Skip to main content

Renaturation of the Catalytic Domain of PDE4A Expressed in Escherichia coli as Inclusion Bodies

  • Protocol
Phosphodiesterase Methods and Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 307))

  • 683 Accesses

Abstract

Owing to simplicity, speed, cost advantage, and a generally high product yield, expression in Escherichia coli is the method of choice for the production of large amounts of protein. However, because of the high expression level, proteins often accumulate within the cells as insoluble aggregates called inclusion bodies. The inclusion body protein is misfolded and biologically inactive and, thus, needs to be refolded into its native conformation. There is no universal method for refolding inclusion bodies and optimal conditions have to be determined empirically for any given protein. Here, we describe a simple and efficient refolding protocol for the catalytic domain of type 4 cyclic nucleotide phosphodiesterases (PDE4s). This method has the potential for adaptation to other PDE subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chalmers, J. J., Kim, E., Telford, J. N., Wong, E. Y., Tacon, W. C., Shuler, M. L., and Wilson, D. B. (1990) Effects of temperature on Escherichia coli overproducing beta-lactamase or human epidermal growth factor. Appl. Environ. Microbiol. 56, 104–111.

    PubMed  CAS  Google Scholar 

  2. Kopetzki, E., Schumacher, G., and Buckel, P. (1989) Control of formation of active soluble or inactive insoluble baker’s yeast alpha-glucosidase PI in Escherichia coli by induction and growth conditions. Mol. Gen. Genet. 216, 149–155.

    Article  PubMed  CAS  Google Scholar 

  3. Kapust, R. B. and Waugh, D. S. (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 8, 1668–1674.

    Article  PubMed  CAS  Google Scholar 

  4. Kovala, T., Sanwal, B. D., and Ball, E. H. (1997) Recombinant expression of a type IV, cAMP-specific phosphodiesterase: characterization and structure-function studies of deletion mutants. Biochemistry 36, 2968–2976.

    Article  PubMed  CAS  Google Scholar 

  5. Gatenby, A. A., Viitanen, P. V., and Lorimer, G. H. (1990) Chaperonin assisted polypeptide folding and assembly: implications for the production of functional proteins in bacteria. Trends Biotechnol. 8, 354–358.

    Article  PubMed  CAS  Google Scholar 

  6. Machida, S., Yu, Y., Singh, S. P., Kim, J. D., Hayashi, K., and Kawata, Y. (1998) Overproduction of beta-glucosidase in active form by an Escherichia coli system coexpressing the chaperonin GroEL/ES. FEMS Microbiol. Lett. 159, 41–46.

    PubMed  CAS  Google Scholar 

  7. Makrides, S. C. (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60, 512–538.

    PubMed  CAS  Google Scholar 

  8. Rudolph, R., Böhm, G., Lilie, H., and Jaenicke, R. (1997) Folding proteins, in Protein Function, A Practical Approach (Creighton, T. E., ed.), IRL, Oxford, UK, pp. 57–99.

    Google Scholar 

  9. Rudolph, R. and Lilie, H. (1996) In vitro folding of inclusion body proteins. FASEB J. 10, 49–56.

    PubMed  CAS  Google Scholar 

  10. Tsumoto, K., Ejima, D., Kumagai, I., and Arakawa, T. (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expr. Purif. 28, 1–8.

    Article  PubMed  CAS  Google Scholar 

  11. Lilie, H., Schwarz, E., and Rudolph, R. (1998) Advances in refolding of proteins produced in E. coli. Curr. Opin. Biotechnol. 9, 497–501.

    Article  PubMed  CAS  Google Scholar 

  12. Middelberg, A. P. (2002) Preparative protein refolding. Trends Biotechnol. 20, 437–443.

    Article  PubMed  CAS  Google Scholar 

  13. Guise, A. D., West, S. M., and Chaudhuri, J. B. (1996) Protein folding in vivo and renaturation of recombinant proteins from inclusion bodies. Mol. Biotechnol. 6, 53–64.

    Article  PubMed  CAS  Google Scholar 

  14. Chaudhuri, J. B. (1994) Refolding recombinant proteins: process strategies and novel approaches. Ann. NY Acad. Sci. 721, 374–385.

    Article  PubMed  CAS  Google Scholar 

  15. Francis, S. H., Turko, I. V., and Corbin, J. D. (2001) Cyclic nucleotide phosphodiesterases: relating structure and function. Prog. Nucleic Acid Res. Mol. Biol. 65, 1–52.

    Article  PubMed  CAS  Google Scholar 

  16. Xu, R. X., Hassell, A. M., Vanderwall, D., et al. (2000) Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity. Science 288, 1822–1825.

    Article  PubMed  CAS  Google Scholar 

  17. Richter, W., Hermsdorf, T., Lilie, H., Egerland, U., Rudolph, R., Kronbach, T., and Dettmer, D. (2000) Refolding, purification, and characterization of human recombinant PDE4A constructs expressed in Escherichia coli. Protein Expr. Purif. 19, 375–383.

    Article  PubMed  CAS  Google Scholar 

  18. Richter, W., Hermsdorf, T., Kronbach, T., and Dettmer, D. (2002) Refolding and purification of recombinant human PDE7A expressed in Escherichia coli as inclusion bodies. Protein Expr. Purif. 25, 138–148.

    Article  PubMed  CAS  Google Scholar 

  19. Armstrong, N., de Lencastre, A., and Gouaux, E. (1999) A new protein folding screen: application to the ligand binding domains of a glutamate and kainate receptor and to lysozyme and carbonic anhydrase. Protein Sci. 8, 1475–1483.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are indebted to Caren Spencer for editorial work on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Richter, W., Hermsdorf, T., Dettmer, D. (2005). Renaturation of the Catalytic Domain of PDE4A Expressed in Escherichia coli as Inclusion Bodies. In: Lugnier, C. (eds) Phosphodiesterase Methods and Protocols. Methods In Molecular Biology™, vol 307. Humana Press. https://doi.org/10.1385/1-59259-839-0:155

Download citation

  • DOI: https://doi.org/10.1385/1-59259-839-0:155

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-314-5

  • Online ISBN: 978-1-59259-839-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics