Skip to main content
Log in

Oral administration of Lactobacillus rhamnosus GG to newborn piglets augments gut barrier function in pre-weaning piglets

口服鼠李糖乳杆菌 GG 影响哺乳仔猪肠道屏障功能的研究

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

To understand the effects of Lactobacillus rhamnosus GG (ATCC 53103) on intestinal barrier function in pre-weaning piglets under normal conditions, twenty-four newborn littermate piglets were randomly divided into two groups. Piglets in the control group were orally administered with 2 mL 0.1 g/mL sterilized skim milk while the treatment group was administered the same volume of sterilized skim milk with the addition of viable L. rhamnosus at the 1st, 3rd, and 5th days after birth. The feeding trial was conducted for 25 d. Results showed that piglets in the L. rhamnosus group exhibited increased weaning weight and average daily weight gain, whereas diarrhea incidence was decreased. The bacterial abundance and composition of cecal contents, especially Firmicutes, Bacteroidetes, and Fusobacteria, were altered by probiotic treatment. In addition, L. rhamnosus increased the jejunal permeability and promoted the immunologic barrier through regulating antimicrobial peptides, cytokines, and chemokines via Toll-like receptors. Our findings indicate that oral administration of L. rhamnosus GG to newborn piglets is beneficial for intestinal health of pre-weaning piglets by improving the biological, physical, and immunologic barriers of intestinal mucosa.

概 要

目 的

探究新生仔猪口服鼠李糖乳杆菌 GG 对肠道屏障功能的影响。

创新点

新生仔猪早期口服鼠李糖乳杆菌 GG 可明显改善其断奶前肠道菌群结构及免疫屏障功能。

方 法

二十四头新生仔猪分为对照组和实验组: 对照组仔猪在出生后第 1、 3、 5 天口服 2 mL 0.1 g/mL 的脱脂牛奶; 而实验组仔猪口服等体积的含有活鼠李糖乳杆菌 GG 的脱脂牛奶。 饲喂 25 天后, 收集仔猪血清、 肠道粘膜和盲肠内容物等样品。 通过分析肠道菌群、 紧密连接蛋白和细胞因子等指标, 评价鼠李糖乳杆菌对肠道屏障功能的影响。

结 论

在正常生理条件下, 新生仔猪口服鼠李糖乳杆菌 GG 可明显改变肠道菌群结构。 此外, 鼠李糖乳杆菌 GG 还可增加仔猪肠道的通透性, 并通过调控抗菌肽、 细胞因子和趋化因子的分泌以改善肠道的免疫屏障功能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen-Vercoe E, Strauss J, Chadee K, 2011. Fusobacterium nucleatum: an emerging gut pathogen? Gut Microbes, 2(5):294–298. https://doi.org/10.4161/gmic.2.5.18603

    Article  PubMed  Google Scholar 

  • Angelakis E, Raoult D, 2010. The increase of Lactobacillus species in the gut flora of newborn broiler chicks and ducks is associated with weight gain. PLoS ONE, 5(5): e10463. https://doi.org/10.1371/journal.pone.0010463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayala L, Bocourt R, Castro M, et al., 2015. Effect of the probiotic additive Bacillus subtilis and their endospores on milk production and immune response of lactating sows. Cuban J Agric Sci, 49(1):71–74.

    Google Scholar 

  • Balcázar JL, de Blas I, Ruiz-Zarzuela I, et al., 2007. Changes in intestinal microbiota and humoral immune response following probiotic administration in brown trout (Salmo trutta). Br J Nutr, 97(3):522–527. https://doi.org/10.1017/S0007114507432986

    Article  CAS  PubMed  Google Scholar 

  • Bauer E, Williams BA, Smidt H, et al., 2006. Influence of the gastrointestinal microbiota on development of the immune system in young animals. Curr Issues Intest Microbiol, 7(2):35–51.

    CAS  PubMed  Google Scholar 

  • Bocourt R, Savon L, Diaz J, et al., 2004a. Effect of the probiotic activity of Lactobacillus rhamnosus on productive and health indicators of piglets. Cuban J Agric Sci, 38(1): 75–79.

    Google Scholar 

  • Bocourt R, Savon L, Diaz J, 2004b. Effect of the probiotic activity of Lactobacillus rhamnosus on physiological indicators of suckling pigs. Cuban J Agric Sci, 38(4): 403–408.

    Google Scholar 

  • Brundel BJJM, van Gelder IC, Henning RH et al., 2001. Alterations in potassium channel gene expression in atria of patients with persistent and paroxysmal atrial fibrillation: differential regulation of protein and mRNA levels for K+ channels. J Am Coll Cardiol, 37(3):926–932. https://doi.org/10.1016/S0735-1097(00)01195-5

    Article  CAS  PubMed  Google Scholar 

  • Callewaert L, Michiels CW, 2010. Lysozymes in the animal kingdom. J Biosci, 35(1):127–160. https://doi.org/10.1007/s12038-010-0015-5

    Article  CAS  PubMed  Google Scholar 

  • Cammarota M, de Rosa M, Stellavato A, et al., 2009. In vitro evaluation of Lactobacillus plantarum DSMZ 12028 as a probiotic: emphasis on innate immunity. Int J Food Microbiol, 135(2):90–98. https://doi.org/10.1016/j.ijfoodmicro.2009.08.022

    Article  CAS  PubMed  Google Scholar 

  • Casserly C, Erijman L, 2003. Molecular monitoring of microbial diversity in an UASB reactor. Int Biodeterior Biodegrad, 52(1):7–12. https://doi.org/10.1016/S0964-8305(02)00094-X

    Article  CAS  Google Scholar 

  • Chen RC, Xu LM, Du SJ, et al., 2016. Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances Treg and TH17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding. Toxicol Lett, 241:103–110. https://doi.org/10.1016/j.toxlet.2015.11.019

    Article  CAS  PubMed  Google Scholar 

  • Cushing SD, Berliner JA, Valente AJ, et al., 1990. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA, 87(13): 5134–5138. https://doi.org/10.1073/pnas.87.13.5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng J, Li YF, Zhang JH, et al., 2013. Co-administration of Bacillus subtilis RJGP16 and Lactobacillus salivarius B1 strongly enhances the intestinal mucosal immunity of piglets. Res Vet Sci, 94(1):62–68. https://doi.org/10.1016/j.rvsc.2012.07.025

    Article  CAS  PubMed  Google Scholar 

  • Deshmane SL, Kremlev S, Amini S, et al., 2009. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interf Cytok Res, 29(6):313–326. https://doi.org/10.1089/jir.2008.0027

    Article  CAS  Google Scholar 

  • Dogi CA, Weill F, Perdigón G, 2010. Immune response of non-pathogenic Gram(+) and Gram(-) bacteria in inductive sites of the intestinal mucosa: study of the pathway of signaling involved. Immunobiology, 215(1):60–69. https://doi.org/10.1016/j.imbio.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  • Duerkop BA, Vaishnava S, Hooper LV, 2009. Immune responses to the microbiota at the intestinal mucosal surface. Immunity, 31(3):368–376. https://doi.org/10.1016/j.immuni.2009.08.009

    Article  CAS  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, et al., 2005. Diversity of the human intestinal microbial flora. Science, 308(5728): 1635–1638. https://doi.org/10.1126/science.1110591

    Article  PubMed  PubMed Central  Google Scholar 

  • Flint HJ, Scott KP, Louis P, et al., 2012. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol, 9(10):577–589. https://doi.org/10.1038/nrgastro.2012.156

    Article  CAS  PubMed  Google Scholar 

  • Galdeano CM, Perdigón G, 2006. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clin Vaccine Immunol, 13(2):219–226. https://doi.org/10.1128/CVI.13.2.219-226.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gareau MG, Sherman PM, Walker WA, 2010. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol, 7(9):503–514. https://doi.org/10.1038/nrgastro.2010.117

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaskins HR, Croix JA, Nakamura N, et al., 2008. Impact of the intestinal microbiota on the development of mucosal defense. Clin Infect Dis, 46(S2):S80–S86. https://doi.org/10.1086/523336

    Article  PubMed  Google Scholar 

  • Gmür R, Munson MA, Wade WG, 2006. Genotypic and phenotypic characterization of Fusobacteria from Chinese and European patients with inflammatory periodontal diseases. Syst Appl Microbiol, 29(2):120–130. https://doi.org/10.1016/j.syapm.2005.07.011

    Article  PubMed  Google Scholar 

  • Goede D, Morrison R, 2015. Production impact study update. Swine Health Monitoring Project 08/01/2014. University of Minnesota. http://www.cvm.umn.edu/sdec/SwineDiseases/ pedv/SHMP_14/index.htm [Accessed on July 5, 2015]

    Google Scholar 

  • Guarino A, Lo Vecchio A, Canani RB, 2009. Probiotics as prevention and treatment for diarrhea. Curr Opin Gastroenterol, 25(1):18–23. https://doi.org/10.1097/MOG.0b013e32831b4455

    Article  PubMed  Google Scholar 

  • Guarner F, Malagelada JR, 2003. Gut flora in health and disease. Lancet, 361(9356):512–519. https://doi.org/10.1016/S0140-6736(03)12489-0

    Article  PubMed  Google Scholar 

  • Guo Y, Xiao P, Lei S, et al., 2008. How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim Biophys Sin, 40(5):426–436. https://doi.org/10.1111/j.1745-7270.2008.00418.x

    Article  CAS  PubMed  Google Scholar 

  • Haakensen M, Dobson CM, Deneer H, et al., 2008. Real-time PCR detection of bacteria belonging to the Firmicutes Phylum. Int J Food Microbiol, 125(3):236–241. https://doi.org/10.1016/j.ijfoodmicro.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  • Han D, Walsh M, Choi Y, et al., 2015. TRAF6 expression in dendritic cells is essential for tolerance to dietary antigens (MUC8P.723). J Immunol, 194(1S):204.3.

    Google Scholar 

  • Hanke D, Jenckel M, Petrov A, et al., 2015. Comparison of porcine epidemic diarrhea viruses from Germany and the United States, 2014. Emerg Infect Dis, 21(3):493–496. https://doi.org/10.3201/eid2103.141165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayakawa T, Masuda T, Kurosawa D, et al., 2016. Dietary administration of probiotics to sows and/or their neonates improves the reproductive performance, incidence of post-weaning diarrhea and histopathological parameters in the intestine of weaned piglets. Anim Sci J, 87(12): 1501–1510. https://doi.org/10.1111/asj.12565

    Article  CAS  PubMed  Google Scholar 

  • Hermann-Bank ML, Skovgaard K, Stockmarr A, et al., 2015. Characterization of the bacterial gut microbiota of piglets suffering from new neonatal porcine diarrhoea. BMC Vet Res, 11:139. https://doi.org/10.1186/S12917-015-0419-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper LV, 2004. Bacterial contributions to mammalian gut development. Trends Microbiol, 12(3):129–134. https://doi.org/10.1016/J.Tim.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  • Hou CL, Liu H, Zhang J, et al., 2015. Intestinal microbiota succession and immunomodulatory consequences after introduction of Lactobacillus reuteri I5007 in neonatal piglets. PLoS ONE, 10(3):e0119505. https://doi.org/10.1371/journal.pone.0119505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagnoff MF, Eckmann L, 1997. Epithelial cells as sensors for microbial infection. J Clin Invest, 100(1):6–10. https://doi.org/10.1172/Jci119522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly JR, Kennedy PJ, Cryan JF, et al., 2015. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci, 9:392. https://doi.org/10.3389/Fncel.2015.00392

    PubMed  PubMed Central  Google Scholar 

  • Kemper N, 2008. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic, 8(1):1–13. https://doi.org/10.1016/j.ecolind.2007.06.002

    Article  CAS  Google Scholar 

  • Klinge L, Vester U, Schaper J, et al., 2002. Severe Fusobacteria infections (Lemierre syndrome) in two boys. Eur J Pediatr, 161(11):616–618. https://doi.org/10.1007/s00431-002-1026-5

    Article  PubMed  Google Scholar 

  • Koenig JE, Spor A, Scalfone N, et al., 2011. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA, 108(S1):4578–4585. https://doi.org/10.1073/pnas.1000081107

    Article  PubMed  Google Scholar 

  • Lan JG, Cruickshank SM, Singh JC, et al., 2005. Different cytokine response of primary colonic epithelial cells to commensal bacteria. World J Gastroenterol, 11(22):3375–3384. https://doi.org/10.3748/wjg.v11.i22.3375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei K, Li YL, Yu DY, et al., 2013. Influence of dietary inclusion of Bacillus licheniformis on laying performance, egg quality, antioxidant enzyme activities, and intestinal barrier function of laying hens. Poult Sci, 92(9):2389–2395. https://doi.org/10.3382/ps.2012-02686

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Hamady M, Lozupone C, et al., 2008. Evolution of mammals and their gut microbes. Science, 320(5883): 1647–1651. https://doi.org/10.1126/science.1155725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WF, Huang Y, Li YL, et al., 2012. Effect of oral administration of Enterococcus faecium Ef1 on innate immunity of sucking piglets. Pak Vet J, 33(1):9–13.

    Google Scholar 

  • Liu FN, Li GH, Wen K, et al., 2013. Lactobacillus rhamnosus GG on rotavirus-induced injury of ileal epithelium in gnotobiotic pigs. J Pediatr Gastroenterol Nutr, 57(6): 750–758. https://doi.org/10.1097/MPG.0b013e3182a356e1

    Article  PubMed  Google Scholar 

  • Lozupone CA, Stombaugh JI, Gordon JI, et al., 2012. Diversity, stability and resilience of the human gut microbiota. Nature, 489(7415):220–230. https://doi.org/10.1038/nature11550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackie RI, Sghir A, Gaskins HR, 1999. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr, 69(5):1035S-1045S. https://doi.org/10.1093/ajcn/69.5.1035s

    Article  Google Scholar 

  • Mao XB, Gu CS, Hu HY, et al., 2016. Dietary Lactobacillus rhamnosus GG supplementation improves the mucosal barrier function in the intestine of weaned piglets challenged by porcine rotavirus. PLoS ONE, 11(1):e0146312. https://doi.org/10.1371/journal.pone.0146312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazmanian SK, Liu CH, Tzianabos AO, et al., 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 122(1): 107–118. https://doi.org/10.1016/j.cell.2005.05.007

    Article  CAS  PubMed  Google Scholar 

  • McCracken VJ, Lorenz RG, 2001. The gastrointestinal ecosystem: a precarious alliance among epithelium, immunity and microbiota. Cell Microbiol, 3(1):1–11. https://doi.org/10.1046/J.1462-5822.2001.00090.X

    Article  CAS  PubMed  Google Scholar 

  • Meijerink M, van Hemert S, Taverne N, et al., 2010. Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization. PLoS ONE, 5(5): e10632. https://doi.org/10.1371/journal.pone.0010632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meijerink M, Wells JM, Taverne N, et al., 2012. Immunomodulatory effects of potential probiotics in a mouse peanut sensitization model. FEMS Immunol Med Microbiol, 65(3):488–496. https://doi.org/10.1111/j.1574-695X.2012.00981.x

    Article  CAS  PubMed  Google Scholar 

  • Meng Y, Zhang Y, Liu M, et al., 2016. Evaluating intestinal permeability by measuring plasma endotoxin and diamine oxidase in children with acute lymphoblastic leukemia treated with high-dose methotrexate. Anticancer Agents Med Chem, 16(3):387–392. https://doi.org/10.2174/1871520615666150812125955

    Article  CAS  PubMed  Google Scholar 

  • Mennigen R, Nolte K, Rijcken E, et al., 2009. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol, 296(5):G1140–G1149. https://doi.org/10.1152/ajpgi.90534.2008

    Article  CAS  PubMed  Google Scholar 

  • Nalle SC, Turner JR, 2015. Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease. Mucosal Immunol, 8(4):720–730. https://doi.org/10.1038/mi.2015.40

    Article  CAS  PubMed  Google Scholar 

  • National Research Council, 1998. Nutrient Requirements of Swine, 10th Ed. The National Academies Press, Washington, DC, USA. https://doi.org/10.17226/6016

  • Natividad JMM, Verdu EF, 2013. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol Res, 69(1):42–51. https://doi.org/10.1016/j.phrs.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  • Ngamwongsatit B, Tanomsridachchai W, Suthienkul O, et al., 2016. Multidrug resistance in Clostridium perfringens isolated from diarrheal neonatal piglets in Thailand. Anaerobe, 38:88–93. https://doi.org/10.1016/j.anaerobe.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  • Patil AK, Kumar S, Verma AK, et al., 2015. Probiotics as feed additives in weaned pigs: a review. Livest Res Int, 3: 31–39.

    Google Scholar 

  • Rajput IR, Li LY, Xin X, et al., 2013. Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens. Poult Sci, 92(4):956–965. https://doi.org/10.3382/ps.2012-02845

    Article  CAS  PubMed  Google Scholar 

  • Rakoff-Nahoum S, Medzhitov R, 2008. Innate immune recognition of the indigenous microbial flora. Mucosal Immunol, 1(1):S10–S14. https://doi.org/10.1038/mi.2008.49

    Article  CAS  PubMed  Google Scholar 

  • Rescigno M, 2011. The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol, 32(6):256–264. https://doi.org/10.1016/j.it.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  • Rumbo M, Anderle P, Didierlaurent A, et al., 2004. How the gut links innate and adaptive immunity. Ann N Y Acad Sci, 1029:16–21. https://doi.org/10.1196/annals.1309.003

    Article  CAS  PubMed  Google Scholar 

  • Salyers AA, 1984. Bacteroides of the human lower intestinal tract. Annu Rev Microbiol, 38:293–313. https://doi.org/10.1146/Annurev.Mi.38.100184.001453

    Article  CAS  PubMed  Google Scholar 

  • Shim SB, Verstegen MWA, Kim IH, et al., 2005. Effects of feeding antibiotic-free creep feed supplemented with oligofructose, probiotics or synbiotics to suckling piglets increases the preweaning weight gain and composition of intestinal microbiota. Arch Anim Nutr, 59(6):419–427. https://doi.org/10.1080/17450390500353234

    Article  CAS  PubMed  Google Scholar 

  • Standiford TJ, Kunkel SL, Phan SH, et al., 1991. Alveolar macrophage-derived cytokines induce monocyte chemoattractant protein-1 expression from human pulmonary type II-like epithelial cells. J Biol Chem, 266(15):9912–9918.

    CAS  PubMed  Google Scholar 

  • Stappenbeck TS, Hooper LV, Gordon JI, 2002. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA, 99(24):15451–15455. https://doi.org/10.1073/pnas.202604299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun RQ, Cai RJ, Chen YQ, et al., 2012. Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerg Infect Dis, 18(1):161–163. https://doi.org/10.3201/eid1801.111259

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun YJ, Cao HJ, Jin Q, et al., 2011. Effects of penehyclidine hydrochloride on rat intestinal barrier function during cardiopulmonary bypass. World J Gastroenterol, 17(16): 2137–2142. https://doi.org/10.3748/wjg.v17.i16.2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swank GM, Deitch EA, 1996. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J Surg, 20(4):411–417. https://doi.org/10.1007/s002689900065

    Article  CAS  PubMed  Google Scholar 

  • Tannock GW, 2001. Molecular assessment of intestinal microflora. Am J Clin Nutr, 73(2):410S-414S. https://doi.org/10.1093/ajcn/73.2.410s

    Article  Google Scholar 

  • Taras D, Vahjen W, Macha M, et al., 2006. Performance, diarrhea incidence, and occurrence of Escherichia coli virulence genes during long-term administration of a probiotic Enterococcus faecium strain to sows and piglets. J Anim Sci, 84(3):608–617. https://doi.org/10.2527/2006.843608x

    Article  CAS  PubMed  Google Scholar 

  • Theuns S, Conceição-Neto N, Christiaens I, et al., 2015. Complete genome sequence of a porcine epidemic diarrhea virus from a novel outbreak in Belgium, January 2015. Genome Announc, 3(3):e00506–15. https://doi.org/10.1128/genomeA.00506-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Toledo A, Gómez D, Cruz C, et al., 2012. Prevalence of virulence genes in Escherichia coli strains isolated from piglets in the suckling and weaning period in Mexico. J Med Microbiol, 61(1):148–156. https://doi.org/10.1099/jmm.0.031302-0

    Article  CAS  PubMed  Google Scholar 

  • Turner JR, 2009. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol, 9(11):799–809. https://doi.org/10.1038/nri2653

    Article  CAS  PubMed  Google Scholar 

  • Ukena SN, Westendorf AM, Hansen W, et al., 2005. The host response to the probiotic Escherichia coli strain Nissle 1917: specific up-regulation of the proinflammatory chemokine MCP-1. BMC Med Genet, 6:43. https://doi.org/10.1186/1471-2350-6-43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizoso Pinto MG, Gómez MR, Seifert S, et al., 2009. Lactobacilli stimulate the innate immune response and modulate the TLR expression of HT29 intestinal epithelial cells in vitro. Int J Food Microbiol, 133(1-2):86–93. https://doi.org/10.1016/j.ijfoodmicro.2009.05.013

    Article  CAS  PubMed  Google Scholar 

  • Wang JJ, Tang H, Zhang CH, et al., 2015. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J, 9(1):1–15. https://doi.org/10.1038/ismej.2014.99

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wu YP, Wang YB, 2017. Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production. Appl Microbiol Biotechnol, 101(7): 3015–3026. https://doi.org/10.1007/s00253-016-8032-4

    Article  CAS  PubMed  Google Scholar 

  • Wen K, Tin C, Wang HF, et al., 2014. Probiotic Lactobacillus rhamnosus GG enhanced Th1 cellular immunity but did not affect antibody responses in a human gut microbiota transplanted neonatal gnotobiotic pig model. PLoS ONE, 9(4):e94504. https://doi.org/10.1371/journal.pone.0094504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen K, Liu FN, Li GH, et al., 2015. Lactobacillus rhamnosus GG dosage affects the adjuvanticity and protection against rotavirus diarrhea in gnotobiotic pigs. J Pediatr Gastroenterol Nutr, 60(6):834–843. https://doi.org/10.1097/MPG.0000000000000694

    Article  PubMed  Google Scholar 

  • Wu SG, Rhee KJ, Albesiano E, et al., 2009. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med, 15(9): 1016–1022. https://doi.org/10.1038/nm.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeyner A, Boldt E, 2006. Effects of a probiotic Enterococcus faecium strain supplemented from birth to weaning on diarrhoea patterns and performance of piglets. J Anim Physiol Anim Nutr, 90(1-2):25–31. https://doi.org/10.1111/j.1439-0396.2005.00615.x

    Article  CAS  Google Scholar 

  • Zhang L, Xu YQ, Liu HY, et al., 2010. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea: effects on diarrhoea incidence, faecal microflora and immune responses. Vet Microbiol, 141(1-2):142–148. https://doi.org/10.1016/j.vetmic.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Eicher SD, Applegate TJ, 2015. Development of intestinal mucin 2, IgA, and polymeric Ig receptor expressions in broiler chickens and Pekin ducks. Poult Sci, 94(2):172–180. https://doi.org/10.3382/ps/peu064

    Article  CAS  PubMed  Google Scholar 

  • Zhang XP, Shu MA, Wang YB, et al., 2014. Effect of photosynthetic bacteria on water quality and microbiota in grass carp culture. World J Microbiol Biotechnol, 30(9): 2523–2531. https://doi.org/10.1007/s11274-014-1677-1

    Article  CAS  PubMed  Google Scholar 

  • Zhu QC, Jin ZM, Wu W, et al., 2014. Analysis of the intestinal lumen microbiota in an animal model of colorectal cancer. PLoS ONE, 9(3):e90849. https://doi.org/10.1371/journal.pone.0090849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-ping Zhang or Wei-fen Li.

Additional information

Project supported by the National Natural Science Foundation of China (No. 31472128), the Special Research Fund for the PhD Program of University, China (No. 20110101110101), and the Key Project of Science and Technology of Zhejiang Province, China (No. 2006C12086)

Electronic supplementary material

11585_2019_331_MOESM1_ESM.pdf

Oral administration of Lactobacillus rhamnosus GG to newborn piglets augments gut barrier function in pre-weaning piglets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Gong, L., Wu, Yp. et al. Oral administration of Lactobacillus rhamnosus GG to newborn piglets augments gut barrier function in pre-weaning piglets. J. Zhejiang Univ. Sci. B 20, 180–192 (2019). https://doi.org/10.1631/jzus.B1800022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1800022

Key words

CLC number

关键词

Navigation