Skip to main content
Log in

Disease-Associated Prion Protein Elicits Immunoglobulin M Responses In Vivo

  • Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

Prion diseases such as Creutzfeldt-Jakob disease are believed to result from the misfolding of a widely expressed normal cellular prion protein, PrPc. The resulting disease-associated isoforms, PrPSc, have much higher β-sheet content, are insoluble in detergents, and acquire relative resistance to proteases. Although known to be highly aggregated and to form amyloid fibrils, the molecular architecture of PrPSc is poorly understood. To date, it has been impossible to elicit antibodies to native PrPSc that are capable of recognizing PrPSc without denaturation, even in Prn-Po/o mice that are intolerant of it. Here we demonstrate that antibodies for native PrPc and PrPSc can be produced by immunization of Prn-Po/o mice with partially purified PrPc and PrPSc adsorbed to immunomagnetic particles using high-affinity anti-PrP monoclonal antibodies (mAbs). Interestingly, the polyclonal response to PrPSc was predominantly of the immunoglobulin M (IgM) isotype, unlike the immunoglobulin G (IgG) responses elicited by PrPc or by recombinant PrP adsorbed or not to immunomagnetic particles, presumably reflecting the polymeric structure of disease-associated prion protein. Although heat-denatured PrPSc elicited more diverse antibodies with the revelation of C-terminal epitopes, remarkably, these were also predominantly IgM suggesting that the increasing immunogenicity, acquisition of protease sensitivity, and reduction in infectivity induced by heat are not associated with dissociation of the PrP molecules in the diseased-associated protein. Adsorbing native proteins to immunomagnetic particles may have general applicability for raising polyclonal or monoclonal antibodies to any native protein, without attempting laborious purification steps that might affect protein conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Prusiner SB. (1994) Molecular biology and genetics of prion diseases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 343:447–63.

    Article  CAS  Google Scholar 

  2. Gray F et al. (1994) Creutzfeldt-Jakob disease and cerebral amyloid angiopathy. Acta Neuropathol. (Berl) 88:106–11.

    Article  CAS  Google Scholar 

  3. Williams ES, Young S. (1980) Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J. Wildl. Dis. 16:89–98.

    Article  CAS  Google Scholar 

  4. Wells GAH et al. (1987) A novel progressive spongiform encephalopathy in cattle. Vet. Record Oct. 31:419–20.

    Article  Google Scholar 

  5. Wilesmith JW, Wells GA, Cranwell MP, Ryan JB. (1988) Bovine spongiform encephalopathy: epidemiological studies. Vet. Record 123:638–44.

    CAS  Google Scholar 

  6. Simmons MM et al. (2000) Scrapie surveillance in Great Britain: results of an abattoir survey, 1997/98. Vet. Record 146:391–5.

    Article  CAS  Google Scholar 

  7. Collinge J, Sidle KCL, Meads J, Ironside J, Hill AF. (1996) Molecular analysis of prion strain variation and the etiology of ‘new variant’ CJD. Nature 383:685–90.

    Article  CAS  Google Scholar 

  8. Hill AF et al. (1997) The same prion strain causes vCJD and BSE. Nature 389:448–50.

    Article  CAS  Google Scholar 

  9. Bruce ME et al. (1997) Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 389:498–501.

    Article  CAS  Google Scholar 

  10. Prusiner SB. (1998) The prion diseases. Brain Pathol. 8:499–513.

    Article  CAS  Google Scholar 

  11. Gajdusek DC. (1985) Hypothesis: interference with axonal transport of neurofilament as a common pathogenetic mechanism in certain diseases of the central nervous system. N. Engl. J. Med. 312:714–9.

    Article  CAS  Google Scholar 

  12. Prusiner SB et al. (1993) Immunologic and molecular biologic studies of prion proteins in bovine spongiform encephalopathy. J. Infect. Dis. 167:602–13.

    Article  CAS  Google Scholar 

  13. Bueler H et al. (1993) Mice devoid of PrP are resistant to scrapie. Cell 73:1339–47.

    Article  CAS  Google Scholar 

  14. Weissmann C et al. (1998) The use of transgenic mice in the investigation of transmissible spongiform encephalopathies. Rev. Sci. Tech. 17:278–90.

    Article  CAS  Google Scholar 

  15. Mabbott NA, Mackay F, Minns F, Bruce ME. (2000) Temporary inactivation of follicular dendritic cells delays neuroinvasion of scrapie. Nat. Med. 6:719–20.

    Article  CAS  Google Scholar 

  16. Hill AF et al. (1999) Investigation of variant Creutzfeldt-Jakob disease and other human prion diseases with tonsil biopsy samples. Lancet 353:183–9.

    Article  CAS  Google Scholar 

  17. O’Rourke KI et al. (2000) Preclinical diagnosis of scrapie by immunohistochemistry of third eyelid lymphoid tissue. J. Clin. Microbiol. 38:3254–9.

    PubMed  PubMed Central  Google Scholar 

  18. Schreuder BE, Van Keulen LJ, Vromans ME, Langeveld JP, Smits MA. (1998) Tonsillar biopsy and PrPSc detection in the preclinical diagnosis of scrapie. Vet. Record 142:564–8.

    Article  CAS  Google Scholar 

  19. Hill AF, Zeidler M, Ironside J, Collinge J. (1997) Diagnosis of new variant Creutzfeldt-Jakob disease by tonsil biopsy. Lancet 349:99–100.

    Article  CAS  Google Scholar 

  20. Prusiner SB et al. (1993) Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc. Natl. Acad. Sci. U.S.A. 90:10608–12.

    Article  CAS  Google Scholar 

  21. Prusiner SB et al. (1990) Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63:673–86.

    Article  CAS  Google Scholar 

  22. Krasemann S, Groschup M, Hunsmann G, Bodemer W. (1996) Induction of antibodies against human prion proteins (PrP) by DNA-mediated immunization of PrP mice. J. Immunol. Methods 199:109–18.

    Article  Google Scholar 

  23. Korth C et al. (1997) Prion (PrPSc)-specific epitope defined by a monoclonal antibody. Nature 390:74–7.

    Article  CAS  Google Scholar 

  24. Paramithiotis E et al. (2003) A prion protein epitope selective for the pathologically misfolded conformation. Nat. Med. 9:893–9.

    Article  CAS  Google Scholar 

  25. Maissen M, Roeckl C, Glatzel M, Goldmann W, Aguzzi A. (2001) Plasminogen binds to disease-associated prion protein of multiple species. Lancet 357:2026–8.

    Article  CAS  Google Scholar 

  26. Weiss S et al. (1997) RNA aptamers specifically interact with the prion protein PrP. J. Virol. 71:8790–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Soto C et al. (2000) Reversion of prion protein conformational changes by synthetic β-sheet breaker peptides. Lancet 355:192–7.

    Article  CAS  Google Scholar 

  28. Safar J et al. (1998) Eight prion strains PrPSc molecules with different conformations. Nat. Med. 4:1157–65.

    Article  CAS  Google Scholar 

  29. Porter DD, Porter HG, Cox NA. (1973) Failure to demonstrate a humoral immune response to scrapie infection in mice. J. Immunol. 111:1407–10.

    CAS  PubMed  Google Scholar 

  30. Aguzzi A. (1998) Protein conformation dictates prion strain. Nat. Med. 4:1125–6.

    Article  CAS  Google Scholar 

  31. McBride PA, Eikelenboom P, Kraal G, Fraser H, Bruce ME. (1992) PrP protein is associated with follicular dendritic cells of spleens and lymph nodes in uninfected and scrapie-infected mice. J. Pathol. 168:413–8.

    Article  CAS  Google Scholar 

  32. Peretz D et al. (1997) A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J. Mol. Biol. 273:614–22.

    Article  CAS  Google Scholar 

  33. Kascsak RJ et al. (1987) Mouse polyclonal and monoclonal antibody to scrapieassociated fibril proteins. J. Virol. 61:3688–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Beringue V et al. (2003) Regional heterogeneity of cellular prion protein isoforms in the mouse brain. Brain 126:2065–73.

    Article  Google Scholar 

  35. Mond JJ, Vos Q, Lees A, Snapper CM. (1995) T cell independent antigens. Curr. Opin. Immunol. 7:349–54.

    Article  CAS  Google Scholar 

  36. Bueler H et al. (1992) Normal development and behavior of mice lacking the neuronal cell-surface PrP protein. Nature 356:577–582.

    Article  CAS  Google Scholar 

  37. Brandner S et al. (1996) Normal host prion protein (PrPC) is required for scrapie spread within the central nervous system. Proc. Natl. Acad. Sci. U.S.A. 93: 13148–51.

    Article  CAS  Google Scholar 

  38. Jackson GS et al. (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283:1935–7.

    Article  CAS  Google Scholar 

  39. Laemmli UK. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–5.

    Article  CAS  Google Scholar 

  40. Anstee DJ et al. (1991) New monoclonal antibodies in CD44 and CD58: their use to quantify CD44 and CD58 on normal human erythrocytes and to compare the distribution of CD44 and CD58 in human tissues. Immunology 74: 197–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Taylor DM, Fernie K, Steele PJ, McConnell I, Somerville RA. (2002) Thermostability of mouse-passaged BSE and scrapie is independent of host PrP genotype: implications for the nature of the causal agents. J. Gen. Virol. 83:3199–204.

    Article  CAS  Google Scholar 

  42. Serban D, Taraboulos A, DeArmond SJ, Prusiner SB. (1990) Rapid detection of Creutzfeldt-Jakob disease and scrapie prion proteins. Neurology 40:110–7.

    Article  CAS  Google Scholar 

  43. Krasemann S, Jürgens T, Bodemer W. (1999) Generation of monoclonal antibodies against prion proteins with an unconventional nucleic acid-based immunization strategy. J. Biotechnol. 73:119–29.

    Article  CAS  Google Scholar 

  44. Jackson GS et al. (1999) Multiple folding pathways for heterologously expressed human prion protein. Biochim. Biophys. Acta 1431:1–13.

    Article  CAS  Google Scholar 

  45. Hawke S, Willcox N, Harcourt G, Vincent A, Newsom-Davis J. (1992) Stimulation of human T cells by sparse antigens captured on immunomagnetic particles. J. Immunol. Methods 155:41–8.

    Article  CAS  Google Scholar 

  46. Hawke S et al. (1996) Autoimmune T cells in myasthenia gravis: heterogeneity and potential for specific immunotargeting. Immunol. Today 17:307–11.

    Article  CAS  Google Scholar 

  47. Harmeyer S, Pfaff E, Groschup MH. (1998) Synthetic peptide vaccines yield monoclonal antibodies to cellular and pathological prion proteins of ruminants. J. Gen. Virol. 79:937–45.

    Article  CAS  Google Scholar 

  48. Mond JJ, Vos Q, Lees A, Snapper CM. (1995) T cell independent antigens. Curr. Opin. Immunol. 7:349–54.

    Article  CAS  Google Scholar 

  49. O’Nuallain B, Wetzel R. (2002) Conformational Abs recognizing a generic amyloid fibril epitope. Proc. Natl. Acad. Sci. U.S.A. 99:1485–90.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ray Young for preparation of figures and the animal team at the Charing Cross prion facility. This work is supported by grants from the Medical Research Council (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Hawke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tayebi, M., Enever, P., Sattar, Z. et al. Disease-Associated Prion Protein Elicits Immunoglobulin M Responses In Vivo. Mol Med 10, 104–111 (2004). https://doi.org/10.2119/2004-00027.Tayebi

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2119/2004-00027.Tayebi

Keywords

Navigation