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Abstract: Mesh parameterization is one of the fundamental operations in computer graphics (CG) and computer-
aided design (CAD). In this paper, we propose a novel local/global parameterization approach, ARAP++, for single-
and multi-boundary triangular meshes. It is an extension of the as-rigid-as-possible (ARAP) approach, which stitches
together 1-ring patches instead of individual triangles. To optimize the spring energy, we introduce a linear iterative
scheme which employs convex combination weights and a fitting Jacobian matrix corresponding to a prescribed
family of transformations. Our algorithm is simple, efficient, and robust. The geometric properties (angle and area)
of the original model can also be preserved by appropriately prescribing the singular values of the fitting matrix. To
reduce the area and stretch distortions for high-curvature models, a stretch operator is introduced. Numerical results
demonstrate that ARAP++ outperforms several state-of-the-art methods in terms of controlling the distortions of
angle, area, and stretch. Furthermore, it achieves a better visualization performance for several applications, such
as texture mapping and surface remeshing.
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1 Introduction

Mesh parameterization is an important research
topic in computer graphics (CG), and it has been
widely used in digital geometry processing tasks,
such as texture mapping (Haker et al., 2000), surface
fitting (Hormann and Greiner, 2000b), and surface
remeshing (Hormann et al., 2001). When a discrete
surface is directly flattened onto the plane, distor-
tions are inevitable due to the parameterization pro-
cess. Preserving the geometric properties of the orig-
inal mesh is essential for a good parameterization.

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (Nos. 61432003, 61572105, 11171052, and 61328206)

ORCID: Zhao WANG, http://orcid.org/0000-0001-5659-9364
c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2016

In this paper, we propose a novel local/global
mesh parameterization approach, ARAP++. Our
work is inspired mainly by the as-rigid-as-possible
(ARAP) approach (Sorkine and Alexa, 2007; Liu
et al., 2008; Bouaziz et al., 2012) and the convex com-
bination approach (Eck et al., 1995; Floater, 1997).
ARAP++ adopts the idea of ARAP regarding the
approximation of the Jacobian matrix with a fitting
matrix, and then achieves the global flattened re-
sult by stitching together the local 1-ring patches.
To optimize the local spring energy, we introduce
the convex combination weights and stretch oper-
ator (Sander et al., 2001; Yoshizawa et al., 2004)
to ARAP++. In consequence, ARAP++ renders
lower area and stretch distortions than ARAP. The
flattened results of our method are obtained using
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a free boundary. Therefore, ARAP++ outperforms
those of the convex combination approach in pro-
cessing boundaries of models. These facts show that
ARAP++ enhances robustness and adaptiveness
relative to both methods above, and achieves a bet-
ter result in texture mapping (Fig. 1).

The main contributions of this paper are listed
as follows:

1. We devise a novel local/global approach to
mesh parameterization (ARAP++) based on the op-
timization of spring energy, and analyze the relation
to the ARAP approach which is based on the op-
timization of the Dirichlet energy. In addition, a
broader class of convex combination weights are con-
sidered in our method (Sections 4.2 and 4.3).

2. Compared with ARAP, ARAP++ improves
the local phase and obtains the flattened results by
stitching together the 1-ring patches, instead of in-
dividual triangles (Section 4.2). Moreover, we give
a simple and fast calculation method to obtain an
authalic fitting matrix (in the Appendix).

3. To deal with high-curvature models, we in-
troduce a stretch operator to ARAP++. It enhances
the robustness of the method, and eliminates the in-
fluence of overlapping and flipping (Section 4.6).

2 Related work

In the past decade, extensive research was con-
ducted regarding the mesh parameterization prob-
lem. We refer readers to several survey papers for
fundamental theories and methods (Floater and Hor-
mann, 2005; Hormann et al., 2007; Sheffer et al.,
2007). Below we briefly review the major techniques

which have close relationship to our work.

The convex combination approach (Tutte, 1963;
Eck et al., 1995; Floater, 1997; 2003; Desbrun et al.,
2002; Lee et al., 2002; Yoshizawa et al., 2004) is a
type of linear and fixed boundary parameterization.
It is fast and stable without producing overlapping.
However, if the boundary is not fixed optimally in
advance, then it will lead to higher distortions along
the boundary as well as the regions which are away
from it.

Some methods rely on angle optimization, both
for their intuitiveness and for their effectiveness.
The angle-based flattening methods (Sheffer and de
Sturler, 2001; Sheffer et al., 2005; Kharevych et al.,
2006; Zayer et al., 2007) are defined in the angle
space, producing minimal angular distortion. Jin
et al. (2008) built a unified framework for discrete
surface Ricci flow algorithms. Chen et al. (2008)
modified the Gaussian curvature by means of the
transition probability matrix, and computed metric
scaling as a solution of the Poisson equation. Weber
and Zorin (2014) proposed an algorithm with arbi-
trarily fixed boundary, which guarantees that the
result is locally injective.

The energy optimization methods (Hormann
and Greiner, 2000a; Lévy et al., 2002; Degener et al.,
2003; Weber et al., 2012) based on the singular values
of the Jacobian matrix also constitute an important
part of commonly employed methods. Sorkine and
Alexa (2007) and Jacobson et al. (2012) devised non-
linear energy for surface deformation, and minimized
it by a combination of linear solvers and other op-
eration (e.g., singular value decomposition (SVD)).
Liu et al. (2008) presented a local/global algorithm

(a) (b) (c) (d) (e)

Fig. 1 Texture of different mesh parameterizations for a Chinese Dragon model (red lines represent the
seams of the closed mesh when cut to a disk): (a) least squares conformal maps (LSCM) (Lévy et al., 2002);
(b) linear angle-based flattening (LABF) (Zayer et al., 2007); (c) as-rigid-as-possible (ARAP) (Liu et al., 2008);
(d) bounded distortion as-rigid-as-possible (BD-ARAP) (Lipman, 2012); (e) ARAP++. References to color
refer to the online version of this figure
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which introduces the idea of ARAP into surface pa-
rameterization. Zhang et al. (2010) promoted the
ARAP algorithm to meshless parameterization and
mesh reconstruction. Lipman (2012) and Aigerman
and Lipman (2013) dealt with the question of injec-
tivity in bounded distortion mapping spaces, and im-
proved many popular algorithms, such as BD-LSCM
and BD-ARAP. Bouaziz et al. (2012) proposed a
unified framework for geometry processing based on
shape proximity function and shape projection oper-
ators. Levi and Zorin (2014) introduced the idea of
strict minimizers to the ARAP approach as well as
for other applications.

Moreover, there are a variety of parameteriza-
tion methods. Hormann et al. (1999) provided a
hierarchical representation of discrete surface, which
includes two major steps: edge collapse and ver-
tex split. Zigelman et al. (2002) presented multi-
dimensional scaling (MDS) parameterization, which
can preserve the geodesic distance of a triangular
mesh. Gu and Yau (2002; 2003) approached the
global surface parametrization problem by comput-
ing conformal structures of general two-manifolds.
Gortler et al. (2006) described some simple
properties of discrete one-forms, and their appli-
cations to three-dimensional (3D) mesh embed-
ding. Chen et al. (2007) flattened surfaces with the
theory of local tangent space alignment (LTSA).
Mullen et al. (2008) defined discrete spectral con-
formal maps, and obtained a conformal mapping
result by minimization of Dirichlet energy. Zhao
et al. (2013) presented an authalic flattening method
based on the optimal mass transport technique.

3 Preliminaries

In this section, we give a brief overview for the
convex combination approach. The basic idea is to
map the boundary nodes of a 3D mesh to a convex
polygon in the plane. The internal node can be ex-
pressed as a weighted average of their 1-ring nodes,
thus guaranteeing a bijective mapping.

Denote S as a 3D mesh, x1,x2, . . . ,xn the in-
ternal nodes, and xn+1,xn+2, . . . ,xN the boundary
nodes of S. Denote S∗ as a 2D mesh, u1,u2, . . . ,un

the internal nodes, and un+1,un+2, . . . ,uN the
boundary nodes of S∗. The internal node ui can
be represented as a strict convex combination of its

1-ring nodes uj in the plane, satisfying

ui −
n∑

j=1

ωi,juj =

N∑

j=n+1

ωi,juj, (1)

where ωi,j represents the convex combination weight.
The solutions of Eq. (1) are the coordinates of S∗.

3.1 Spring energy and Dirichlet energy

The convex combination approach can also be
explained as follows. In a plane, a linear combination
of vectors ui =

∑di

j=1 ωi,juj minimizes the spring
energy (Hoppe et al., 1993), which is a weighted sum
of squared distances of all neighboring points uj to
ui, that is,

E(i)spring =

di∑

j=1

ωi,j‖ui − uj‖2, (2)

where di is the degree of ui. The optimization target
in a plane is to minimize the global spring energy∑n

i=1 E(i)spring. Then we take the partial derivative
of ui, and obtain Eq. (1) in another way.

Inspired by Desbrun et al. (2002), the Dirichlet
energy (Pinkall and Polthier, 1993) over the whole
1-ring neighborhood is

E(i)Dirichlet =

di∑

j=1

cotαi,j · ‖ui − uj‖2, (3)

where αi,j is the angle opposite to the oriented edge
(xi,xj) in the 3D 1-ring neighborhood. Just like
various spring coefficients corresponding to the dif-
ferent spring energy, we can regard the Dirichlet en-
ergy as a special spring energy.

In addition, there are five classic types of weights
ωi,j that can be applied to Eq. (2), namely uni-
form (Tutte, 1963), shape-preserving (Floater, 1997),
mean-value (Floater, 2003), cotan (Eck et al., 1995),
and intrinsic (Desbrun et al., 2002) weights.

3.2 Error metrics on discrete surface

Let F denote the number of faces of S, θ and
φ the angles of S and S∗ respectively, and area(T )
the surface area of T . Then the angle distortion and
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area distortion can be written as follows:

Distangle =
1

3F

F∑

j=1

3∑

i=1

|θj,i − φj,i| ,

Distarea =

F∑

j=1

∣∣∣∣∣
area(Tj)∑F
i=1 area(Ti)

− area(T ∗
j )∑F

i=1 area(T ∗
i )

∣∣∣∣∣ .

We can measure the stretch distortion of the
flattening results according to the stretch metric
(Sander et al., 2001). The Jacobian matrix Jf is
obtained from the affine mapping f . The largest and
smallest singular values of Jf are denoted by σ1 and
σ2, respectively. Then the L2(T ) stretch norm is
defined over a triangle T as

L2(T ) =
√
(σ2

1 + σ2
2)/2.

The norm L2(T ) represents the root-mean-square
stretch. Similarly, there is an analogous norm over
the entire mesh as

L2(S)=

√√√√
∑F

i=1 area(T ∗
i )∑F

i=1 area(Ti)

√√√√
∑F

i=1(L
2(Ti))2area(Ti)∑F

i=1 area(Ti)
.

4 Mesh parameterization

In this section, we describe our mesh parameter-
ization technique (ARAP++). The input is a mesh
of disk topology, and the output is a free-boundary
flattened result. The algorithm consists of two main
steps, local phase and global phase. Our method fur-
ther extends and improves the ARAP approach (Liu
et al., 2008).

4.1 Overview of the ARAP++ approach

We outline the method in Algorithm 1, and the
details are given in the following subsections.

4.2 Local phase

ARAP++ is also a linear iteration scheme. It
requires an initial parameterization to start it off.
We can perform the initialization with the shape-
preserving method (Floater, 1997), as shown in
Fig. 2. The local 1-ring patches of a 3D mesh S can
be flattened to a plane using a method based on dis-
crete exponential mapping. The 3D 1-ring patches
of xi (i.e., N(xi)) can be mapped to a 2D 1-ring

Algorithm 1 ARAP++
1: Input: A 3D mesh, S
2: Output: A 2D mesh, S∗

3: S∗ = S∗
0 ; // Initial phase

4: loop
5: // Local phase
6: for i = 1 : n do
7: RingNodes(pi)←

LocalFlatten(RingNodes(xi));
8: �pipjpj+1 ← RingPatches(pi);
9: �qiqjqj+1 ← RingPatches(qi);

10: ωi,j ← ComputeWeights(RingNodes(xi));
11: J(i,j,j+1) ← Jacobian(�pipjpj+1, �qiqjqj+1);
12: L(i,j,j+1) ← FittingMatrix(J(i,j,j+1));
13: end for
14: // Global phase
15: S∗

1 ← ComputePara(ω, L);
16: S∗

1 ← PostProcess(S∗
1 );

17: if d(S∗
1 − S∗) > ε then

18: S∗
0 = S∗

1 ;
19: else
20: S∗ = S∗

1 ;
21: break;
22: end if
23: end loop

Original model Initial parameterization

Shape-preserving

Local flattening J & L

xj+1

xjxi

xj−1

pj+1

pjpi

pj−1

qj+1

qjqi

qj−1

Fig. 2 Balls model: original model, initial parameter-
ization, and local flattening

patches of pi (i.e., N(pi)) in the plane, where the
mapping should satisfy the following two equations:

‖pj − pi‖ = ‖xj − xi‖ ,

ang(pj ,pi,pj+1) =
2π · ang(xj ,xi,xj+1)∑
j∈N(i) ang(xj ,xi,xj+1)

,

where ang(pj ,pi,pj+1) represents ∠pjpipj+1. Note
that N(qi) is the local 1-ring patches of the ini-
tial parameterization S∗. There exists an affine
mapping f from �pipjpj+1 to �qiqjqj+1. The
Jacobian matrix J(i,j,j+1) ∈ R

2×2 of f should



Wang et al. / Front Inform Technol Electron Eng 2016 17(6):501-515 505

satisfy

qi − qj = J(i,j,j+1) · (pi − pj). (4)

The local flattening of N(pi) well preserves the
shape (angle and area) of N(xi). In the following
process, we wish N(qi) preserves the shape of N(pi)

as much as possible, so that it can preserve the shape
of N(xi) indirectly.

According to Eq. (4), if N(qi) preserves the local
structure of N(pi), we need to search for a fitting
matrix L(i,j,j+1) ∈ R

2×2 to approximate J(i,j,j+1),
and it satisfies

qi − qj = L(i,j,j+1)(pi − pj),

where L(i,j,j+1) belongs to a prescribed family of
transformations (Gower and Dijksterhuis, 2004).
The singular values ofL (δ1 and δ2) should have some
special properties, such as conformal (δ1/δ2 = 1), au-
thalic (δ1δ2 = 1), or isometric (δ1=δ2=1). The dis-
tance between J(i,j,j+1) and L(i,j,j+1) is measured by
the Frobenius norm (Horn and Johnson, 1990). We
employ the function D(J ,L) to express the distance:

D(J ,L) =
∥∥J(i,j,j+1) −L(i,j,j+1)

∥∥2
F

= (σ1 − δ1)
2 + (σ2 − δ2)

2,

where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

J(i,j,j+1) = U

[
σ1 0

0 σ2

]
V T,

L(i,j,j+1) = U

[
δ1 0

0 δ2

]
V T,

and σ1, σ2 are the singular values of J(i,j,j+1).
From the properties of the Jacobian matrix

(Floater and Hormann, 2005), we infer the follow-
ing three conclusions (Fig. 3):
Conclusion 1 If δ1 = δ2 = (σ1 + σ2)/2, then L is a
conformal matrix.

(a) (b) (c)

Fig. 3 Three cases of the fitting matrix for the Balls
model: (a) conformal; (b) authalic; (c) isometric

Conclusion 2 If δ1 = δ, δ2 = 1/δ, then L is an
authalic matrix, and δ is a real root of the following
nonlinear equation:

δ4 − σ1 · δ3 + σ2 · δ − 1 = 0.

The computation details are given in the Appendix.
Conclusion 3 If δ1 = δ2 = 1, then L is an isometric
matrix.

Given a local map fi : fi(pi) = qi in the 1-
ring neighborhood of xi, based on the spring energy
(Hoppe et al., 1993) in Eq. (2), we define the defor-
mation energy E(fi) from N(pi) to N(qi) as follows.
When the 1-ring patches of pi and qi are oriented
counterclockwise, we have

E(fi) =
∑

j∈N(i)

ω
(1)
i,j ‖(qi − qj)−L(i,j,j+1)(pi − pj)‖2.

When the 1-ring patches of pi and qi are oriented
clockwise, we have

E(fi) =
∑

j∈N(i)

ω
(2)
i,j ‖(qi − qj)−L(i,j,j−1)(pi − pj)‖2.

In ARAP++, the 1-ring nodes have the same
weights in both cases, that is, ωi,j = ω

(1)
i,j = ω

(2)
i,j . By

adding these two equations, we can obtain the local
deformation energy E(fi) as

E(fi) =
∑

j∈N(i)

ωi,j

2

(
‖(qi − qj)−L(i,j,j+1)(pi − pj)‖2

+ ‖(qi − qj)−L(i,j,j−1)(pi − pj)‖2
)
.

(5)
According to the above derivation, we can re-

cover the ARAP approach as a special case. Based
on the Dirichlet energy (Pinkall and Polthier, 1993)
over the whole 1-ring neighborhood in Eq. (3), when
ω
(1)
i,j �= ω

(2)
i,j , they are represented as
⎧
⎨

⎩
ω
(1)
i,j = cot(ang(xi,xj+1,xj)),

ω
(2)
i,j = cot(ang(xi,xj−1,xj)).

Hence, the deformation energy E(fi) in Eq. (5) is
the same as the local energy in the ARAP approach.

4.3 Global phase

After computing the local energy, we sum it to
obtain the global energy:

W (S∗) =
n∑

i=1

E(fi).
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To optimize W (S∗), we compute the gradient
of W (S∗) with respect to the positions qi, that is,
∂W (S∗)/∂qi = 0. Then we have

∑

j∈N(i)

ωi,j(qi − qj)

=
∑

j∈N(i)

ωi,j

2

(
L(i,j,j+1)+ L(i,j,j−1)

)
(pi − pj).

(6)
We can stitch together the flattened 1-ring patches
according to Eq. (6), which is a global Poisson
equation with two degrees of freedom (ωi,j and L).
To achieve the best possible results, several itera-
tions should be performed while updating L and
p of the right-hand items after each iteration. As
shown in Fig. 4, compared with the ARAP approach,
ARAP++ can obtain the flattened result by stitch-
ing together the 1-ring patches, instead of individual
triangles.

(a) (b)

Fig. 4 Flattened results by stitching the individual
triangles under ARAP (a) and 1-ring patches under
ARAP++ (b) for the Face model

Note that the coefficient matrix T = [ωi,j ]n×n

is a singular matrix. Thus, we should select a node
fixed on the plane before iterations, so that T turns
to a non-singular matrix. In our algorithm, the fixed
node in the plane is selected arbitrarily. Generally,
we choose a node in the relative flat region and far
away from the boundary. Unfortunately, sometimes
large distortion and overlapping will still be pro-
duced around the fixed point. In this case, we should
do some post-processing operations to cope with this
problem. If the fixed node is located outside its 1-ring
polygon (Fig. 5a), then there must be overlapping,
and we should relocate it in the center of the 1-ring
polygon. As shown in Fig. 5b, this represents a sim-
ple and efficient way to deal with this problem. If the
overlapping of many nodes still occurs, we choose an-
other fixed node to start the computation and restart
the iteration.

(a) (b)

Fig. 5 Post-processing of the fixed point: (a) before
processing; (b) after processing

Our method has the same local/global proce-
dure as the ARAP approach. So, it is guaranteed
to converge to a local minimum. Empirically, our
method appears to converge with the increase of
the number of iterations. As shown in Fig. 6, the
global energy always decreases with each iteration,
and finally stabilizes at a minimum. Experimental
results also demonstrate that the distortions (angle
and area) are decreasing progressively with the num-
ber of iterations (as shown later in Table 2). As
the termination criterion of our algorithm, we re-
quire that the distortions (angle and area) between
the previous and next iterations should be under the
threshold 10−3. We also can set a maximum num-
ber of iterations. Numerical results suggest that the
maximum number of iterations is less than five.

Balls

Fig. 6 Numerical tests for convergence

4.4 Boundary weights

Our method needs various different compu-
tations connecting between internal weights and
boundary weights. The internal weights are deter-
mined by the convex combination of their 1-ring
nodes’ weights. However, we still have to perform
some necessary preliminary operations to determine
the boundary weights:

1. Uniform weight
The weight of xj is ωi,j = 1/di.
2. Shape-preserving weight
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Using an isometric mapping to locate xi and its
1-ring nodes xj , xnj , xnk

, xk on the plane, we obtain
pi and the 1-ring nodes pj, pnj , pnk

, pk (Fig. 7).
To generate a local 1-ring neighborhood, two vir-
tual boundary nodes pnj , pnk

are inserted between
pj and pk. The inserted nodes should satisfy the
following equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ang(pj ,pi,pmj ) = (2π− ang(pj ,pi,pk))/3,

ang(pmj ,pi,pmk
) = (2π− ang(pj ,pi,pk))/3,

ang(pmk
,pi,pk) = (2π− ang(pj ,pi,pk))/3,

∥∥pi − pmj

∥∥ = ‖pi − pmk
‖ =

∑
j∈N(i) ‖pi − pj‖

di
.

Then the weights ωi,j of pj , pnj , pnk
, and pk can be

computed in the local 1-ring neighborhood.
3. Mean-value, cotan, and intrinsic weights
Fig. 7 shows that the 1-ring nodes xj , xnj , xnk

,
xk can be divided into two parts: xnj , xnk

(interme-
diate nodes), and xj, xk (endpoints). The weights
of xnj , xnk

are consistent with those of the internal
nodes. However, the weights of xj, xk are computed
in �xixjxnj and �xixkxnk

, respectively.

xi

xk

xj

xnj

xnk
pj pi pk

pmkpmj

pnj
pnk

(a) (b)

Fig. 7 The 3D boundary 1-ring nodes (a) and the
associated flattened version (b)

4.5 Multi-boundary flattening

There are a couple of ways to flatten a multi-
boundary mesh by using ARAP++. In the first
approach, the mesh is initialized by flattening us-
ing the LSCM method (Lévy et al., 2002). Then
successive iterations of Eq. (6) are applied in order
to achieve the final flattening result. However, if
the inner boundaries (holes) are located at the high-
curvature areas, then overlapping will be produced
at these boundaries. In this study, we employ the
second approach as follows:

Step 1: Add a virtual node to the center of the
holes, connecting the virtual nodes with the 1-ring

nodes, and thus the multi-boundary mesh turns into
a single-boundary mesh.

Step 2: Compute the flattened result according
to Algorithm 1.

Step 3: Remove the virtual nodes and connec-
tions from the holes.

It can be seen from Fig. 8 that the first approach
generates overlapping around the holes, while the
second one apparently produces better results than
the first one. If the above virtual node method still
induces considerable distortion, there are a number
of quite advanced and difficult methods for filling
the holes, such as Delaunay triangulation (Lawson,
1977).

(a) (b) (c)

Fig. 8 Flattening of a multi-boundary mesh for the
Pig model: (a) original model; (b) the first approach
(without filled holes); (c) the second approach (with
filled holes)

4.6 Stretch operator

To reduce the area and stretch distortions for
high-curvature models, the stretch operator (Sander
et al., 2001; Yoshizawa et al., 2004) is employed
to improve our scheme (Eq. (6)). In addition, it
can make ARAP++ reduce flipping and overlapping
during parameterization.

As shown in Fig. 2, the Jacobian matrix
J(i,j,j+1) between �pipjpj+1 and �qiqjqj+1 can be
obtained according to Eq. (4). The singular values
of J(i,j,j+1) are σ1 and σ2. The stretch operator of
xi is defined as

μi =

√√√√
∑

j∈N(i) area(xi,xj,xj+1) · σ2
(i,j,j+1)∑

j∈N(i) area(xi,xj,xj+1)
,

where σ(i,j,j+1) =
√
(σ2

1 + σ2
2)/2.

In essence, the stretch operator can change con-
vex combination weights proportionally to the area
of the 1-ring patches. We can improve Eq. (6) by
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employing the following formula:

∑

j∈N(i)

(μi)
θωi,j(qi − qj)

=
∑

j∈N(i)

ωi,j

2

(
L(i,j,j+1)+ L(i,j,j−1)

)
(pi − pj).

(7)

To achieve the valid results, Eq. (7) requires only
one step of iteration in computation. If the number
of iterations increases, there will be overlapping in
the final results. To control stretch distortion, the
exponent θ should be adjusted according to different
models. Fig. 9 shows the results of parameterization
with different θ, where ωi,j represents the mean-value
weight, and the singular values of L are δ1 = δ2 =

(σ1 + σ2)/2.

5 Simulations and comparisons

All the experiments were tested under MAT-
LAB on a Pentium� Dual-Core, 2.5 GHz CPU com-
puter with 4 GB RAM. To confirm the effectiveness
of our method, we carried out simulations on several
typical models.

5.1 Comparison of five classic weights

In this subsection, we compare the flattening
results for five different types of weights (ωi,j in
Eq. (6)), namely uniform, shape-preserving, mean-
value, cotan, and intrinsic. The singular values of the
fitting matrixL are δ1 = δ2 = 1. As shown in Fig. 10,
two models (Balls, Nefertiti) have been tested. For
comparison, the final results are displayed for the
same initial value and three iterations. Table 1
illustrates the angle and area distortions correspond-
ing to the five classic types of weights, showing that

Table 1 Comparison of distortion measures of five
classic types of weights on two standard test models

Method
Ballsa Nefertitib

Angle Area Angle Area
distortion distortion distortion distortion

Uniform 0.195 0.233 0.157 0.213
Shape- 0.180 0.201 0.125 0.173
preserving

Mean-value 0.117 0.187 0.116 0.167
Cotan 0.124 0.184 0.118 0.158
Intrinsic 0.177 0.211 0.129 0.195
a Number of vertices: 547, number of faces: 1032; b Number
of vertices: 661, number of faces: 1252

(a) (b) (c) (d)

Fig. 9 The 3D mesh (a) and the stretch operator for θ = 0 (b), θ = 1 (c), and θ = 1.6 (d) for the Bump model

(a) (b) (c) (d) (e) (f)

Fig. 10 Original models (a) and application results of ARAP++ for the uniform (b), shape-preserving (c),
mean-value (d), cotan (e), and intrinsic (f) weights. The first line: Balls model; the second line: Nefertiti
model
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the mean-value weight and cotan weight perform
better than most of the others in angle distortion.
Moreover, the area distortion of the mean-value and
cotan weights are even smaller than others. How-
ever, the cotan weight produces instability, and also
negative values in some cases. In summary, we can
ascertain that the mean-value weight proves the best
choice in the following simulations.

5.2 Comparison of ARAP and ARAP++

In this subsection, ARAP++ is chiefly inspired
by ARAP parameterization (Liu et al., 2008). We
improve the local phase which is based on discrete
exponential maps of the 1-ring patches instead of
flattening of individual triangles, as in the origi-
nal ARAP method. We compare ARAP++ with
ARAP in three iterations, where ωi,j represents the
mean-value weight, and the singular values of L are
δ1 = δ2 = 1. Two models (Gargoyle, Triceratops)
have been tested via two methods. As shown in

Fig. 11, we compare the parameterizations and tex-
ture mappings between ARAP and ARAP++. Ta-
ble 2 illustrates the angle distortion, area distortion,
and running time of two methods during iterations
1–3. The two methods render the same level in angle
distortion, and ARAP++ slightly performs better
than ARAP in area distortion. However, ARAP++
has a higher computational complexity, so it is more
time-consuming compared with ARAP.

In Fig. 12, the ARAP method is shown to suffer

(a) (b)

Fig. 12 Parameterization of the high-curvature Man-
nequin model: (a) a detailed overlap under ARAP;
(b) a valid parameterization result under ARAP++

Fig. 11 Parameterizations and textures of ARAP (the first and third lines) and ARAP++ (the second and
fourth lines)
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from overlapping when dealing with high-curvature
models. In contrast, ARAP++ can obtain valid
flattening results by choosing an appropriate expo-
nent value (θ=−0.2) provided by Eq. (7). Therefore,
ARAP++ outperforms ARAP in terms of control-
ling stretch distortion.

5.3 Comparison with several state-of-the-art
methods

In this subsection, we carry out three simula-
tions to compare ARAP++ with several state-of-
the-art parameterization methods, namely LSCM,
LABF, and BD-ARAP (conformal distortionC = 2).

In the first simulation, ARAP++ employs
Eq. (6), using three iterations, where ωi,j represents
the mean-value weight, and the singular values of
L are δ1 = δ2 = 1. As shown in Fig. 13, the

single-boundary models (Hand, Camel) and multi-
boundary models (Kitten, Elephant) are cut along
the red line. We compare the parameterizations
and textures rendered by these methods. Table 3
illustrates the angle distortion, area distortion, and
running time of the four methods. It reveals that
ARAP++ produces a slightly larger angle distortion
than the other three methods, but it renders the best
result in area distortion. In other words, ARAP++
provides a good trade-off between the overall an-
gle and area distortions, which leads to good results
in texture mapping. Regarding the comparison of
running time, ARAP++ is shown to be faster than
LABF and BD-ARAP. However, due to the necessity
of several iterations in the computation of ARAP++,
it is slower than LSCM.

In the second simulation, we compare the

(a) (b) (c) (d)

Fig. 13 Parameterizations and textures: (a) LSCM; (b) LABF; (c) BD-ARAP; (d) ARAP++. References to
color refer to the online version of this figure
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parameterizations and textures of high-curvature
models (Mushroom, Mannequin, Lion) which have
not been cut in advance. ARAP++ employs Eq. (7),
where ωi,j is chosen to be the mean-value weight,
and the singular values of L are δ1 = δ2 = 1. The
exponent θ can be adjusted to obtain the valid re-
sults. When performing the texture mapping of
high-curvature models, we should have a quadrilat-
eral remeshing of the original model according to
the parameterization. The details of this remesh-
ing method can be found in Hormann and Greiner
(2000b). In contrast, the remeshed models are given
by the corresponding sets of vertices, facets, and
topological connection. During the uniform subdi-
vision of the base mesh, we apply the same num-
ber of umbrella operators (Hormann and Greiner,
2000b) on the remeshed models. Table 4 illustrates
the angle, area, and strech (L2) distortions of the four
methods. ARAP++ shows better area and stretch
distortions than others. However, ARAP++ leads
to the highest angle distortion. As shown in Fig. 14,
the textured models produced by ARAP++ are more
uniform and aesthetical than others.

In the third simulation, a remeshing of the tri-
angulation to the original model is performed. The
details of the remeshing method can be found in Hor-
mann et al. (2001). Again, the remeshed models are

given by the corresponding sets of vertices, edges,
and facets as above. Table 5 illustrates the max-
imum and minimum facet areas of the models. It
reveals that the maximum facet area is smaller and
the minimum facet area is larger than those of other
methods. As shown in Fig. 15, the remeshing results
of ARAP++ outperform others in terms of facets’
uniformity.

6 Conclusions and outlook

Even though mesh parameterization has re-
ceived considerable attention in computer graphics
for more than two decades, there are still many com-
plicated problems that need to be resolved. In par-
ticular, there still does not exist definite solutions
regarding the optimal trade-off between angle and
area distortions during the parameterization pro-
cess. In this paper, we have presented a simple and
efficient approach, ARAP++, to flatten a 3D mesh
surface. This is an extension of the local/global
approach ARAP, which can obtain the flattened
results by stitching together the 1-ring patches.
In addition, to deal with high-curvature models,
the stretch operator is introduced, which can bet-
ter control area and stretch distortions, and has
attained better visualization performance in

Table 2 Comparison of distortion measures and time of ARAP and ARAP++

Method
Iteration Gargoylea Triceratopsb

index Angle distortion Area distortion Time (s) Angle distortion Area distortion Time (s)

ARAP
1 0.147 0.244 9.05 0.177 0.164 9.44
2 0.140 0.234 13.39 0.147 0.148 14.01
3 0.137 0.227 18.47 0.134 0.141 18.87

ARAP++
1 0.168 0.217 9.59 0.156 0.158 10.74
2 0.150 0.203 14.06 0.129 0.147 14.93
3 0.141 0.196 18.73 0.116 0.138 19.43

a Number of vertices: 2607, number of faces: 5000; b Number of vertices: 3015, number of faces: 5660

Table 3 Comparison of three parameterization methods and ARAP++ on four standard test meshes

Method
Handa Kittenb Camelc Elephantd

Angle Area Time Angle Area Time Angle Area Time Angle Area Time
distortion distortion (s) distortion distortion (s) distortion distortion (s) distortion distortion (s)

LSCM 0.009 0.991 8.74 0.044 0.416 3.79 0.099 0.731 3.59 0.063 0.699 12.67
LABF 0.015 0.659 35.05 0.026 0.359 16.70 0.053 0.703 14.79 0.047 0.715 45.90

BD-ARAP 0.019 0.269 80.78 0.039 0.273 68.78 0.064 0.254 141.12 0.065 0.380 239.23
ARAP++ 0.065 0.107 15.80 0.102 0.161 10.14 0.137 0.227 10.05 0.166 0.276 25.25
a Number of vertices: 4911, number of faces: 9174; b Number of vertices: 3101, number of faces: 6000; c Number of vertices:
3101, number of faces: 5860; d Number of vertices: 5525, number of faces: 10 594
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(a) (b) (c) (d)

Fig. 14 Parameterizations and textures of high-curvature models: (a) LSCM; (b) LABF; (c) BD-ARAP;
(d) ARAP++

(a) (b) (c) (d) (e)

Fig. 15 Surface remeshing: (a) original mesh; (b) LSCM; (c) LABF; (d) BD-ARAP; (e) ARAP++
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Table 4 Comparison of three parameterization methods and ARAP++ for high-curvature models

Method
Mushrooma Mannequinb Lionc

Angle Area Stretch Angle Area Stretch Angle Area Stretch
distortion distortion distortion distortion distortion distortion distortion distortion distortion

LSCM 0.026 1.034 2.604 0.027 1.436 7.436 0.071 1.241 18.806
LABF 0.027 1.033 2.601 0.028 1.435 7.438 0.073 1.246 11.131

BD-ARAP 0.028 1.031 2.565 0.124 1.417 5.719 0.166 1.059 3.282
ARAP++ 0.154 0.807 1.535 0.322 0.887 1.654 0.285 0.866 2.883
a Number of vertices: 2337, number of faces: 4608; b Number of vertices: 6743, number of faces: 13 424; c Number of vertices:
7218, number of faces: 14 371

Table 5 Minimum and maximum facet areas of the remeshed models for three standard test meshes

Method
Mushrooma Mannequinb Lionc

Minimum Maximum Minimum Maximum Minimum Maximum

LSCM 2.746×10−4 2.661×10−3 1.345×10−4 2.343×10−3 3.928×10−5 1.807×10−3

LABF 2.028×10−4 2.421×10−3 1.345×10−4 2.347×10−3 3.576×10−5 1.866×10−3

BD-ARAP 3.131×10−4 2.654×10−3 1.536×10−4 2.048×10−3 4.159×10−5 0.892×10−3

ARAP++ 4.229×10−4 1.911×10−3 2.074×10−4 1.229×10−3 7.068×10−5 0.635×10−3

a Number of vertices: 3681, number of faces: 7168; b Number of vertices: 3169, number of faces: 6144; c Number of vertices:
12 481, number of faces: 24 576

applications, such as texture mapping and surface
remeshing.

Our future work will focus on extending the
present method to mesh deformation and spherical
parameterization, which will undoubtedly shed some
new light on the improvement of computer graphics
technology. Another natural direction would be to
extend our results to larger patches (not just 1-rings),
such as those produced by the flattening algorithm
introduced in Saucan et al. (2008).
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Appendix: Authalic fitting matrix

Let δ1 = δ and δ2 = 1/δ. The target function E(δ)

can be expressed as follows:

E(δ) = (σ1 − δ)2 + (σ2 − 1/δ)2.

To achieve the minimum E(δ), we compute the
derivative of E(δ) with respect to δ, and arrive at

∂E(δ)

∂δ
= δ4 − σ1δ

3 + σ2δ − 1 = 0.

This is a nonlinear equation, and one of its real
roots is the intersection point of the two curves y1 and

y2 in Fig. A1: {
y1 = δ4 − σ1δ

3,

y2 = 1− σ2δ,

where σ1 > 0, σ2 > 0.
The interval of δ is [σ1, 1/σ2] or [1/σ2, σ1]. Then

a numerical solution of δ can be obtained using the di-
chotomy method.

y

δO σ1 1/σ2

y1=δ4−σ1δ3
y2=1−σ2δ

Fig. A1 Intersection of the two curves y1 and y2
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