Skip to main content
Log in

Synthesis of Vertically Aligned Multi-Walled Carbon Nanotubes on Copper Substrates for Applications as Thermal Interface Materials

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Vertically aligned carbon nanotubes (VACNTs) grown on bulk copper substrate are of great importance for CNT real-life applications as thermal interface materials in microelectronic packaging. However, their reproducible synthesis has been a great challenge so far. In this study, by introducing a well-controlled conformal Al2O3 support layer on the bulk copper substrate by atomic layer deposition (ALD) prior to the deposition of the iron catalyst layer, we reproducibly synthesize VACNTs of good alignment and high quality on the copper substrate, using a conventional thermal chemical vapor deposition process. The alignment and the quality are characterized by scanning electronic microscopy and Raman spectroscopy, respectively. The roles of the conformal Al2O3 support layer are discussed. A kinetics-controlled growth mechanism is shown. This progress provides a viable VACNT commercial application for thermal management, on the basis of which, we show a recent progress on a state-of-art Si/VACNT/Cu assembling process, named “chemical anchoring”. The high quality of the VACNTs on the copper growth substrate and the covalent bonding formed between the VACNTs and the silicon mating substrate greatly reduces the thermal resistance of the VACNT-mediated thermal interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Graham, G. S. Duesberg, R. V. Seidel, M. Liebau, E. Unger, W. Pamler, F. Kreupl, and W. Hoenlein, “Carbon nanotubes for microelectronics?,” Small, vol. 1, pp. 382–390, Apr 2005.

    Article  CAS  Google Scholar 

  2. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, “Electrical conductivity of individual carbon nanotubes,” Nature, vol. 382, pp. 54–56, Jul 1996.

    Article  CAS  Google Scholar 

  3. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon nanotubes - the route toward applications,” Science, vol. 297, pp. 787–792, Aug 2002.

    Article  CAS  Google Scholar 

  4. E. Pop, D. Mann, Q. Wang, K. Goodson, and H. J. Dai, “Thermal conductance of an individual single-wall carbon nanotube above room temperature,” Nano Letters, vol. 6, pp. 96–100, Jan 2006.

    Article  CAS  Google Scholar 

  5. M. A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, and K. E. Goodson, “Thermal properties of metal-coated vertically aligned single-wall nanotube arrays,” Journal of Heat Transfer-Transactions of the Asme, vol. 130, May 2008.

  6. J. Xu and T. S. Fisher, “Enhancement of thermal interface materials with carbon nanotube arrays,” International Journal of Heat and Mass Transfer, vol. 49, pp. 1658–1666, May 2006.

    Article  CAS  Google Scholar 

  7. T. Tong, Y. Zhao, L. Delzeit, A. Kashani, M. Meyyappan, and A. Majumdar, “Dense, vertically aligned multiwalled carbon nanotube arrays as thermal interface materials,” Ieee Transactions on Components and Packaging Technologies, vol. 30, pp. 92–100, Mar 2007.

    Article  CAS  Google Scholar 

  8. K. Kordas, G. Toth, P. Moilanen, M. Kumpumaki, J. Vahakangas, A. Uusimaki, R. Vajtai, and P. M. Ajayan, “Chip cooling with integrated carbon nanotube microfin architectures,” Applied Physics Letters, vol. 90, Mar 2007.

  9. B. A. Cola, J. Xu, C. R. Cheng, X. F. Xu, T. S. Fisher, and H. P. Hu, “Photoacoustic characterization of carbon nanotube array thermal interfaces,” Journal of Applied Physics, vol. 101, Mar 2007.

  10. H. Huang, C. H. Liu, Y. Wu, and S. S. Fan, “Aligned carbon nanotube composite films for thermal management,” Advanced Materials, vol. 17, pp. 1652–1653, Jul 2005.

    Article  CAS  Google Scholar 

  11. S. Sihn, S. Ganguli, A. K. Roy, L. T. Qu, and L. M. Dai, “Enhancement of through-thickness thermal conductivity in adhesively bonded joints using aligned carbon nanotubes,” Composites Science and Technology, vol. 68, pp. 658–665, Mar 2008.

    Article  CAS  Google Scholar 

  12. B. A. Cola, X. F. Xu, and T. S. Fisher, “Increased real contact in thermal interfaces: A carbon nanotube/foil material,” Applied Physics Letters, vol. 90, Feb 2007.

  13. L. B. Zhu, D. W. Hess, and C. P. Wong, “Assembling Carbon Nanotube Films as Thermal Interface Materials,” in Electronic Components and Technology Conference: IEEE, 2007, pp. 2006–2010

  14. W. Lin, K. S. Moon, and C. P. Wong, “A Combined Process of In-Situ Functionalization and Microwave Treatment to Achieve Ultra-Small Thermal Expansion of Aligned Carbon Nanotube/Polymer Nanocomposites: toward Applications as Thermal Interface Materials,” Advanced Materials, 2008.

  15. B. A. Wang, X. Y. Liu, H. M. Liu, D. X. Wu, H. P. Wang, J. M. Jiang, X. B. Wang, P. A. Hu, Y. Q. Liu, and D. B. Zhu, “Controllable preparation of patterns of aligned carbon nanotubes on metals and metal-coated silicon substrates,” Journal of Materials Chemistry, vol. 13, pp. 1124–1126, 2003.

    Article  CAS  Google Scholar 

  16. F. S. Xu, X. F. Liu, and S. D. Tse, “Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames,” Carbon, vol. 44, pp. 570–577, Mar 2006.

    Article  CAS  Google Scholar 

  17. W. Hofmeister, W. P. Kang, Y. M. Wong, and J. L. Davidson, “Carbon nanotube growth from Cu-Co alloys for field emission applications,” Journal of Vacuum Science & Technology B, vol. 22, pp. 1286–1289, May–Jun 2004.

    Article  CAS  Google Scholar 

  18. M. Karwa, Z. Iqbal, and S. Mitra, “Selective self-assembly of single walled carbon nanotubes in long steel tubing for chemical separations,” Journal of Materials Chemistry, vol. 16, pp. 2890–2895, 2006.

    Article  CAS  Google Scholar 

  19. S. Talapatra, S. Kar, S. K. Pal, R. Vajtai, L. Ci, P. Victor, M. M. Shaijumon, S. Kaur, O. Nalamasu, and P. M. Ajayan, “Direct growth of aligned carbon nanotubes on bulk metals,” Nature Nanotechnology, vol. 1, pp. 112–116, Nov 2006.

    Article  CAS  Google Scholar 

  20. L. J. Gao, A. P. Peng, Z. Y. Wang, H. Zhang, Z. J. Shi, Z. N. Gu, G. P. Cao, and B. Z. Ding, “Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors,” Solid State Communications, vol. 146, pp. 380–383, Jun 2008.

    Article  CAS  Google Scholar 

  21. M. K. Singh, P. P. Singh, E. Titus, D. S. Misra, and F. LeNormand, “High density of multiwalled carbon nanotubes observed on nickel electroplated copper substrates by microwave plasma chemical vapor deposition,” Chemical Physics Letters, vol. 354, pp. 331–336, Mar 2002.

    Article  CAS  Google Scholar 

  22. H. Wang, J. Y. Feng, X. J. Hu, and K. M. Ng, “Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor deposition,” Journal of Physical Chemistry C, vol. 111, pp. 12617–12624, Aug 2007.

    Article  CAS  Google Scholar 

  23. X. W. Yin, Q. L. Wang, C. G. Lou, X. B. Zhang, and W. Lei, “Growth of multi-walled CNTs emitters on an oxygen-free copper substrate by chemical-vapor deposition,” Applied Surface Science, vol. 254, pp. 6633–6636, Aug 2008.

    Article  CAS  Google Scholar 

  24. L. B. Zhu, D. W. Hess, and C. P. Wong, “Monitoring carbon nanotube growth by formation of nanotube stacks and investigation of the diffusion-controlled kinetics,” Journal of Physical Chemistry B, vol. 110, pp. 5445–5449, Mar 2006.

    Article  CAS  Google Scholar 

  25. L. B. Zhu, J. W. Xu, F. Xiao, H. J. Jiang, D. W. Hess, and C. P. Wong, “The growth of carbon nanotube stacks in the kinetics-controlled regime,” Carbon, vol. 45, pp. 344–348, Feb 2007.

    Article  CAS  Google Scholar 

  26. L. B. Zhu, Y. H. Xiu, D. W. Hess, and C. P. Wong, “Aligned carbon nanotube stacks by water-assisted selective etching,” Nano Letters, vol. 5, pp. 2641–2645, Dec 2005.

    Article  CAS  Google Scholar 

  27. L. B. Zhu, Y. Y. Sun, D. W. Hess, and C. P. Wong, “Well-aligned open-ended carbon nanotube architectures: An approach for device assembly,” Nano Letters, vol. 6, pp. 243–247, Feb 2006.

    Article  CAS  Google Scholar 

  28. K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, “Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes,” Science, vol. 306, pp. 1362–1364, Nov 2004.

    Article  CAS  Google Scholar 

  29. C. F. Powell;, J. H. Oxley;, and J. Johan M. Blocher, vapor deposition. New York: JOHN WILEY & SONS, INC., 1966.

    Book  Google Scholar 

  30. T. de los Arcos, F. Vonau, M. G. Garnier, V. Thommen, H. G. Boyen, P. Oelhafen, M. Duggelin, D. Mathis, and R. Guggenheim, “Influence of iron-silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition,” Applied Physics Letters, vol. 80, pp. 2383–2385, Apr 2002.

    Article  Google Scholar 

  31. Y. H. Xiu, S. Zhang, V. Yelundur, A. Rohatgi, D. W. Hess, and C. P. Wong, “Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching,” Langmuir, vol. 24, pp. 10421–10426, Sep 2008.

    Article  CAS  Google Scholar 

  32. S. Pisana, M. Cantoro, A. Parvez, S. Hofmann, A. C. Ferrari, and J. Robertson, “The role of precursor gases on the surface restructuring of catalyst films during carbon nanotube growth,” Physica E-Low-Dimensional Systems & Nanostructures, vol. 37, pp. 1–5, Mar 2007.

    Article  CAS  Google Scholar 

  33. N. M. Rodriguez, “A Review of Catalytically Grown Carbon Nanofibers,” Journal of Materials Research, vol. 8, pp. 3233–3250, Dec 1993.

    Article  CAS  Google Scholar 

  34. C. P. Deck and K. Vecchio, “Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams,” Carbon, vol. 44, pp. 267–275, Feb 2006.

    Article  CAS  Google Scholar 

  35. W. Q. Deng, X. Xu, and W. A. Goddard, “A two-stage mechanism of bimetallic catalyzed growth of single-walled carbon nanotubes,” Nano Letters, vol. 4, pp. 2331–2335, Dec 2004.

    Article  CAS  Google Scholar 

  36. N. Krishnankutty, C. Park, N. M. Rodriguez, and R. T. K. Baker, “The effect of copper on the structural characteristics of carbon filaments produced from iron catalyzed decomposition of ethylene,” Catalysis Today, vol. 37, pp. 295–307, Aug 1997.

    Article  CAS  Google Scholar 

  37. A. Almazouzi, M. P. Macht, V. Naundorf, and G. Neumann, “Diffusion of iron and nickel in single-crystalline copper,” Physical Review B, vol. 54, pp. 857–863, Jul 1996.

    Article  CAS  Google Scholar 

  38. O. Kononchuk, K. G. Korablev, N. Yarykin, and G. A. Rozgonyi, “Diffusion of iron in the silicon dioxide layer of silicon-on-insulator structures,” Applied Physics Letters, vol. 73, pp. 1206–1208, Aug 1998.

    Article  CAS  Google Scholar 

  39. R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” Journal of Applied Physics, vol. 97, Jun 2005.

  40. A. Rahtu, T. Alaranta, and M. Ritala, “In situ quartz crystal microbalance and quadrupole mass spectrometry studies of atomic layer deposition of aluminum oxide from trimethylaluminum and water,” Langmuir, vol. 17, pp. 6506–6509, Oct 2001.

    Article  CAS  Google Scholar 

  41. M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George, “Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates,” Thin Solid Films, vol. 413, pp. 186–197, Jun 2002.

    Article  CAS  Google Scholar 

  42. J. Hone, B. Batlogg, Z. Benes, A. T. Johnson, and J. E. Fischer, “Quantized phonon spectrum of single-wall carbon nanotubes,” Science, vol. 289, pp. 1730–1733, Sep 2000.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, W., Wong, C.P. Synthesis of Vertically Aligned Multi-Walled Carbon Nanotubes on Copper Substrates for Applications as Thermal Interface Materials. MRS Online Proceedings Library 1158, 301 (2008). https://doi.org/10.1557/PROC-1158-F03-01

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1158-F03-01

Navigation