
microenvironment of PC-initiating cells
and their progenies, and that they may
promote their acquisition of a more ag-
gressive behavior.

Modulation of the Malignant Behavior
of PC-Initiating Cells and Their
Progenies by the Local Tumor
Microenvironment

The PC progression is typically associ-
ated with the degradation of basal mem-
brane, loss of the basal epithelial cell layer
and cell adhesion, intense remodeling
changes that occur in the components of
tumor-reactive stroma and interactive
cross-talks between the PC-initiating cells
and their progenies with stromal cells
(Figures 1 and 3) (5,43,44,75,76,130–133).
More specifically, an intense remodeling
of diverse ECM components, including an
upregulation of integrin receptor ligands,
peptidoglycans such as perlecan, and se-
creted proteolytic enzymes including ma-
trix metalloproteinases (MMPs), urokinase-
type plasminogen activator (uPA),
matriptase and hepsin as well as a de-
creased expression of decorin often occurs
during PC progression (Figure 2)
(5,43,44,134). The accumulation of the per-
lecan in the ECM and its interaction with

tivation of 5-lipoxygenase that leads to
the Src oxidation and activation in the ab-
sence of cell adhesion and ligand-
 independent phosphorylation of EGFR
(140). The persistent activation of EGFR in
turn may culminate to a chronic activa-
tion of prosurvival signals and degrada-
tion of the proapoptotic protein Bim and
thereby promote the PC3 cell survival in
the absence of cell adhesion (140).

In addition, the induction of tumor hy-
poxia and vascularization and a decrease
of extracellular pH in local tumor mi-
croenvironment of PC stem/progenitor
cells and their progenies also may alter
their metabolic and survival pathways
and promote their invasion and metasta-
sis (75,76,130–133,141). In fact, PC
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sonic hedgehog (SHH) ligand molecules
can sustain the activation of hedgehog
cascade in PC cells (Figure 2) (43,135,136).
Moreover, the downregulation of the
decorin as well as the upregulation of the
ectodomain shedding of membrane pre-
cursors of EGFR ligands induced by
MMPs may promote the EGFR activation
(Figure 2) (137,138). On the other hand,
the development of resistance to the cell
 detachment–induced apoptosis, also des-
ignated as anoikis, is an important pro-
cess that maintains the anchorage-inde-
pendent growth and survival of PC cells
(134,139,140). Interestingly, it was re-
ported that PC3 cells may trigger a consti-
tutive production of reactive oxygen
species mediated through a sustained ac-

Figure 3. Novel therapeutic strategies against aggressive, invasive and metastatic PC can-
cers by targeting distinct growth factor signaling cascades and drug resistance–associated
molecules in prostatic cancer stem/progenitor cells and their progenies. The possible an-
tiproliferative, antiinvasive and/or apoptotic effects induced by a specific inhibitor of tyro-
sine kinase activity of EGFR (gefitinib and erlotinib), receptor tyrosine kinase (RTK) activity,
smoothened (SMO) hedgehog signaling element (cyclopamine and GDC-0449), Notch 
(γ-secretase inhibitor) and Wnt/β-catenin (sFRP2) as well as TGFβR antagonist or CXCR4 an-
tagonist (AM3100) and monoclonal antibody (mAb) directed against SHH ligand, CD44,
Wnt ligand or CXCR4 are indicated. Moreover, the inhibitory effect induced by different
pharmacological agents on the downstream signaling effectors induced through these
growth factor cascades and under hypoxic conditions such as PI3K/Akt/mTOR, NF-κB and
HIFs as well as an inhibitor of glycolytic metabolism (2-DG) and 2-DG–induced autophagy
(metformin) is also indicated. In addition, the potent inhibitory effect mediated by a specific
inhibitor of EGFR or hedgehog on ABCG2-multidrug efflux pump and whose event may
lead to the intracellular accumulation of chemotherapeutic drugs is also illustrated.



stem/progenitor cells and their progenies
can adapt to the persistent oxidative
stress and inflammatory and hypoxic
conditions prevalent in primary neo-
plasm by acquiring more malignant phe-
notypes through the activation of NF-κB
and HIFs (Figure 2) (75,76,131–133,141).
NF-κB, HIF-1α and/or HIF-2α may in-
duce the expression of different target
gene products such as glycolytic en-
zymes, macrophage-inhibitory cytokine-1
(MIC-1), IL-6, cyclooxygenase-2 (COX-2),
vascular endothelial growth factor
(VEGF), P-glycoprotein (P-gp) (also des-
ignated as multidrug resistance 1 
[MDR-1 or ABCB1]), Bcl-2 and/or Bcl-xL
in PC cells under normoxic and hypoxic
conditions (Figure 2) (75,76,130–132,141).
These gene products in turn may play
critical roles in PC progression by upreg-
ulating the glycolysis, angiogenic switch,
survival pathways and chemoresistance
of PC stem/progenitor cells and their
progenies (Figure 2) (75,76,130–132,
141–144). In fact, an adaptive switch from
mitochondrial respiration (oxidative
phosphorylation) to an enhanced gly-
colytic metabolism, known as the War-
burg effect, may occur in PC stem/ pro-
genitor cells and their progenies through
an upregulated expression of glycolytic
enzymes such as phosphoglycerate ki-
nase 1 (Pgk1) that breaks down glucose
(141,145–149). The enhanced glycolysis
may contribute to provide the energy and
nutrients necessary for the sustained pro-
liferation and the biosynthesis of new cel-
lular components, including proteins and
lipids, in rapidly dividing PC cells
(141,145–149).

In addition, the host stromal cells, in-
cluding fibroblasts, infiltrating immune
cells such as macrophages and endothe-
lial cells and the recruitment of bone
 marrow–derived circulating endothelial
progenitor cells, which may release di-
verse soluble growth factors and
chemokines in interstitial stroma, can also
influence the remodeling of the ECM
components, malignant behavior of PC
stem/progenitor cells and their progenies
and the tumor angiogenic process (Fig-
ure 1) (5,11,46,47,134,135). For instance,

the upregulated expression and release of
different soluble factors such as TGF-β, fi-
broblast growth factor-2 (FGF-2), vascular
endothelial growth factor and MMPs by
myofibroblasts can participate through
the autocrine and paracrine loops to pro-
mote the PC development and tumor neo-
angiogenic process (Figure 1) (11,135). Im-
portantly, it was shown that IL-6, TGF-β1
or conditioned medium from PC3 cells
can activate the cancer-associated fibrob-
lasts, which in turn may induce, in a
paracrine manner, the EMT program and
stem cell–like phenotypes in PC cells
(46,47). More specifically, it was shown
that cancer-associated fibroblasts may en-
hance the expression of EMT-associated
molecules such as snail and twist in PC3
cells and the number of PC3 cells ex-
pressing stem cell–like markers such as
CD133+ or CD44high/CD24– as well as
their ability to form prostaspheres and to
self-renew, and thereby promote, their in-
vasive ability and metastatic spread
(46,47). The cancer-associated fibroblast-
induced EMT program and stem cell–like
features in PC3 cells may be mediated
through the secretion of MMPs by cancer-
 associated fibroblasts that, in turn, may
upregulate Rac-1, NF-κB, COX-2–induced
reactive oxygen species production and
HIF-1α in PC cells (46,47).

Hence, all these molecular transforming
events in PC-initiating cells and their
progenies as well as the tumor reactive
stroma may cooperate for the PC devel-
opment, neo-angiogenesis and transition
to locally invasive and metastatic CRPCs.
In this matter, we are reporting the gene
products that are often deregulated in in-
vasive and metastatic PC cells at primary
and secondary neoplasms and their local
microenvironment and that can contribute
to their metastatic spread and metastases
at distant tissues, including bones.

Frequent Gene Products and
Molecular Pathways Altered in
Metastasis-Initiating PC Cells and
Their Local Microenvironment

PCs are known to metastasize near
lymph nodes and different distant tissues
and organs, including bones, lungs, liver,

brain and the adrenal gland (Figure 1)
(150,151). The molecular mechanisms
and transforming events that dictate the
selective metastatic spread of PC cells
from primary tumor to specific distant
tissues are not precisely understood.
Metastasis is a multistep process that im-
plicates the stromal invasion of only a
small subset of PC cells in primary tu-
mors. The spread of metastasis-initiating
cells through the lymphatic and blood
circulatory systems followed PC cell mi-
gration engraftment, and homing to spe-
cific distant tissues and formation of sec-
ondary neoplasms (Figure 1). Recent
accumulating lines of evidence suggest
that the metastatic spread of a small
number of tumorigenic and migrating
PC stem/ progenitor cells might con-
tribute to drive tumor growth at distant
metastatic sites by giving rise to the total
tumor cell mass (Figure 1) (22,50,56–58,
60,65,102). Consistent with this model of
metastasis, it has been shown that the PC
stem/  progenitor cells expressing CD133,
CD44high and/or ALDHhigh stem cell–like
markers from metastatic tissues of pa-
tients and metastatic PC cells lines dis-
played a high self-renewal ability and ca-
pacity to form tumor and metastasize at
distant sites (22,50,56–58,60,65,102). For
instance, it was observed that ALDH iso-
forms are expressed in human PC cells
and clinical specimens from primary
prostate tumors with matched bone
metastases, and the ALDHhigh/CD44high

PC cell fraction from the metastatic
PC3M-Pro4 PC cell line orthotopically
implanted in mouse prostate formed the
tumors at primary and distant metastatic
sites in an animal model in vivo (65). 

In addition, it has also been reported
that the overexpression of SHH ligand
by using pCX-SHH-IG vector in mice led
to the malignant transformation of p63+

prostatic stem cells localized in the basal
compartment of the prostate into PC
stem cells concomitant with the develop-
ment of PINs that subsequently pro-
gressed in invasive and metastatic PC
within 3 months (152). Importantly, p63+

PC stem cells detected in metastatic loci
within lymph nodes, kidneys and lungs
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were able to give rise to p63+/AR–,
CK14/AR–, CD44+/AR– and AR+ proge-
nies and form primitive prostate-like
glandular structures (152). These data
suggest that the sustained activation of
the hedgehog  cascade in p63+ PC stem
cells may play critical functions for PC
formation as well as for the invasion and
metastatic spread of these immature PC
cells and formation of secondary tumors
in this mouse model (152). Regardless of
this important advance, few studies have
defined the specific gene products dereg-
ulated in metastasis- initiating cells with
respect to their stem cell–like properties.
Therefore, we will discuss here informa-
tion that has been obtained about the
transforming events that may modulate
the metastasis-initiating cell behavior
without discriminating against their stem
cell–like  phenotypes.

Numerous gene expression profiling
analyses have allowed researchers to
identify specific molecular signatures that
may be associated with a high potential
of PC cells detected at primary tumors to
undergo metastatic spread and establish
their homing at specific distant tissues as
well as the molecular changes that may
occur at the predestinated metastatic sites
(23,153,154). In particular, a loss of PTEN,
p53 and breast cancer type 1 (BRCA1)
combined with an upregulation of EGFR,
hedgehog, TGF-β/TGF-βR receptor, ECM
components/integrins and SDF-1/
CXCR4 and downstream effectors such as
PI3K/Akt, small GTPase Rac-1,  mitogen-
activated protein kinases, NF-κB, MIC-1
and Rho are often detected in metastatic
PC cells (11,135,153,155–166). It has also
been shown that the migration and en-
graftment of metastatic PC cells in bones,
the most common site of PC metastasis,
as well as other distant tissues may be
mediated in part through the formation
of chemoattractant gradients such as
SDF-1 released by host endothelial cells
and fibroblasts at distant tissues that spe-
cifically attract the metastatic PC cells
overexpressing CXCR4 (Figure 1)
(23,122,167–169).

Several observations have also indi-
cated that the skeletal sites enriched in

bone marrow cellularity and under ac-
tive turnover, including the spine,
pelvis, ribs and proximal metaphyses of
long bones, may be the driving force
that mediates a preferential migration
and homing of metastasis-initiating PC
cells in the skeleton and secondary
tumor formation (157,170–172). The se-
cretion of different growth factors and
cytokines such as SHH, EGF, TGF-α,
basic fibroblast growth factor, hepato-
cyte growth factor, insulin-like growth
factor, parathyroid hormone-related pro-
tein (PTH-rp), MIC-1 and endothelin by
metastasis-initiating PC cells and/or
bone cells may promote bone metastasis
and osteoblastic and/or osteolytic reac-
tions (Figure 1) (11,135, 160–166,173).
More specifically, the secretion of SHH,
TGF-α, TGF-β, MIC-1 and/or Pgk1 by
PC cells has been reported to play criti-
cal roles by promoting the ECM remod-
eling in bones, osteoblast and osteoclast
differentiation and induction of osteo -
blastic and/or osteolytic lesions, which
are associated with severe pain in PC
patients (Figure 1) (11,162, 163,173–176).
Moreover, it has been proposed that the
metastasis-initiating PC cells that prefer-
entially establish their homing at bones
must possess the osteo mimetic proper-
ties and be able to acquire the mes-
enchymal cell–like phenotypes as the
bone cells (161,177). The data from a
study that consisted of performing a
 heterotypic coculture of metastatic PC3
cells and bone marrow–derived stromal
cells have revealed that a specific subset
of genes were altered only after their
physical contact (178). The altered gene
products include collagen types III, IV, X
and XII; α1- and α2-integrins, MMP-2,
MMP-9, uPA, biglycan, osteopontin and
Raf-1 in PC3 cells as well as collagen
types VIII and IX, bone morpho genic
 protein-6, TGF-β1, homolog of the
Drosophila gene (SMAD6) and twist in
bone marrow–derived stromal cells
(178). Similarly, the data from a recent
study revealed that metastatic PC3 and
DU145 cells may downregulate the ex-
pression of ECM components and up-
regulate the membrane type 1 metallo-

protease (MT1-MMP), vimentin and
α5β1-integrin in stromal cells as well as
their migratory phenotype (176). Also,
the changes in diverse signaling path-
ways, including chaperone-mediated
 mitochondrial homeostasis, integrin-
 dependent cell behavior and runt-related
transcription factor 2 (Runx2)-regulated
osteoblastic gene expression, such as a1
type I collagen, bone sialoprotein, osteo-
pontin and osteocalcin in the osteoblasts,
can occur in the metastatic bone micro -
environment (179). These molecular
changes in bone cells may promote the
formation of secondary tumors and
 osteoblastic and osteolytic lesions (Fig-
ure 1). Hence, these data suggest that
metastasis-initiating PC cells may alter
their novel local microenvironment at
metastatic sites by modulating the ECM
components and phenotypic and func-
tional features of stromal cells. Recipro-
cally, the stromal cells, in turn, may also
influence the malignant behavior of PC
cells and secondary tumor  formation.

Collectively, these recent studies have
led to the identification of novel gene
products that are often altered in PC
stem/progenitor cells and their proge-
nies as well as their local microenviron-
ment during PC progression and metas-
tases at distant sites, including bones,
and that can contribute to their aggres-
sive phenotypes. Hence, the simultane-
ous targeting of these deregulated gene
products could be exploited to reverse
treatment resistance and develop a
novel combination therapy. Consistent
with this, we report recent data indicat-
ing that PC stem/progenitor cells can
provide critical functions in treatment
resistance, and the molecular targeting
of distinct oncogenic products in these
immature PC cells and their progenies
constitute a potential therapeutic strat-
egy to eradicate the total PC cell mass
(Figures 1 and 3).

Critical Implication of PC- and
Metastasis-Initiating Cells and Their
Progenies in Treatment Resistance

Recent lines of experimental evidence
have revealed that the PC stem/progenitor



cells, including side population (SP) of
PC cells isolated by using the Hoechst
dye efflux technique, exhibiting an AI
phenotype and expressing high levels of
ATP-binding cassette (ABC) multidrug
transporters such as ABCG2, may be
more resistant than their differentiated
progenies and non-SP cells to the anti-
hormonal and chemotherapeutic treat-
ments (67–69,180). For example, it was
observed that the nonadherent suspen-
sion culture of metastatic and AI PC3
cells under the form of prostaspheres re-
sulted in an enrichment of CD133+/
CD44+ PC cells that are more resistance
to cisplatin than adherent cells (68). Sim-
ilarly, the highly tumorigenic CD133+/
CD117high/ ABCG2high/nestin+ PC cell
subpopulation coexpressing Oct3/4,
Nanog and Sox2 from the PC cell line
22RV1 was also more resistant to treat-
ment with a variety of chemotherapeutic
drugs such as cisplatin, paclitaxel,
 adriamycin, and methotrexate than the
CD133–/ABCG2low 22RV1 cell fraction
(67). Moreover, the CD133+ SP cells en-
dowed with stem cell–like properties
isolated from the highly invasive 
WPE1-NB26 PC cell line were less sensi-
tive to the antiproliferative and apop-
totic effects induced by docetaxel treat-
ment than the CD133– non-SP cell
fraction (69). In addition, it has also been
observed that an enrichment of Sca+ PC
stem/progenitor cells occurred after
 androgen-deprivation or docetaxel treat-
ment in transgenic adenocarcinoma of
the mouse prostate (TRAMP) and PTEN
knockdown transgenic mouse models of
PC and led to tumor regrowth and
metastases (63,98,181–184). These data
suggest that the immature Sca+ PC
stem/ progenitor cells may provide criti-
cal functions in treatment resistance and
disease relapse in these transgenic
mouse models of PC.

Together, these observations underline
the critical importance to target chemo -
resistant and AI PC stem/  progenitor
cells and their progenies for counteract-
ing the disease progression and over-
coming the resistance to current antihor-
monal and chemotherapies, including

first-line docetaxel-based chemothera-
peutic regimens that are used in the clin-
ics for treating patients diagnosed with
locally invasive and metastatic CRPCs.

NOVEL STRATEGIES FOR PREVENTING
PC PROGRESSION AND OVERCOMING
TREATMENT RESISTANCE

The development of novel chemopre-
ventive and chemotherapeutic strategies
that may prevent the evolution of normal
prostatic epithelium to premalignant PIN
lesions and prostate carcinogenesis or
counteract PC transition to locally inva-
sive, AI and metastatic disease stages is
of great clinical interest in considering
the long time generally associated with
the PC progression. Numerous preclini-
cal studies aiming to develop novel ther-
apies for preventing or treating PCs have
led to the identification of a variety of
potential chemopreventive and
chemotherapeutic agents, including nat-
ural and dietary compounds and phar-
macological agents or gene therapies, to
eradicate the total tumor cell mass, in-
cluding PC stem/progenitor cells and
their progenies (76,137,185–198).

Chemopreventive and
Chemotherapeutic Effects of Diverse
Dietary Compounds

Some preclinical investigations aiming
to develop novel strategies to prevent PC
formation or disease progression have
aimed to establish the chemopreventive
and anticarcinogenic effects induced by
diverse dietary compounds using
TRAMP and PTEN knockdown trans-
genic mouse models of PC (137,187–194,
198). In fact, the TRAMP and PTEN
knockdown transgenic mouse models of
PC, which are driven by PC stem/prog-
enitor cells endowed with stem cell–like
properties, represent useful animal mod-
els to estimate the chemopreventive and
chemotherapeutic effects induced by the
dietary substances on total PC cell mass
and their local microenvironment as well
as their potential to reverse the treatment
resistance (63,97,98,181–184,199,200). Of
therapeutic interest, it has been shown
that different dietary compounds, includ-

ing curcumin, lycopene, silibinin, feeding
of dibenzoylmethane, green tea polyphe-
nols,  genistein, α-difluoromethylornithine,
toremifene, R-flurbiprofen, celecoxib and
sulindax, or their chemical derivatives,
significantly decreased the incidence of
PIN lesions and PC formation and/or
delayed the disease progression in the
TRAMP or PTEN knockdown transgenic
mouse models of PC (137,187–194,198).
The anticarcinogenic effects of these di-
etary agents, alone or in combination,
were mediated at least in part through
downregulation of diverse growth factor
cascades, including EGFR and sonic
hedgehog and their downstream signal-
ing elements such as PI3K/Akt and
NF-κB in cancer cells (137,187–194,198).
For instance, several botanic compounds
such as genistein, apigenin, baicalein,
curcumin, epigallocatechin 3-gallate,
quercetin and resveratrol have been re-
ported to inhibit the hedgehog cascade
and GLI-1 expression and suppress the
in vitro growth of PC cell lines such as
androgen-dependent LNCaP and AI PC3
cells and disease progression in the
TRAMP model of PC (191).

More recently, the natural dietary
 compounds have also been shown to in-
duce the apoptotic death on PC stem/
progenitor cells expressing the stem
cell–like markers and their progenies in
vitro and in vivo (76,195–197). For in-
stance, it was reported that a sesquiter-
pene lactone from the plant parthenolide
induced the cytotoxic effects on parental
and CD44high and CD44–/low PC cell frac-
tions isolated from DU145, PC3, VCAP
and LAPC4 cell lines and primary PC
cells from patient samples in vitro
through an inhibition of NF-κB and Src-
related signaling components (195).
Parthenolide was also effective at inhibit-
ing the tumor growth of CD44high DU145
cell xenograft models in vivo (195). Im-
portantly, parthenolide also induced the
cytotoxic effects on the CD133+ primary
prostate tumor cells, while the CD133+

normal cells from benign prostate hyper-
plasia were insensitive to this treatment
type in vitro (76). Moreover, another nat-
ural bioactive phytochemical compound
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produced by cotton plants (gossypol)
was observed to induce the cytotoxic ef-
fects on LAPC4, PC3 and DU145 PC cell
lines in vitro and inhibit the PC-initiating
cell-driven tumor growth in a NOD-
SCID xenograft model through an in-
crease of DNA damage and the induction
of mitochondria- and p53-mediated
apoptotic cell death (196).

Hence, the use of these dietary sub-
stances, alone or in combination therapy,
constitutes promising strategies to eradi-
cate PC-initiating cells and their proge-
nies, thereby preventing PC development
or counteracting its progression to aggres-
sive and metastatic CRPCs. In this regard,
we review other pharmacological agents
that have been shown to target distinct
deregulated signaling elements involved
in the malignant transformation and treat-
ment resistance of PC stem/  progenitor
cells and their progenies, and that repre-
sent potential therapeutic tools to develop
a multitargeted therapy for improving
current treatment of PC  patients.

Other Anticancer Agents Targeting
PC- and Metastasis-Initiating Cells
and Their Progenies

Recent studies have led to the identifi-
cation of different tumorigenic pathways
initiated by diverse growth factors and
chemokines and drug resistance–associated
molecules that provide critical functions
for the growth, survival and treatment re-
sistance of PC- and metastasis-initiating
cells with stem cell–like properties and
their progenies and that constitute poten-
tial molecular targets for eradicating the
total PC cell mass. These signaling ele-
ments include telomerase, ALDH, CD44,
EGFR, hedgehog, Wnt/β-catenin, Notch,
integrins, IL-6/IL-6R and SDF-1/CXCR4
and downstream signaling elements such
as miRNAs, Myc, PI3K/Akt, NF-κB,
HIFs, MIC-1, Nrf2 and ABC multidrug
transporters such as P-gp and ABCG2
(Figures 2 and 3) (22,47,51,57,58,60,69,72,
73, 76,108,129,195, 196,201–207). The data
from several preclinical studies have indi-
cated that the targeting of these deregu-
lated gene products and oncogenic path-
ways by RNA silencing or using specific

inhibitory agents induced the antiprolif-
erative, antiinvasive, antimetastatic and
cytotoxic effects on PC stem/ progenitor
cells and their progenies in vitro and in
vivo and/or reversed chemoresistance
(Figure 3) (22,47,51,57,58,60,69,72, 73,76,
108,129,195,196,201–207). More specifi-
cally, the telomerase represents an attrac-
tive target for eliminating the total PC
cell mass because this enzyme is ex-
pressed at a high level in the majority of
PC cells, including PC stem/progenitor
cells, and the normal tissue–resident
adult stem/progenitor cells typically
have longer telomeres than PC cells,
thereby minimizing the systemic toxicity
associated with the use of telomerase in-
hibitors (13,82). In support of this result,
it has been shown that the synthetic
13 mer-thio-phosphoramidate oligonu-
cleotide inhibitor of telomerase desig-
nated as desimetelstat sodium
(GRN163L), which is currently in phase
I/II clinical trials for the treatment of di-
verse cancers, inhibited the enzymatic ac-
tivity of telomerase and induced the
telomere shortening in parental and PC
cell fractions expressing CD133, CD44
and/or α2β1-integrin isolated from di-
verse PC3, DU145, C4-2 and LNCaP cell
lines in vitro (Figure 3) (202,208).

Numerous studies also revealed that
the targeting of distinct growth factor
pathways may be effective for eradicat-
ing the invasive and metastatic PC cells
with stem cell–like features and their
progenies and improving the efficacy of
current antihormonal treatments and
chemotherapies. Particularly, the reex-
pression of miR-200 in EMT-type PC
cells has been shown to reduce the ex-
pression of Notch1 and Lin28B and in-
hibit their prostasphere-forming ability
(73). Importantly, it has also been ob-
served that the blockade of canonical
Wnt/β-catenin pathway by using the
Wnt inhibitor Dickkopf-related protein-1
(DKK1) or secreted Frizzled related pro-
tein-2 (sFRP2) reduced the formation
and size of self-renewing prostaspheres
derived from nonadherent suspension
culture of metastatic LNCaP and C4-2B
PC cell lines (Figure 3) (108). In contrast,

the treatment with the AR antagonist bi-
calutamide, also designated as casodex,
reduced the prostasphere size and
prostate serum antigen expression but
did not inhibit the LNCaP and C4-2B
prostasphere formation (108). These ob-
servations, which are consistent with a
reduction of the bulk mass of prolifera-
tive androgen sensitive PC cells, while
AI PC cells with stem cell–like features
can persist after AR inhibition, underline
the importance of using casodex in com-
bination with other cytotoxic drugs for
eradicating the total PC cell mass (108).
Of particular interest, the blockade of
EGFR and/or hedgehog cascades by
using a specific inhibitor of EGFR tyro-
sine kinase activity (such as gefitinib, er-
lotinib or lapitinib), smoothened (SMO)
hedgehog coreceptor inhibitor, cy-
clopamine or anti-SHH antibody has
also been shown to induce the antiprolif-
erative, antiinvasive and cytotoxic ef-
fects on PC stem/ progenitor cells with
stem cell–like properties and their prog-
enies in vitro and in vivo (Figure 3)
(14,15,21, 22, 69,203, 209,210). For instance,
it was reported that the cotargeting of
EGFR and hedgehog pathways by using
gefitinib and cyclopamine improved the
cytotoxic effects induced by mitox-
antrone on parental AI PC3 and DU145
cells and CD44high cell fractions enriched
from these metastatic PC cell lines (203).
Furthermore, a combination of low con-
centrations of gefitinib and cyclopamine
plus docetaxel also induced greater an-
tiproliferative and apoptotic effects on
parental PC3 cells as well as on the
CD133+ SP subpopulation and CD133–

non-SP cell fractions from highly inva-
sive WPE1-NB26 PC cells than individ-
ual drugs or two drug combinations
(15,69). In addition, since the chemoat-
tractant gradient mediated by SDF-1 can
regulate the proliferation, migration and
metastatic spread of CXCR4+ PC cells,
the inhibition of the SDF-1/CXCR4 axis
also may constitute a potential therapeu-
tic approach to prevent their invasion
and metastases at distant sites, including
bones and disease relapse (Figures 1–3)
(51,167–169). Consistently, it has been



shown that the treatment with an anti-
CXCR4 antibody of CD133+/CD44+ PC
cells from immortalized malignant RC-
92a/hTERT cells, which have been de-
rived from a human primary PC, inhib-
ited the SDF-1–induced migration of
these immature cells with stem cell–like
properties (51).

In addition, other promising therapeu-
tic strategies for eradicating the highly
aggressive and chemoresistant PC cells
may consist of targeting the deregulated
metabolic pathways and specific signal-
ing elements such as PI3K/Akt/mTOR,
NF-κB, HIF-1α and 2α and MIC-1. These
elements are induced under normoxic or
hypoxic conditions and may provide crit-
ical functions for PC cell survival, inva-
sion and metastasis; angiogenesis;
and/or treatment resistance (Figure 3)
(29,46,47, 129, 133, 140,146–148,211–218).
Consistent with this finding, the inhibi-
tion of glycolysis by using 2-deoxy-D-
 glucose (2-DG), alone or in combination
with other anticancer agents such as pi-
oglitazone, a microtubule disruptor, 
2-methoxyoestradiol-3,17-O,O-bis-
 sulphamate (STX140) or metformin,
which acts at least in part by inhibiting 
2-DG–induced autophagy, has been
shown to induce cytotoxic effects on the
highly proliferative PC cells, including
multicellular tumor spheroids from
metastatic PC cells, and inhibit tumor
growth in vivo (Figure 3) (147,148,212,213).
It has also been noted that the inhibition
of glycolysis by either 2-DG or iodoacetate
downregulated P-glycoprotein expression
and inhibited the efflux of doxorubicin in
multicellular tumor spheroids generated
from metastatic and AI DU145 PC cells,
suggesting that this therapeutic strategy
may be effective for reversing the mul-
tidrug resistance phenotype of PC cells
(146). In this regard, the downregulation
of COX-2, HIF-1α and/or HIF-2α expres-
sion levels or activities also constitute
other potential strategies to inhibit glycol-
ysis, tumor angiogenesis and eradicate
invasive and metastatic PC cells (Figure 3)
(29,46,47,133,140,214–216). Consistently, it
has been reported that the targeting of
HIF-1α and/or HIF-2α in PC cells by

RNA silencing or using a specific in-
hibitor of HIF-1α, PX-478 (S-2-amino-3-
[4′-N,N,-bis(2-chloroethyl)amino]phenyl
propionic acid N-oxide dihydrochloride),
or inhibitor of the proteasomal degrada-
tion of HIF-1α and/or HIF-2α such as
ascorbic acid or zinc inhibited their inva-
sive ability in vitro and tumor formation
and lung metastases in vivo (Figure 3)
(47,206,219). In addition, the inhibition of
PI3K/Akt/ mTOR by using a specific in-
hibitor of PI3K (LY294002), mTOR (ra-
pamycin, RAD-001, also designated as 
40-O-(2-hydroxyethyl)-rapamycin or 
CCl-779) or dual PI3K/ mTOR inhibitor
(PI-103 or NVP-BEZ235) also constitutes
another strategy for inhibiting HIF-1α-
 induced target genes including glycolytic
enzymes and eradicating the total PC cell
mass (Figure 3) (129,217,218). In support
of this finding, the treatment of highly
metastatic and AI DU145 and PC3 cell
lines with LY294002 or NVP-BEZ235 was
observed to induce growth inhibition and
cytotoxic effects on the CD133+/CD44+

cell fraction and the bulk PC cell mass
detected by cytometric analyses (129).
However, additional investigations are
necessary to establish the benefit to target
these metabolic and survival pathways,
alone or in combination, for eradicating
the total PC cell mass and improving cur-
rent antihormonal treatments and doc-
etaxel-based chemotherapies. In this re-
gard, an enhanced expression of the
MIC-1 level was observed during PC pro-
gression to CRPCs and after chemother-
apy and was associated with a shorter
patient survival after docetaxel treatment
(207,220). Of clinical interest, it has also
been shown that the MIC-1 expression
level was upregulated in metastatic and
AI PC3-Rx cells made resistant to doc-
etaxel relative to parental PC3 cells and
the downregulation of endogenous 
MIC-1 level by RNA silencing sensibi-
lized the PC3-Rx cells to the cytotoxic ef-
fects induced by docetaxel (207). How-
ever, future studies are essential to
establish the functions of secreted MIC-1
cytokines in PC cells with stem cell–like
properties and the interest of its targeting
to eradicate the total PC cell mass.

CONCLUSIONS AND FUTURE
DIRECTIONS

Taken together, these recent advances
in the last few years on establishment of
the molecular mechanisms at the basis of
prostate carcinogenesis and metastases
have revealed that the alterations of a
specific subset of gene products may
occur in PC- and metastasis-initiating
cells endowed with stem cell–like prop-
erties versus their progenies during PC
etiopathogenesis and transition to locally
invasive, metastatic and recurrent disease
stages. More particularly, it appears that
the intrinsic properties of highly tumori-
genic and migrating PC stem/  progenitor
cells and their acquisition of more malig-
nant and multidrug resistance pheno-
types during PC progression may con-
tribute to their persistence at primary and
secondary neoplasms, tumor regrowth
and disease relapse after treatment initia-
tion. Importantly, it was also shown that
the molecular targeting of distinct onco-
genic and drug resistance–associated
gene products that are frequently deregu-
lated in PC stem/progenitor cells and
their progenies, including EGFR, hedge-
hog, Wnt/β-catenin and Notch and their
downstream signaling elements Akt, 
NF-κB and HIFs, constitute promising
therapeutic strategies of great clinical in-
terest to eradicate the total PC cell mass
and reverse treatment resistance.

However, future investigations are nec-
essary to further establish the cellular ori-
gin of different PC subtypes and molecular
pathways and drug resistance–associated
molecules that may contribute to the ac-
quisition of more aggressive behavior by
PC- and metastasis-initiating cells as well
as their resistance to current therapies. It
will be especially important to more pre-
cisely establish the implication of basal
stem/progenitor cells versus their proge-
nies with an intermediate phenotype
found in basal and luminal compartments
in PC initiation and progression. More-
over, it will be important to define the
gene products and molecular pathways
altered during the EMT process and
metastases of PC stem/progenitor cells at
distant tissues, including bones, and that
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may contribute to their acquisition of ag-
gressive phenotypes and disease relapse.
Additional studies are also required to
validate the cytotoxic effects induced by
diverse dietary substances and novel
combinations of drugs targeting distinct
oncogenic signaling elements on isolated
PC- and metastasis-initiating cells and
their progenies on diverse in vitro PC cells
and animal models mimicking the early
and late stages of PC.

Hence, together these future investiga-
tions should lead to the validation of
novel dietary compounds and pharmaco-
logical agents that could be used to si-
multaneously target distinct gene prod-
ucts altered in PC stem/progenitor cells
and their progenies during PC progres-
sion and metastases. These anticarcino-
genic agents could be used to develop an
effective multitargeted strategy for eradi-
cating the PC- and metastasis-initiating
cells and their progenies, improving the
current antihormonal treatments and
chemotherapies against aggressive and
metastatic CRPCs, thereby preventing the
disease relapse and death of PC patients.
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