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Dysferlinopathies are autosomal recessive disorders caused by mutations in the dysferlin (DYSF) gene, encoding the dysfer-
lin protein. DYSF mutations lead to a wide range of muscular phenotypes, with the most prominent being Miyoshi myopathy
(MM) and limb girdle muscular dystrophy type 2B (LGMD2B) and the second most common being LEGMD. Symptoms generally
appear at the end of childhood and, although disease progression is typically slow, walking impairments eventually result. Dys-
ferlin is a modular type Il fransmembrane protein for which numerous binding partners have been identified. Although dysfer-
lin function is only partially elucidated, this large protein contains seven calcium sensor C2 domains, shown to play a key role
in muscle membrane repair. On the basis of this major function, along with detailed clinical observations, it has been possible
to design various therapeutic approaches for dysferlin-deficient patients. Among them, exon-skipping and minigene fransfer
strategies have been evaluated at the preclinical level and, to date, represent promising approaches for clinical trials. This re-
view aims to summarize the pathophysiology of dysferlinopathies and to evaluate the therapeutic potential for freatments cur-

rently under development.
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INTRODUCTION

Dysferlinopathies are autosomal reces-
sive muscular dystrophies caused by
mutations in the gene encoding dysferlin
(DYSF; Online Mendelian Inheritance in
Man [OMIM] gene number 603009, 2p13,
GenBank NM_003494.2) (1,2). Dysfer-
linopathies are rare muscular dystro-
phies, as the number of adult patients
whose symptoms meet the full diagnos-
tic criteria is estimated between 1/
100,000 to 1/200,000 (3). Disease-causing
mutations in DYSF mainly cause limb
girdle muscular dystrophy type 2B
(LGMD2B; OMIM number 253601) (1)
and distal Miyoshi myopathy (MM;
OMIM number 254130) (2). However,
other phenotypes associated with muta-
tions in DYSF have been identified, in-
cluding the distal anterior compartment

myopathy (DACM) (alternatively called
distal myopathy with anterior tibial
onset [DMAT]; OMIM number 606768)
and proximo-distal phenotypes (PD)
(4,5). LGMD2B is characterized by proxi-
mal weakness, initially affecting the
muscles of the pelvic and shoulder gir-
dles, with age of onset in the late teens or
early adulthood. For MM, however, the
muscles initially affected are distal, in
particular, the gastrocnemius. Age of
onset is at the end of childhood (as with
LGMD2B), and progression is typically
slow. Proximodistal forms of dysfer-
linopathies are interesting as they dis-
play a range of symptoms, with a hy-
pothesized influence of both genetic and
environmental factors contributing to the
phenotypic variation. At onset, nearly
35% of patients present with a mixed
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phenotype that combines both proximal
and distal myopathies of the lower
limbs. However, in every case, by late
stages of disease progression, all limb-
girdle muscles are affected.

The dysferlin gene is located on 2p13
and encodes several transcripts. The
most common transcript is composed
of 55 exons, and alternative splicing
events (such as exon 1 for DYSF_v1
[GenBank DQ267935], exon 5a [GenBank
DQ976379] and exon 40a [GenBank
EF015906]) generate transcript diversity.
Fourteen different splice isoforms, con-
taining exon 5a, 17 or 40a, have been de-
scribed for human DYSF (6). Seven of
these isoforms are transcribed from the
“canonical” DYSF promoter (GenBank
accession number AF075575), whereas
the remaining seven are transcribed from
the alternative DYSF_v1 promoter (Gen-
Bank accession number DQ267935). Iso-
form 8 (NM_003494.2) (which excludes
5a and 40a, but includes exon 17) is ex-
pressed at high levels in skeletal muscle
and is commonly used to describe the
DYSF gene. In addition to these splice
forms, >400 different DYSF sequence
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variations were reported in the Leiden
Muscular Dystrophy database (http://
www.dmd.nl), including deleterious
mutations, as well as nonpathogenic
polymorphisms. Most of the reported
disease-causing variants are point muta-
tions and small insertions/deletions (7),
but large exonic deletions and duplica-
tions have also been described (8). To
date, no mutations have been identified
in the alternatively spliced exon 1 of
DYSF_v1, 5a or 40 (9).

Translation of isoform 8 results in a
237-kDa transmembrane protein, named
dysferlin. This protein belongs to the fer-
lin family, which includes otoferlin, myo-
ferlin, fer-1-like 5 (FER1L5) and the origi-
nally identified Caenorhabditis elegans
Fer-1. Fer-1 mediates calcium-dependent
membrane fusion during spermatogene-
sis (10). Otoferlin is involved in vesicle
exocytosis and is important for synaptic
vesicle-plasma membrane fusion (medi-
ated by Ca®") at the inner hair-cell ribbon
synapse (11). As such, mutations in
otoferlin were shown to cause nonsyn-
dromic deafness (deafness, autosomal re-
cessive 9 [DFNB9; OMIM number
601071]) (12). Myoferlin is involved in
both myoblast-myoblast fusion (13) and
myoblast-myofiber fusion during muscle
differentiation and maturation, respec-
tively (14). Myoferlin has also been im-
plicated in vesicle recycling during my-
oblast fusion because of its interaction
with EH-containing domain 2 (EHD2)
(15). Data published recently suggest
that FER1L5 can interact, as previously
described for myoferlin, with EHD1 and
EHD2 to engage myoblast fusion (16).
However, FER1L5 has not been associ-
ated with any human pathology to date.

All members of this gene family en-
code type II transmembrane proteins that
contain several C2 domains (also called
calcium sensors). They are involved in
many biological processes including
phospholipid interactions (13,14) and
Ca**-dependent interactions. Other pro-
teins that contain the C2 domain are typ-
ically involved in active membrane dy-
namics and membrane repair (17). To
understand ferlin function more pre-

cisely, it is important to determine ferlin
C2 domain topology. Different three-
dimensional shapes adopted by these
protein domains allow ferlin members to
interact with binding partners; therefore,
C2 structural data would be very inform-
ative (18,19). Within the ferlin family,
dysferlin is particularly well conserved
among mammals (90% similarity be-
tween human and mouse [20,21]) and
contains seven C2 domains. Multiple
copies of C2 domains are frequently
found in this particular protein family
(22). Recently, their topology was de-
scribed (C2A, C2B and C2E are type 1 C2
domains, while all the others are type 2),
and it appears that C2 secondary struc-
tures are important for protein function
(18,19). The C2 domains of dysferlin are
similar to the well-characterized C2 do-
main of synaptotagmin VII, a protein
predominantly involved in vesicle exo-
cytosis in neurons (23,24). Besides C2 do-
mains, two other motifs are found in this
protein family: dysferlin sequences (3 of
6 human ferlin family members contain
this sequence) and ferlin sequences (car-
ried by all the members of the ferlin fam-
ily). Both domains are of unknown func-
tion (20). Moreover, dysferlin sequences
are conserved between orthologs. In ad-
dition, dysferlin also has several nuclear
localization sequences (although there is
no evidence for its nuclear localization).
Finally, several proline, glutamic acid,
serine and threonine (PEST) sequences,
involved in protein—protein interaction,
or in protein ubiquitinylation and degra-
dation by the proteasome, have been
described (25).

The DYSF gene, although expressed
in a variety of tissues including brain,
lung and placenta, is most highly en-
riched in skeletal and heart muscles and
monocytes/macrophages (1,2,26,27). Dys-
ferlin is expressed in skeletal muscle as
early as 5-6 weeks of human embryonic
development (28), where it is found
mainly in the intracellular network of
muscle fiber (T-tubule and in the plasma
membrane). Furthermore, it was demon-
strated that dysferlin is not an important
regulator of the dystrophin-glycoprotein

complex (DGC), since in dysferlin null
mice, no alteration of the DGC complex
was evident (29,30). These data clearly in-
dicate that mechanisms involved in dys-
ferlinopathies must be different from the
ones caused by DGC deficiencies. Inter-
estingly, a role of dysferlin in the mainte-
nance of muscle reparation capabilities
has been described. In dysferlin-deficient
mice, muscle recovery after injuries is
measurably slower than in wild-type
mice, since recovery in the mutant tissue
involves myogenesis rather than mem-
brane repair (31). In fact, dysferlin was
directly implicated in sarcolemmal reseal-
ing of muscle fiber damage resulting
from mechanical stress, two-photon laser
lesions or muscle elongation in humans
and mice (29,32-35). The involvement of
dysferlin in membrane repair is also sup-
ported by the numerous abnormalities in
muscles of LGMD2B/MM patients,
mainly subsarcolemmal vesicle accumu-
lation (36,37). It was shown in vitro that
Dysf-/- cultures have delayed expression
of myogenin, resulting in defective mus-
cle differentiation (38). Finally, two addi-
tional functions for dysferlin were de-
scribed recently: (i) dysferlin is required
for T-tubule homeostasis in humans (39)
and (ii) dysferlin is associated with in-
flammation (40,41).

Because of its size and its numerous
protein domains, dysferlin likely interacts
with numerous partners, some of which
have already been described. Identified
interacting proteins are involved in di-
verse physiological processes including
membrane maintenance (annexin 1 and 2,
affixin and caveolin-3), cytoskeleton regu-
lation (calpain-3, AHNAK [desmoyokin])
and membrane repair (mitsugumin 53
[MG53]) (Figure 1). Indeed, it is well doc-
umented that dysferlin interacts with
caveolin-3, a protein concentrated at the
intersection between the T-tubule net-
work and the sarcolemma (42) and whose
mutation results in LGMD1C (OMIM
607801) (43-45). Caveolin-3 may serve as
a chaperone for dysferlin, directing it to
the plasma membrane. Annexins I and II
(which bind phospholipids and are in-
volved in Ca®* channel formation) (46,47)
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Figure 1. Binding partners of dysferlin. In normal myofibers, dysferlin is anchored by its

C-terminal domain to the plassa membrane and membrane network to cytosolic vesi-
cles. In these contexts, it associates with different partners according to its localization.
Schematized here are the binding partners of dysferlin and their localization within the

myofiber. ch, Channel.

and affixin (or B-parvin, a focal adhesion
protein) have each been shown to interact
with dysferlin in human skeletal muscles
(48). Calpain-3 (mutated in LGMD2A)
also interacts with dysferlin (49,50)
(OMIM 253600). Calpain-3 is a calcium-
dependent protease for which substrates
are present in sarcolemme/sarcomeres
and function as a regulator in muscle re-
modeling (51). Finally, AHNAK has been
shown to interact with dysferlin. Interest-
ingly, along with annexin I & II and af-
fixin, AHNAK has not been directly im-
plicated in a human disease (52-54).
AHNAK is a large protein found at the
enlargeosome (large-scale vesicle) surface
and is involved in cellular processes in-
cluding cell membrane differentiation, re-
pair and signal transduction through its
protein-protein interactions (52,54-56).
According to Huang et al. (57), AHNAK
and dysferlin colocalize at the sarcolem-
mal membrane, where dysferlin was
shown to interact with a-tubulin (58). A
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recent publication clearly demonstrated
that AHNAK is also found in the costa-
meric network and is not present in the
T-tubule system, leading to the hypothe-
sis that AHNAK is involved in fiber
stiffness (59).

Finally, dysferlin has binding partners
that play direct and indirect roles in
membrane repair, such as MG53 (also
called TRIM72). MG53 associates with
phosphatidylserine in cell membranes
and acts as a sensor for the entry of ex-
tracellular oxidative molecules. As a re-
sult, MG53-containing vesicles are at-
tracted to sites of injury (due to the
presence of an oxidative environment),
thereby recruiting dysferlin into this
niche. However, the interaction between
dysferlin and MG53, along with caveo-
lin-3, has only been described in vitro by

coimmunoprecipitation experiments (60).

There is still no direct evidence of an in
vivo interaction between these proteins,
but it is likely that they are part of the
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same complex. Although dysferlin and
MG53 (60) are the only proteins known
to be involved in muscle repair, their pre-
cise function in this context remains
largely unknown.

Dysferlin colocalizes with the dihydro-
pyridine receptor in T-tubules, suggest-
ing a role for dysferlin in T-tubulogenesis
(39). The T-tubule system is an extensive
internal membrane invagination that
passes transversally from the sarcolemma
across a myofibril of striated muscle. T-
tubules are involved in sarcomere stimu-
lation by triggering the action potential
deep in the fiber, allowing the release of
calcium ions from the sarcoplasmic retic-
ulum (61). Because of binding partners
such as the annexins and caveolin-3, dys-
ferlin could play a role in “invagina-
tion/evagination” of the membrane. In-
terestingly, T-tubule biogenesis requires
both fusion and “invagination/evagina-
tion” of the membrane (62) (see Figure 1).
Recent work has shown that dysferlin’s
plasma membrane localization is transi-
tory; membrane anchorage never exceeds
3 hours, and the protein’s half-life is only
5 hours. The syntaxin-4-associated endo-
cytosis pathway plays a critical role in
regulating this process (63).

FROM SYMPTOMS TO DIAGNOSIS

Dysferlinopathies, for which onset
generally occurs early in the second dec-
ade of life, are characterized by atrophy
and weakness of the gastrocnemius mus-
cle and/or the anterior tibial muscles. If
a patient presents with these symptoms,
the first step toward diagnosis is to mea-
sure serum creatine kinase (which is ele-
vated in most cases of LGMD2B). In
some cases, this test is supplemented
with a skeletal muscle computed tomog-
raphy scan or muscle magnetic imagery
analysis. The second diagnostic step in-
volves immunoblot analysis of a muscle
biopsy or blood monocytes. Reduction or
absence of dysferlin supports the dysfer-
linopathy diagnosis. It should be men-
tioned that there are secondary dysfer-
linopathies, where low dysferlin levels
by Western blot result from mutations in
other genes, for instance, CAPN3
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(LGMD2A). This step increases the com-
plexity of dysferlinopathy diagnosis.
Histology of affected muscles shows
when extensive fiber degeneration-
regeneration has taken place, revealed by
centronuclear fibers of varying sizes and
immune infiltration (predominantly
CD8" cells and macrophages). No B cells
are detected, probably because intracel-
lular material is released after membrane
lesion (64).

WHAT ARE THE MUTATIONS INVOLVED
IN DYSFERLINOPATHIES?

Because the discovery that DYSF dys-
function underlies both LGMD2B (1) and
MM (2), a wide spectrum of DYSF muta-
tions has been identified, including mis-
sense, nonsense, frameshift deletions/
insertions, splicing mutations and large
deletions (1,2,7,8,46,65,66). Although no
mutational hotspots were identified
(UMD-DYSF database, Leiden muscular
dystrophy pages: http://www.dmd.nl),
five founder mutations were reported:
€.2372C>G (p.Pro791Arg) for a native
Canadian population, c.4872_4876delin-
sCCCC (p.Glul624AspfsX9) for a Libyan
Jewish population, ¢.2875C>T
(p-Arg959Trp) for an Italian population,
¢.5713C>T (p.Argl1905X) for a Spanish
population (region of Sueca) and
€.2779delG (p.Ala927LeufsX21) for a
Caucasian Jewish population (67-71).

Loss of dysferlin is frequently associ-
ated with nonsense or frameshift muta-
tions (7,66). However, except for rare
cases (for example, exon 32 deletion
causes mild dysferlinopathy [see below,
72]), no measurable phenotype to geno-
type correlation was established. In gen-
eral, the dysferlin gene has a high level
of polymorphisms, once again increasing
the complexity for dysferlinopathy mo-
lecular diagnosis.

There are several DYSF mutations that
lead to mRNA instability and degrada-
tion through the nonsense-mediated
mRNA decay (NMD) process (73). At
the protein level, Fujita et al. (2007) have
described two major pathways for degra-
dation of misfolded dysferlin: the endo-
plasmic reticulum-associated degrada-

tion (ERAD) system and autophagy (74).
ERAD is used to clear nonaggregated na-
tive or mutant dysferlin, whereas auto-
phagy removes aggregated versions of
the mutated protein. In situations where
unfolded-dysferlin degradation is mis-
regulated, the pathophysiology could be
explained by the formation of amyloid-
like aggregates (75). In silico analysis of
dysferlin predicted a bi-partite nuclear
localization sequence (NLS) near its
N-terminus (Www.genscript.com/psort/
psort2.html). Whereas endogenous dys-
ferlin is typically not found in the nu-
cleus, this motif could become relevant
for truncated proteins that lack trans-
membrane domains. Indeed, truncated
dysferlins may be directed to inappropri-
ate cellular compartments, in particular
the nucleus, because of the NLS se-
quence. Unfortunately, this result has
not yet been observed because of the
C-terminal specificity of the Hamlet anti-
body. Every DYSF mutation reported

to date affects protein expression levels
in skeletal muscle, except for one
(TG573/574AT; pVal67Asp), which af-
fects dysferlin calcium-binding proper-
ties (76). Before effective therapeutic ap-
proaches can be developed, it is critical
to fully characterize DYSF sequence vari-
ations that result in pathologies.

THERAPEUTIC APPROACHES FOR
DYSFERLINOPATHIES

Today, no curative treatment for dys-
ferlinopathies exists. In the following
section, several validated approaches for
dysferlinopathy therapy will be dis-
cussed, including synthesis of functional
protein after adeno-associated virus
(AAV) vector transfer, gene surgery
(exon skipping, trans-splicing) and phar-
macological or immunological preclinical
treatments. As always, therapeutic ap-
proaches must first be evaluated in cells
and/or animal models. Recently, fibro-
blasts derived from human patients have
been successfully converted into myo-
blasts (77). Several mouse cell culture
systems have been developed recently
(dysf’/ ~ C2C12 cells, single-cell cloned
shRNA cell line and immortalized cells

from A/J mice), which will be helpful
when assessing novel therapeutic strate-
gies. In addition to these cell culture sys-
tems, several animal model systems also
exist. In particular, two natural mice
strains (SJL/J and A/]) were identified
that have dystrophic phenotypes. The
SJL/] mouse strain has a splicing muta-
tion in the dysferlin gene, making it a
natural model for LGMD2B and MM
(21,78). Genomic analysis identified the
mutation as a 141-bp genomic deletion
involving a tandem repeat and altering
the 3’ splicing site of exon 45, therefore
leading to the splicing of this 171-bp long
exon. Another strain of mice carrying a
deficient dysferlin was fortuitously dis-
covered in The Jackson Laboratory. The
A/] strain presents mild progressive
muscular dystrophy. Genetic analysis of
this strain demonstrated that an early
transposon (ETn) retrotransposon in-
serted itself in the intron 4 of the dysfer-
lin gene. However, research involving
these strains is not easy because of a
mild phenotype and the absence of a
matched control strain. Thus, genetically
engineered and backcrossed mice

(dysf ", C57BL/10.S]L-Dysf, B6.129-
Dysftm1Kcam/Mmmbh, B6.A /J-Dysfprmd)
were created (29,78-80). Issues still re-
main with these dysferlinopathy models,
since none truly recapitulate the human
disease. Although not perfect, these
models will serve as valuable tools to
develop and test novel therapeutic
approaches.

TRANSFER OF FULL-LENGTH DYSFERLIN
The ultimate goal is to alleviate the
symptoms associated with dysferlin
deficiency. Currently, gene transfer ap-
proaches are the main strategy tested to
treat recessive diseases such as dysfer-
linopathy. Molkentin demonstrated that
the restoration of dysferlin only in skeletal
muscle fibers would be sufficient to res-
cue the dysferlin-deficient mice (81). The
AAV vector is the most common viral
vector used for muscle gene therapy (82).
For dysferlinopathy, however, there are
major technical issues associated with
using AAV in therapeutic approaches. The
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Figure 2. Therapeutic strategies currently being tested. Dysferlinopathies are an ensemble
of pathologies, due to mutations in the DYSF gene. Wide spectrums of mutations are re-
sponsible for the pathologies, including missense, nonsense, frameshift, deletion, insertion
and splicing mutations. Currently, two main types of strategies are envisaged: gene frans-
fer (AAV concatemerization, or minigene) and mRNA surgery (exon-skipping and trans-
splicing strategies). Black arrows indicate strategies available for all gene mutations,
whereas dashed arrows indicate mutation-specific strategies (mutations in exon 32 for
exon skipping, 3’ mutations for frans-splicing). Inverted terminal repeats (ITRs) are the

adeno-associated vector backbone.

encapsidation size is limited to approxi-
mately 4 kb, the equivalent of three C2
domains (83). To solve this problem, re-
searchers used the concatemerization
property of AAV (84,85). Two independent
AAV vectors are used: one carrying 5’ dys-
ferlin cDNA fused with an intronic se-
quence that carries a donor splice site and
the other containing the 3' cDNA-bearing
intronic sequence and a splice acceptor
site. This approach allows expression,
after concatemerization and splicing, of a
full-length dysferlin transcript (a scheme
representing this strategy, as seen in Fig-
ure 2). This process can be used to reverse
membrane repair deficits associated with
dysferlin mutant myofibers. Functionally,
this treatment results in improved loco-
motor activity in injected mice, which is a
promising result. However, the use of two
AAV vectors and the low levels of expres-
sion are issues that must be addressed be-
fore use as a viable therapy (80). Brown
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and his colleagues have also tried to use
one AAV to encode full-length dysferlin
(using the AAV5 serotype) (86). They con-
clude that this strategy allows expression
of dysferlin at detectable levels; however,
dysferlin expression could be in part the
result of a recombination event between
different parts of the transgene carried by
AAVs (87).

TRANSFER OF DYSFERLIN MINIGENES
Recently, a minidysferlin was discov-
ered by our team in a patient with a
moderately severe muscular phenotype,
and this discovery has opened up new
therapeutics prospects (88) (see Figure 2).
This minidysferlin, which contains only
the last two C2 domains (out of seven)
and the transmembrane domain, is ex-
pressed in muscle biopsies and correctly
targeted to the plasma membrane in this
patient. In collaboration with I Richard’s
team (88), we injected AAV encoding

17(9-10)875-882, SEPTEMBER-OCTOBER 2011 |
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minidysferlin into dysferlin-deficient
mice and observed membrane insertion
of minidysferlin, which restored mem-
brane repair. Although this minidysferlin
prevented the appearance of severe dys-
ferlinopathies, it was not completely
functional, since no histological improve-
ments were seen in treated mice (88).
Therefore, our experiments demonstrate
that the minidysferlin retains membrane
repair function, although functions asso-
ciated with missing C2 domains are lack-
ing. For example, the C2A domain inter-
acts with phospholipids, AHNAK and
a-tubulin (58). C2A (as well as C2B, C2C,
C2D and C2E) is absent from the natural
minidysferlin expressed in this patient.
This result certainly explains why restor-
ing minidysferlin is not sufficient to res-
cue all aspects of the dysferlin pheno-
type. Nevertheless, these results indicate
that both the AAV injection and the level
of expression of a functional minidysfer-
lin are not toxic. This is important infor-
mation for future clinical developments,
since we have shown that the overall
function of dysferlin can be, at least par-
tially, carried by a large deleted amino
acid sequence protein. This result also
pinpoints the necessity to develop ge-
nomic explorations in patients affected
by muscular dystrophies to identify new
natural truncated mutated proteins.

MESSENGER SURGERY BY EXON
SKIPPING

In dysferlinopathies, correlations be-
tween genotype and phenotype are rare
(as previously mentioned). However, the
Sinnreich group identified a family in
which two severely affected sisters were
homozygous for a dysferlin null muta-
tion (72, Figures 2 and 3). Their mother
was heterozygous for the same null
mutation and had a lariat branch point
mutation in intron 31 (leading to an in-
frame skipping of exon 32) in trans. This
patient presented a mild phenotype, so it
is likely that the exon 32 skipped-allele
partially complemented the null muta-
tion. In collaboration with the Garcia
group, we have considered this discovery
as a “natural” proof of concept for an
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exon-skipping therapeutic approach for
dysferlinopathies. The use of an exon-
skipping strategy was first applied in
Duchenne muscular dystrophies (89), and
clinical trials using antisense oligonu-
cleotides (AONSs) are underway (90). The
results obtained in preclinical trials are
promising and pave the way for similar
approaches for dysferlinopathies (91). In
particular, using an exon-skipping strat-
egy to treat DYSF mutations lying in
exon 32 is promising. According to the
UMD database, approximately 4% of dys-
ferlin patients have disease-causing mu-
tations in this exon. AON directed
against splicing regulatory elements of
exon 32 were tested on myotubes transd-
ifferentiated from patient fibroblasts pre-
viously infected by a lentivirus encoding
MyoD. The efficiency of exon skipping
induced by these AONs was validated by
reverse transcription—polymerase chain
reaction. Indeed, a fragment correspon-
ding to a sequence deleted of exon 32
was observed in samples from AON-
treated cells (92,93). Even if this technol-
ogy proves promising, it will be impor-
tant to improve efficiency of AON
delivery and to determine the efficiency
of this “quasi-dysferlin” before switching
to clinical trials. The different approaches
described in this section have been
schematically represented in Figure 3.

PHARMACOLOGICAL AND
IMMUNOLOGICAL APPROACHES

Pharmacological or immunological ap-
proaches have also been envisaged to
treat dysferlinopathies. Recently, PTC124”
(also known as Ataluren™) was shown to
read through nonsense mutations. Wang
et al. (94) showed that treating myotubes
from a patient with a premature stop
codon allowed the expression of a suffi-
cient functional dysferlin to rescue my-
otube membrane blebbing. However, in
dysferlinopathies, less than one-third of
mutations are nonsense mutations.

In 2007, the use of Dantrolen™ as a po-
tential treatment for dysferlinopathies
was described. CPK levels were reduced
in response to Dantrolen (95); however,
no amelioration of the muscle phenotype
has been seen to date. In 2001, the pres-
ence of a complement deposit in non-
necrotic muscle fibers deficient for dysfer-
lin (96) was observed, and it was
hypothesized that the complement con-
tributed to the deleterious effects of the
dysferlin absence. A clinical trial was
launched to try to inhibit accumulation of
this deposit by the administration of in-
travascular immunoglobulin (IV-IG);
however, the initially encouraging results
were not pursued (reviewed in 97). Re-
cently, promising results were published
regarding the increase of muscle strength

for dysferlinopathy patients treated with
Rituximab™ (a human/murine chimeric
monoclonal antibody directed against
CD20-positive B cells) (98). The authors
suggest a possible role for B cells in dys-
ferlin pathophysiology. After the tran-
scriptomics studies performed in EP Hoff-
man’s laboratory, demonstrating the
upregulation of proteins involved in rho
signaling, they started preclinical studies
using an inhibitor of a rho kinase (Fa-
sudil™) (99). This preclinical treatment
demonstrated some benefits: notably, a
lower level of inflammatory cells in the
muscles and an increase in body weight,
but no impact in another physiological
process such as muscle fiber degenera-
tion/regeneration or in muscle force (100).
Nevertheless, this study is a starting point
for drug-testing trials in dysferlin-
deficient mice, by a standardized mea-
surement of dysferlin functions that will
be useful for high-throughput screening.

CONCLUSION

It is essential to characterize dysferlin
at the molecular level to functionally un-
derstand this sarcolemmal protein in
both normal and pathological conditions.
This knowledge is absolutely required if
adapted therapeutic strategies are to be
developed for dysferlinopathies (and
possibly other forms of muscular dystro-
phies), where enhancement of sarcolem-
mal resealing could be of benefit. Re-
searchers are still working to define
functional roles for each C2 domain and
to accurately describe dysferlin activity
in a variety of physiological processes,
such as T-tubule homeostasis and mem-
brane repair. As molecular diagnostic
technologies improve, a better under-
standing of these diseases will emerge,
enabling the development of appropriate
therapeutic strategies on the basis of clin-
ical observations.
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