Skip to main content
Log in

Requirement of STAT3 Activation for Differentiation of Mucosal Stratified Squamous Epithelium

  • Articles
  • Published:
Molecular Medicine Aims and scope Submit manuscript

Abstract

STAT3, a member of the signal transducers and activators of transcription (STAT) family, has been shown to play a key role in promoting proliferation, differentiation, or cell cycle progression, depending on cell type. A number of signaling pathways are altered in laryngeal papillomas, benign tumors induced by human papillomavirus 6/11. Papillomas overexpress the epidermal growth factor receptor and display enhanced MAP kinase and PI-3-kinase activity. They also show reduced activation of Akt and reduced levels of tyrosine-phosphorylated STAT3, due to overexpression of the tumor suppressor, PTEN. As papillomas show abnormalities in terminal differentiation, we examined the potential role of STAT3 in regulating epithelial differentiation. Laryngeal epithelial cells were suspended in supplemented serum-free medium. Differentiation was measured by Western blot analysis of keratin 13. Normal laryngeal epithelial cells were transfected with a constitutively active STAT3 or a dominant negative STAT3. Cells were transferred to suspension culture 24 h after transfection. Increased expression of keratin 13 was accompanied by the activation of STAT3 when differentiation was induced, and expression of a constitutively active STAT3 (STAT3C) enhanced the expression of keratin 13. In contrast, expression of a dominant negative STAT3 (Y705F) inhibited the expression of keratin 13. We conclude that activation of STAT3 is required for the differentiation of normal human stratified squamous epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Gissman L, Diehl B, Schults-Coulon J, zur Hausen H. (1982) Molecular cloning and characterization of human papillomavirus DNA derived from a laryngeal papilloma. J. Virol. 44:393–9.

    Google Scholar 

  2. Abramson AL, Steinberg BM, Winkler B. (1987) Laryngeal papillomatosis: clinical, histopathologic and molecular studies. Laryngoscope. 97:678–85.

    Article  CAS  Google Scholar 

  3. Steinberg BM, Meade R, Kalinowski S, Abramson AL. (1990) Abnormal differentiation of human papillomavirus-induced laryngeal papillomas. Arch. Otolaryngol. Head Neck Surg. 116:1167–71.

    Article  CAS  Google Scholar 

  4. Fuchs E, Green H. (1980) Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell. 19:1033–42.

    Article  CAS  Google Scholar 

  5. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 31:11–24.

    Article  CAS  Google Scholar 

  6. Sun TT, Eichner R, Schermer A, Cooper D, Nelson WG, Weiss R.A. (1984) Classification, expression, and possible mechanisms of evolution of mammalian epithelial keratins: a unifying model. In: Cancer cells/1. The transformed phenotype. Levine AJ et al (ed.). N.Y.: Cold Spring Harbor Laboratory Press. p 169–76.

    Google Scholar 

  7. Fuchs E. (1993) Epidermal differentiation and keratin gene expression. J. Cell Sci. Suppl. 17:197–208.

    Article  CAS  Google Scholar 

  8. Johnston D, Hall H, DiLorenzo TP, Steinberg BM. (1999) Elevation of the epidermal growth factor receptor and dependent signaling in human papillomavirusinfected laryngeal papillomas. Cancer Res. 59:968–74.

    CAS  PubMed  Google Scholar 

  9. Vambutas A, Di Lorenzo TP, Steinberg BM. (1993) Laryngeal papilloma cells have high levels of epidermal growth factor receptor and respond to epidermal growth factor by a decrease in epithelial differentiation. Cancer Res. 53:910–4.

    CAS  PubMed  Google Scholar 

  10. Zhang P, Steinberg BM. (2000) Overexpression of PTEN/MMAC1 and decreased activation of Akt in human papillomavirus-infected laryngeal papillomas. Cancer Res. 60:1457–62.

    CAS  PubMed  Google Scholar 

  11. Sun S, Steinberg BM. (2002) PTEN is a negative regulator of STAT3 activation in human papillomavirus-infected cells. J. Gen. Virol. 83:1651–8.

    Article  CAS  Google Scholar 

  12. Minami M, Inoue M, Wei S, Takeda K, Matsumoto M, Kishimoto T, Akira S. (1996) STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc. Natl. Acad. Sci. U.S.A. 93:3963–6.

    Article  CAS  Google Scholar 

  13. McLemore ML, Grewal S, Liu F, Archambault A, Poursine-Laurent J, Haug J, Link DC. (2001) STAT-3 activation is required for normal G-CSF-dependent proliferation and granulocytic differentiation. Immunity. 14:193–204.

    Article  CAS  Google Scholar 

  14. de Koning JP, Ward AC, Caldenhoven E, de Groot RP, Lowenberg, B, Touw IP. (2000) STAT3beta does not interfere with granulocyte colony-stimulating factor-induced neutrophilic differentiation. Hematol. J. 1:220–5.

    Article  Google Scholar 

  15. Danial NN, Pernis A, Rothman PB. (1995) Jak-STAT signaling induced by the v-abl oncogene. Science. 269:1875–7.

    Article  CAS  Google Scholar 

  16. David M, Wong L, Flavell R, Thompson SA, Wells A, Larner AC, Johnson GR. (1996) STAT activation by epidermal growth factor (EGF) and amphiregulin. Requirement for the EGF receptor kinase but not for tyrosine phosphorylation sites or JAK1. J. Biol. Chem. 271:9185–8.

    Article  CAS  Google Scholar 

  17. Park OK, Schaefer TS, Nathans D. (1996) In vitro activation of Stat3 by epidermal growth factor receptor kinase. Proc. Natl. Acad. Sci. U.S.A. 93:13704–8.

    Article  CAS  Google Scholar 

  18. Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C, Schwartz J, Jove R. (1995) Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science. 269:81–3.

    Article  CAS  Google Scholar 

  19. Darnell Jr JE. (1997) STATs and gene regulation. Science. 277:1630–5.

    Article  CAS  Google Scholar 

  20. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell Jr JE. (1999) Stat3 as an oncogene. Cell. 98:295–303.

    Article  CAS  Google Scholar 

  21. Grandis JR, Drenning SD, Chakraborty A, Zhou MY, Zeng Q, Pitt AS, Tweardy DJ. (1998) Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor-mediated cell growth in vitro. J. Clin. Invest. 102:1385–92.

    Article  CAS  Google Scholar 

  22. Zhong Z, Wen Z, Darnell Jr JE. (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 264:95–8.

    Article  CAS  Google Scholar 

  23. Nakajima K, Yamanaka Y, Nakae K, Kojima H, Ichiba M, Kiuchi N, Kitaoka T, Fukada T, Hibi M, Hirano T. (1996) A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. Embo. J. 15:3651–8.

    Article  CAS  Google Scholar 

  24. Yamanaka Y, Nakajima K, Fukada T, Hibi M, Hirano T. (1996) Differentiation and growth arrest signals are generated through the cytoplasmic region of gp130 that is essential for Stat3 activation. Embo. J. 15:1557–65.

    Article  CAS  Google Scholar 

  25. Zhang J, Shen B, Li Y, Sun Y. 2001 STAT3 exerts two-way regulation in the biological effects of IL-6 in M1 leukemia cells. Leuk. Res. 25:463–72.

    Article  CAS  Google Scholar 

  26. Rane SG, Reddy EP. (1994) JAK3: a novel JAK kinase associated with terminal differentiation of hematopoietic cells. Oncogene 9:2415–23.

    CAS  PubMed  Google Scholar 

  27. Runge D, Runge DM, Drenning SD, Bowen Jr WC, Grandis JR, Michalopoulos GK. (1998) Growth and differentiation of rat hepatocytes: changes in transcription factors HNF-3, HNF-4, STAT-3, and STAT-5. Biochem. Biophys. Res. Commun. 250:762–8.

    Article  CAS  Google Scholar 

  28. Smithgall TE, Briggs SD, Schreiner S, Lerner EC, Cheng H, Wilson MB. (2000) Control of myeloid differentiation and survival by Stats. Oncogene. 19:2612–8.

    Article  CAS  Google Scholar 

  29. Ward AC, Touw I, Yoshimura A. (2000) The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood. 95:19–29.

    CAS  PubMed  Google Scholar 

  30. Steinberg BM, Abramson AL, Meade RP. (1982) Culture of human laryngeal papilloma cells in vitro. Otolaryngol. Head Neck Surg. 90:728–35.

    Article  CAS  Google Scholar 

  31. Green H, Kehinde O, Thomas J. (1979) Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl. Acad. Sci. U.S.A. 76:5665–8.

    Article  CAS  Google Scholar 

  32. Wakita H, Takigawa M. (1999) Activation of epidermal growth factor receptor promotes late terminal differentiation of cell-matrix interaction-disrupted keratinocytes. J. Biol. Chem. 274:37285–91.

    Article  CAS  Google Scholar 

  33. Stasiak PC, Purkis PE, Leigh IM, Lane EB. (1989) Keratin 19: predicted amino acid sequence and broad tissue distribution suggest it evolved from keratinocyte keratins. J. Invest. Dermatol. 92:707–16.

    Article  CAS  Google Scholar 

  34. Forde AM, Feighery C, Jackson J. (1998) Characterisation of anti-neutrophil cytoplasmic antibody target antigens using electrophoresis and western blotting techniques. Br. J. Biomed. Sci. 55:247–52.

    CAS  PubMed  Google Scholar 

  35. Eichner R, Bonitz P, Sun TT. (1984) Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression. J. Cell Biol. 98:1388–96.

    Article  CAS  Google Scholar 

  36. Grandis JR, Zeng Q, Drenning SD. (2000) Epidermal growth factor receptor— mediated stat3 signaling blocks apoptosis in head and neck cancer. Laryngoscope. 110:868–74.

    Article  CAS  Google Scholar 

  37. Besser D, Bromberg JF, Darnell Jr JE, Hanafusa H. (1999) A single amino acid substitution in the v-Eyk intracellular domain results in activation of Stat3 and enhances cellular transformation. Mol. Cell Biol. 19:1401–9.

    Article  CAS  Google Scholar 

  38. Hsu SM, Raine L, Fanger H. (1981) The use of antiavidin antibody and avidinbiotin-peroxidase complex in immunoperoxidase technics. Am. J. Clin. Pathol. 75:816–21.

    Article  CAS  Google Scholar 

  39. Shimozaki K, Nakajima K, Hirano T, Nagata S. (1997) Involvement of STAT3 in the granulocyte colony-stimulating factor-induced differentiation of myeloid cells. J. Biol. Chem. 272:25184–9.

    Article  CAS  Google Scholar 

  40. Frisch SM, Francis H. (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124:619–26.

    Article  CAS  Google Scholar 

  41. Hauser PJ, Agrawal D, Hackney J, Pledger WJ. (1998) STAT3 activation accompanies keratinocyte differentiation. Cell Growth Differ. 9:847–55.

    CAS  PubMed  Google Scholar 

  42. Andersen B, Weinberg WC, Rennekampff O, McEvilly RJ, Bermingham Jr JR, Hooshmand F, Vasilyev V, Hansbrough JF, Pittelkow MR, Yuspa SH, Rosenfeld MG. (1997) Functions of the POU domain genes Skn-1a/i and Tst-1/Oct-6/SCIP in epidermal differentiation. Genes Dev. 11:1873–84.

    Article  CAS  Google Scholar 

  43. Faus I, Hsu HJ, Fuchs E. (1994) Oct-6: a regulator of keratinocyte gene expression in stratified squamous epithelia. Mol. Cell Biol. 14:3263–75.

    Article  CAS  Google Scholar 

  44. Chen TT, Wu RL, Castro-Munozledo F, Sun TT. (1997) Regulation of K3 keratin gene transcription by Sp1 and AP-2 in differentiating rabbit corneal epithelial cells. Mol. Cell Biol. 17:3056–64.

    Article  CAS  Google Scholar 

  45. Wanner R, Zhang J, Henz BM, Rosenbach T. (1996) AP-2 gene expression and modulation by retinoic acid during keratinocyte differentiation, Biochem. Biophys. Res. Commun. 223:666–9.

    Article  CAS  Google Scholar 

  46. Waseem A, Alam Y, Dogan B, White KN, Leigh IM, Waseem NH. (1998) Isolation, sequence and expression of the gene encoding human keratin 13. Gene. 215:269–79.

    Article  CAS  Google Scholar 

  47. Demeterco C, Itkin-Ansari P, Tyrberg B, Ford LP, Jarvis RA, Levine F. (2002) c-Myc controls proliferation versus differentiation in human pancreatic endocrine cells. J. Clin. Endocrinol. Metab. 87:3475–85.

    Article  CAS  Google Scholar 

  48. Gorelik L, Constant S, Flavell RA. (2002) Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J. Exp. Med. 195:1499–505.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant P50DC00203 from the National Institute on Deafness and Other Communication Disorders and a Faculty Research Award from the North Shore-Long Island Jewish Research Institute.

We thank Dr Jennifer Grandis and Dr James Darnell who provided the dominant-negative STAT3 and the constitutively active STAT3. We express our gratitude to Dr Danile Besser who provided the STAT3 luciferase reporter and control constructs. Also, we thank Dr Allan Abramson and Dr Mark Shikowitz who provided normal and papilloma tissues, and May Nouri who provided normal laryngeal cell cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, R., Sun, S. & Steinberg, B.M. Requirement of STAT3 Activation for Differentiation of Mucosal Stratified Squamous Epithelium. Mol Med 9, 77–84 (2003). https://doi.org/10.2119/2003-00001.Wu

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2119/2003-00001.Wu

Keywords

Navigation