Skip to main content
Log in

Modeling and control of a small solar fuel cell hybrid energy system

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

This paper describes a solar photovoltaic fuel cell (PVEC) hybrid generation system consisting of a photovoltaic (PV) generator, a proton exchange membrane fuel cell (PEMFC), an electrolyser, a supercapacitor, a storage gas tank and power conditioning unit (PCU). The load is supplied from the PV generator with a fuel cell working in parallel. Excess PV energy when available is converted to hydrogen using an electrolyser for later use in the fuel cell. The individual mathematical model for each component is presented. Control strategy for the system is described. MATLAB/Simulink is used for the simulation of this highly nonlinear hybrid energy system. The simulation results are shown in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd El-Aal, A.E.M.M., Schmid, J., Bard, J., Caselitz, P., 2006. Modeling and optimizing the size of the power conditioning unit for photovoltaic systems. Journal of Solar Energy Engineering, Transactions of the ASME, 128(1):40–44. [doi:10.1115/1.2148978]

    Article  Google Scholar 

  • Amphlett, J.C., Baumert, R.M., Harris, T.J., Mann, R.F., Peppley, B.A., Roberge, P.R., 1995. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell I. Mechanistic model development. Journal of the Electrochemical Society, 142(1):1–8. [doi:10.1149/1.2043866]

    Article  Google Scholar 

  • Barthels, H., Brocke, W.A., Groehn, H.G., 1998. PHOEBUS-Julich: an autonomous energy supply system comprising photovoltaics, electrolytic hydrogen, fuel cell. International Journal of Hydrogen Energy, 23(4): 295–301. [doi:10.1016/S0360-3199(97)00055-4]

    Article  Google Scholar 

  • Burke, A., 2000. Ultracapacitors: Why, how, and where is the technology. Journal of Power Sources, 91(1):37–50. [doi:10.1016/S0378-7753(00)00485-7]

    Article  Google Scholar 

  • Green, M.A., 1981. Solar cell fill factors: general graph and empirical expressions. Solid-State Electronics, 24(8):788–789. [doi:10.1016/0038-1101(81)90062-9]

    Article  Google Scholar 

  • Hollmuller, P., Joubert, J., Lachal, B., Yvon, K., 2000. Evaluation of a 5 kWp photovoltaic hydrogen production and storage installation for a residential home in Switzerland. International Journal of Hydrogen Energy, 25(2):97–109. [doi:10.1016/S0360-3199(99)00015-4]

    Article  Google Scholar 

  • Hug, W., Bussmann, H., Brinner, A., 1993. Intermittent operation and operation modeling of an alkaline electrolyzer. International Journal of Hydrogen Energy, 18(12):973–977. [doi:10.1016/0360-3199(93)90078-O]

    Article  Google Scholar 

  • Lehman, P.A., Chamberlin, C.E., Pauletto, G., Rocheleau, M.A., 1997. Operating experience with a photovoltaic-hydrogen energy system. International Journal of Hydrogen Energy, 22(5):465–470. [doi:10.1016/S0360-3199(96)00127-9]

    Article  Google Scholar 

  • Mann, R.F., Amphlett, J.C., Hoop, M.A.I., Jensen, H.M., Peppley, V.A., Roberge, P.R., 2000. Development and application of a generalized steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources, 86(1–2):173–180. [doi:10.1016/S0378-7753(99)00484-X]

    Article  Google Scholar 

  • Ro, K., Rahman, S., 1998. Two-loop controller for maximizing performance of a grid-connected photovoltaic-fuel cell hybrid power plant. IEEE Transactions on Energy Conversion, 13(3):276–281. [doi:10.1109/60.707608]

    Article  Google Scholar 

  • Roger, J.A., Maguin, C., 1982. Photovoltaic solar panels simulation including dynamical thermal effects. Solar Energy, 29(3):245–256. [doi:10.1016/0038-092X(82)90210-9]

    Article  Google Scholar 

  • Ulleberg, O., 2003. Modeling of advanced alkaline electrolyzers: A system simulation approach. International Journal of Hydrogen Energy, 28(1):21–33. [doi:10.1016/S0360-3199(02)00033-2]

    Article  Google Scholar 

  • Vanhanen, J.P., Lund, P.D., Hagström, M.T., 1996. Feasibility study of a metal hydride hydrogen store for a self-sufficient solar hydrogen energy system. International Journal of Hydrogen Energy, 21(3):213–221. [doi:10.1016/0360-3199(95)00064-X]

    Article  Google Scholar 

  • Vosen, S.R., Keller, J.O., 1999. Hybrid energy storage systems for stand-alone electric power systems: Optimization of system performance and cost through control strategies. International Journal of Hydrogen Energy, 24(12):1139–1156. [doi:10.1016/S0630-3199(98)00175-X]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project (No. 2002AA517020) supported by the Hi-Tech Research and Development Program (863) of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Zhu, Xj. & Cao, Gy. Modeling and control of a small solar fuel cell hybrid energy system. J. Zhejiang Univ. - Sci. A 8, 734–740 (2007). https://doi.org/10.1631/jzus.2007.A0734

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.A0734

Key words

CLC number

Navigation