Skip to main content
Log in

Active fault-tolerant tracking control of a quadrotor with model uncertainties and actuator faults

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

This paper presents a reliable active fault-tolerant tracking control system (AFTTCS) for actuator faults in a quadrotor unmanned aerial vehicle (QUAV). The proposed AFTTCS is designed based on a well-known model reference adaptive control (MRAC) framework that guarantees the global asymptotic stability of a QUAV system. To mitigate the negative impacts of model uncertainties and enhance system robustness, a radial basis function neural network is incorporated into the MRAC scheme for adaptively identifying the model uncertainties online and modifying the reference model. Meanwhile, actuator dynamics are considered to avoid undesirable performance degradation. Furthermore, a fault detection and diagnosis estimator is constructed to diagnose lossof- control-effectiveness faults in actuators. Based on the fault information, a fault compensation term is added to the control law to compensate for the adverse effects of actuator faults. Simulation results show that the proposed AFTTCS enables the QUAV to track the desired reference commands in the absence/presence of actuator faults with satisfactory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Avram RC, Zhang XD, Muse J, 2018. Nonlinear adaptive fault-tolerant quadrotor altitude and attitude tracking with multiple actuator faults. Trans Contr Syst Technol, 26(2):701–707. https://doi.org/10.1109/TCST.2017.2670522

    Article  Google Scholar 

  • Chen FY, Zhang KK, Wang Z, et al., 2015. Trajectory tracking of a quadrotor with unknown parameters and its fault-tolerant control via sliding mode fault observer. Proc Inst Mech Eng Part I J Syst Contr Eng, 229(4):279–292. https://doi.org/10.1177/0959651814566040

    Google Scholar 

  • Chen FY, Jiang RQ, Zhang KK, et al., 2016. Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV. IEEE Trans Ind Electron, 63(8):5044–5056. https://doi.org/10.1109/TIE.2016.2552151

    Article  Google Scholar 

  • Cheng E, 2015. Aerial photography and videography using drones. In: Johnson K (Ed.), Aerial Photograph Techniques. Peachpit Press, San Francisco.

    Google Scholar 

  • Dydek ZT, Annaswamy AM, Lavretsky E, 2013. Adaptive control of quadrotor UAVs: a design trade study with flight evaluations. IEEE Trans Contr Syst Technol, 21(4):1400–1406. https://doi.org/10.1109/TCST.2012.2200104

    Article  Google Scholar 

  • Hao W, Xian B, 2017. Nonlinear adaptive fault-tolerant control for a quadrotor UAV based on immersion and invariance methodology. Nonl Dynam, 90(4):2813–2826. https://doi.org/10.1007/s11071-017-3842-1

    Article  MathSciNet  MATH  Google Scholar 

  • Ioannou PA, Sun J, 1996. Robust Adaptive Control. Prentice-Hall, Upper Saddle River, NJ, USA.

    MATH  Google Scholar 

  • Joshi SM, Patre P, Tao G, 2012. Adaptive control of systems with actuator failures using an adaptive reference model. J Guid Contr Dynam, 35(3):938–949. https://doi.org/10.2514/1.54332

    Article  Google Scholar 

  • Kayacan E, Maslim R, 2017. Type-2 fuzzy logic trajectory tracking control of quadrotor VTOL aircraft with elliptic membership functions. IEEE/ASME Trans Mech, 22(1):339–348. https://doi.org/10.1109/TMECH.2016.2614672

    Article  Google Scholar 

  • Liu ZX, Yuan C, Zhang YM, et al., 2016. A learningbased fault tolerant tracking control of an unmanned quadrotor helicopter. J Intell Rob Syst, 84(1-4):145–162. https://doi.org/10.1007/s10846-015-0293-0

    Article  Google Scholar 

  • Liu ZX, Yuan C, Yu X, et al., 2017. Retrofit fault-tolerant tracking control design of an unmanned quadrotor helicopter considering actuator dynamics. Int J Robust Nonl Contr, in press. https://doi.org/10.1002/rnc.3889

    Google Scholar 

  • Mallavalli S, Fekih A, 2018. A fault tolerant tracking control for a quadrotor UAV subject to simultaneous actuator faults and exogenous disturbances. Int J Contr, in press. https://doi.org/10.1080/00207179.2018.1484173

    Google Scholar 

  • Murray CC, Chu AG, 2015. The flying sidekick traveling salesman problem: optimization of drone-assisted parcel delivery. Transp Res Part C Emerg Technol, 54:86–109. https://doi.org/10.1016/j.trc.2015.03.005

    Article  Google Scholar 

  • Park J, Sandberg IW, 1991. Universal approximation using radial-basis-function networks. Neur Comput, 3(2):246–257. https://doi.org/10.1162/neco.1991.3.2.246

    Article  Google Scholar 

  • Ríos H, Falcòn R, González OA, et al., 2018. Continuous sliding-modes control strategies for quad-rotor robust tracking: real-time application. IEEE Trans Ind Electron, 66(2):1264–1272. https://doi.org/10.1109/TIE.2018.2831191

    Article  Google Scholar 

  • Tao G, Chen SH, Tang XD, et al., 2004. State feedback designs for state tracking. In: Tao G, Chen SH, Tang XD, et al. (Eds.), Adaptive Control of Systems with Actuator Failures. Springer, London, p.15–54. https://doi.org/10.1007/978-1-4471-3758-0_2

    Chapter  Google Scholar 

  • Wang B, Ghamry KA, Zhang YM, 2016. Trajectory tracking and attitude control of an unmanned quadrotor helicopter considering actuator dynamics. 35th Chinese Control Conf, p.10795–10800. https://doi.org/10.1109/ChiCC.2016.7555068

    Google Scholar 

  • Wu EN, Zhang YM, Zhou KM, 2000. Detection, estimation, and accommodation of loss of control effectiveness. Int J Adapt Contr Signal Process, 14(7):775–795. https://doi.org/10.1002/1099-1115(200011)14:7<775:: AID-ACS621>3.0.CO;2-4

    Article  MATH  Google Scholar 

  • Xiong JJ, Zhang GB, 2017. Global fast dynamic terminal sliding mode control for a quadrotor UAV. ISA Trans, 66:233–240. https://doi.org/10.1016/j.isatra.2016.09.019

    Article  Google Scholar 

  • Xu R, Ozguner U, 2006. Sliding mode control of a quadrotor helicopter. 45th IEEE Conf on Decision and Control, p.4957–4962. https://doi.org/10.1109/CDC.2006.377588

    Google Scholar 

  • Xu ZW, Nian XH, Wang HB, et al., 2017. Robust guaranteed cost tracking control of quadrotor UAV with uncertainties. ISA Trans, 69:157–165. https://doi.org/10.1016/j.isatra.2017.03.023

    Article  Google Scholar 

  • Yacef F, Bouhali O, Hamerlain M, et al., 2016. Observerbased adaptive fuzzy backstepping tracking control of quadrotor unmanned aerial vehicle powered by Li-ion batter. J Intell Robot Syst, 84(1-4):179–197. https://doi.org/10.1007/s10846-016-0345-0

    Article  Google Scholar 

  • Yuan C, Liu ZX, Zhang YM, 2015. UAV-based forest fire detection and tracking using image processing technique. Int Conf on Unmanned Aircraft Systems p.639–643. https://doi.org/10.1109/ICUAS.2017.7991306

    Google Scholar 

  • Zhang CH, Kovacs JM, 2012. The application of small unmanned aerial systems for precision agriculture: a review. Prec Agric, 13(6):693–712. https://doi.org/10.1007/s11119-012-9274-5

    Article  Google Scholar 

  • Zhang YM, Jiang J, 2002. Active fault-tolerant control system against partial actuator failures. IEE Proc Contr Theory Appl, 149(1):95–104. https://doi.org/10.1049/ip-cta:20020110

    Article  Google Scholar 

  • Zhang YM, Jiang J, 2008. Bibliographical review on reconfigurable fault-tolerant control systems. Ann Rev Contr, 32(2):229–252. https://doi.org/10.1016/j.arcontrol.2008.03.008

    Article  Google Scholar 

  • Zhong YJ, Zhang W, Zhang YM, 2018a. Active faulttolerant tracking control of a quadrotor UAV. Int Conf on Sensing, Diagnostics, Prognostics, and Control.

    Google Scholar 

  • Zhong YJ, Zhang YM, Zhang W, et al., 2018b. Robust actuator fault detection and diagnosis for a quadrotor UAV with external disturbances. IEEE Access, 6:48169–48180. https://doi.org/10.1109/ACCESS.2018.2867574

    Article  Google Scholar 

  • Zou Y, Zhu B, 2017. Adaptive trajectory tracking controller for quadrotor systems subject to parametric uncertainties. J Frankl Inst, 354(15):6724–6746. https://doi.org/10.1016/j.jfranklin.2017.08.027

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-min Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61833013, 61573282, 61473227, and 11472222) and the Natural Sciences and Engineering Research Council of Canada

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Yj., Liu, Zx., Zhang, Ym. et al. Active fault-tolerant tracking control of a quadrotor with model uncertainties and actuator faults. Frontiers Inf Technol Electronic Eng 20, 95–106 (2019). https://doi.org/10.1631/FITEE.1800570

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1800570

Key words

CLC number

Navigation