Skip to main content
Log in

Stability of the Mg65Y10Cu15Ag10 metallic glass in neutral and weakly acidic media

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The corrosion behavior of the bulk glass-forming Mg65Y10Cu15Ag10 alloy was studied in neutral and weakly acidic media. Potentiodynamic polarization studies in cyclic and linear modes were carried out in electrolytes with a pH = 7, containing different anions. The alloy corroded freely in electrolytes with sulfate and pthalate ions, whereas passivity was observed in the electrolyte with borate ions. Further tests were performed in boric-acid-added borate buffer solution with pH = 7, 6, and 5. From Tafel characteristics, corrosion potentials and corrosion current densities were estimated. The data were compared with those of the ternary Mg65Y10Cu15 metallic glass. Potentiostatic anodic polarization tests were conducted on the Mg65Y10Cu15Ag10 alloy in boric-acid-added borate buffer solution with pH = 7 at two different potentials, 800 and 300 mV, saturated calomel electrode, which revealed different current transient characteristics. Auger electron spectroscopy was employed to characterize the anodically generated passive layers. The depth distributions of the elements as well as their chemical states were detected to be different for layers formed in electrolytes (i) with different pH values (8.4 and 7) of the same anion, (ii) with the same pH value but containing different anions (borate, sulfate, and pthalate), and (iii) with the same pH value and anion (borate) but at two different anodic potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.L. Mordike and T. Ebert, Mater. Sci. Eng. A 302, 37 (2001).

    Article  Google Scholar 

  2. R.F. Decker, Adv. Mater. Proc. 9, 31 (1998).

    Google Scholar 

  3. G.L. Song and A. Atrens, Adv. Eng. Mater. 1, 11 (1999).

    Article  CAS  Google Scholar 

  4. A. Inoue, T. Zhang, and T. Matsumoto, Mater. Trans., JIM 31, 177 (1990).

    Article  CAS  Google Scholar 

  5. A. Peker and W.L. Johnson, Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  6. A. Inoue and T. Matsumoto, Mater. Sci. Eng. A 173, 1 (1993).

    Article  Google Scholar 

  7. H.G. Kang, E.S. Park, W.T. Kim, and H.K. Cho, Mater. Trans., JIM 41, 846 (2000).

    Article  CAS  Google Scholar 

  8. A. Gebert, K. Buchholz, A. Leonhard, K. Mummert, J. Eckert, and L. Schultz, Mater. Sci. Eng. A 267, 294 (1999).

    Article  Google Scholar 

  9. V. Schroeder, C.J. Gilbert, and R.O. Ritchie, Scripta Mater. 38, 1481 (1998).

    Article  CAS  Google Scholar 

  10. S. Hiromoto, A-P. Tsai, M. Sumita, and T. Hanawa, Corros. Sci. 42, 2193 (2000).

    Article  CAS  Google Scholar 

  11. A. Gebert, U. Wolff, A. John, and J. Eckert, Scripta Mater. 43, 279 (2000).

    Article  CAS  Google Scholar 

  12. A. Gebert, U. Wolff, A. John, J. Eckert, and L. Schultz, Mater. Sci. Eng. A 299, 125 (2001).

    Article  Google Scholar 

  13. R.V. Subba Rao, U. Wolff, S. Baunack, J. Eckert, and A. Gebert, Corros. Sci. 45, 817 (2002).

    Article  Google Scholar 

  14. H.H. Uhlig and J.R. Gilman, Z. Phys. Chem. 226, 127 (1964).

    CAS  Google Scholar 

  15. Y. Zuo, H. Wang, J. Zhao, and J. Xiong, Corros. Sci. 44, 13 (2002).

    Article  CAS  Google Scholar 

  16. G.M. Florianovich, Y.M. Ko¨lotyrkin, D. Kononova, in Proceedings of the 4th ICMC-Amsterdam, edited by N.E. Hamner (NACE, Amsterdam, The Netherlands, 1972), p. 189.

    Google Scholar 

  17. S. Virtanen, P. Schmuki, M. Bu¨chler, H. Isaacs, J. Electrochem. Soc. 146, 4087 (1999).

    Article  CAS  Google Scholar 

  18. E.M.A. Martini and I.L. Muller, J. Braz. Chem. Soc. 10, 505 (1999).

    Article  CAS  Google Scholar 

  19. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (Pergamon Press, Oxford, London, U.K. 1966), p. 396.

    Google Scholar 

  20. S.W. Gaarenstroom, J. Vac. Sci. Technol. 16, 600 (1979).

    Article  CAS  Google Scholar 

  21. S. Hofmann and J. Steffen, Surf. Interface Anal. 14, 59 (1989).

    Article  CAS  Google Scholar 

  22. J.S. Solomon, Thin Solid Films 154, 11 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gebert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, R.V.S., Wolff, U., Baunack, S. et al. Stability of the Mg65Y10Cu15Ag10 metallic glass in neutral and weakly acidic media. Journal of Materials Research 18, 97–105 (2003). https://doi.org/10.1557/JMR.2003.0014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0014

Navigation