Skip to main content

Imaging Intramyocardial Microcirculatory Function Using Fast Computed Tomography

  • Chapter
CT of the Heart

Abstract

Coronary arterial disease is currently diagnosed and treated primarily on the basis of its impact on the large-diameter epicardial arteries. A structural change, usually a localized narrowing (stenosis) of a coronary artery lumen, is generally detected and quantitated by selective coronary angiography. However, by the time the epicardial artery stenosis results in reduced epicardial flow and the patient becomes symptomatic, it is generally too late to arrest (much less reverse) the disease process in that artery. Therefore, a noninvasive test that identifies presymptomatic, subclinical disease should result in initiation of therapy at a time when the disease process is still reversible. Causal risk factors—i.e., dyslipidemia, arterial hypertension, diabetes mellitus, and smoking—are responsible for the majority of coronary artery disease cases, and risk-factor modification in high-risk asymptomatic individuals has been shown to improve outcome (1). Early risk stratification, aggressive preventive counseling, and therapy in high-risk subjects is therefore recommended (2,3). However, limited economic resourses warrant careful patient selection and appropriate therapeutic aggressiveness. Hence, any imaging tool for this purpose is required (1) to allow identification and quantification of early disease, and (2) to be sensitive enough to ascertain therapeutic efficacy over time to justify continuation or modification of the initiated therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grundy SM. Primary prevention of coronary heart disease. Integrating risk assessment with intervention. Circulation 1999;100: 988–998.

    PubMed  CAS  Google Scholar 

  2. Smith SC, Greenland P, Grundy SM. Prevention Conference V—Beyond secondary prevention: Identifying the high-risk patient for primary prevention—executive summary. Circulation 2000;101: 111–116.

    PubMed  Google Scholar 

  3. Greenland P, Smith SC, Grundy SM. Improving coronary heart disease risk assessment in asymptomatic people. Role of traditional risk factors and non-invasive cardiovascular tests. Circulation 2001; 104: 1863–1867.

    Article  PubMed  CAS  Google Scholar 

  4. Marcus, ML, Chilian WM, Kanatsuka H, et al. Understanding the coronary circulation through studies at the microvascular level. Circulation 1990;82:1–7.

    PubMed  CAS  Google Scholar 

  5. Naseri A, Crea KF, Crainflone D. Myocardial ischemia caused by distal coronary vasoconstriction. Am J Cardiol 1992;7:1602–1605.

    Google Scholar 

  6. Hasdai D, Sangiorgi G, Spagnoli LG, et al. Coronary artery apoptosis in experimental hypercholesterolemia. Atherosclerosis 1999; 142:317–325.

    Article  PubMed  CAS  Google Scholar 

  7. Kemp HG, Kronmal RA, Vliestra RE, Frey RL. Seven year survival of patients with normal or near normal coronary arteriograms: a CASS registry study. J Am Coll Cardiol 1986;7:479–483.

    PubMed  CAS  Google Scholar 

  8. Hasdai D, Gibbons RJ, Holmes DR Jr., Higgano ST, Lerman A. Coronary endothelial dysfunction in humans is associated with myocardial perfusion defects. Circulation 1997;96:3390–3395.

    PubMed  CAS  Google Scholar 

  9. Kemp HG. Left ventricular function in patients with angina and normal coronary angiograms. Am J Cardiol 1973;32:375–376.

    Article  PubMed  Google Scholar 

  10. Cannon R, Epstein S. “Microvascular angina” as a cause of chest pain with angiographically normal coronary arteries. Am J Cardiol 1988;43:1338–1343.

    Article  Google Scholar 

  11. Schachinger V, Britten MB, Elsner M, et al. A positive family history of premature coronary artery disease is associated with impaired endothelium-dependent coronary blood flow regulation. Circulation 1999;100: 1502–1508.

    PubMed  CAS  Google Scholar 

  12. Nahser PJ, Brown RE, Oskarsson H, et al. Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation 1995;91:635–640.

    PubMed  Google Scholar 

  13. Kaufmann PA, Gnecci-Ruscone T, DiTerlizzi M, et al. Coronary heart disease in smokers—vitamin C restores coronary microcirculatory function. Circulation 2000;102:1233–1238.

    PubMed  CAS  Google Scholar 

  14. Nitenberg A, Valensi P, Sachs R, et al. Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients, angiographically normal arteries and normal left ventricular systolic function. Diabetes 1993;42:1017–1025.

    Article  PubMed  CAS  Google Scholar 

  15. Bartel T, Yang Y, Müller S, Wenzel RR, Baumgart D, Philipp T, Erbel R. Non-invasive assessment of microvascular function in arterial hypertension by transthroacic Doppler harmonic echocardiography. J Am Coll Cardiol 2002;39(12):2012–2018.

    Article  PubMed  Google Scholar 

  16. Baumgart D, Haude M, Liu F, et al. Current concepts of coronary flow reserve for clinical decision making during cardiac catheterization. Am Heart J 1998;136:136–149.

    Article  PubMed  CAS  Google Scholar 

  17. Ge J, Qian J, Bhate R, et al. Prevalence of microvascular dysfunction in patients with severe coronary artery disease. Eur Heart J 1999;20(Suppl):476–482.

    Google Scholar 

  18. Kuo L, Davies MJ, Cannon MS, Chilian WM. Pathophysiological consequences of atherosclerosis extend to the microcirculation. Circ Res 1992;70:465–476.

    PubMed  CAS  Google Scholar 

  19. Chilian WM, Eastham CL, Layne SM, Marcus ML. Small vessel phenomena in the coronary microcirculation: phasic intramyocardial perfusion and coronary microvascular dynamics. Prog Cardiovasc Dis 1988;31:17–38.

    Article  PubMed  CAS  Google Scholar 

  20. Chilian WM. Coronary microcirculation in health and disease. Summary of an NHLBI workshop. Circulation 1997;95:522–528.

    PubMed  CAS  Google Scholar 

  21. Kuo L, Davies MJ, Chilian WM. Longitudinal gradients for endothelium-dependent and-independent vascular responses in the coronary microcirculation. Circulation 1995;92:518–525.

    PubMed  CAS  Google Scholar 

  22. Kanatsuka H, Lamping KG, Eastham CL, Marcus ML. Heterogenous changes in epimyocardial microvascular size during graded coronary stenosis. Circ Res 1990;60:389–396.

    Google Scholar 

  23. Axel L. Cerebral blood flow determination by rapid-sequence computed tomography. A theoretical analysis. Radiology 1980;137: 679–686.

    PubMed  CAS  Google Scholar 

  24. Wang T, Wu S, Chung N, Ritman EL. Myocardial blood flow estimates by synchronous, multislice high-speed CT. IEEE Transact Med Imag 1989;8(1):70–77.

    CAS  Google Scholar 

  25. Rumberger JA, Bell MR. Measurement of myocardial perfusion using electron beam (ultrafast) computed tomography. In: Marcus ML (ed), Cardiac Imaging. A Companion to Braunwald’s Heart Disease. WB Saunders, Philadelphia: 1996;835–852.

    Google Scholar 

  26. Stewart GN. Researches on the circulation time and on the influences that affect it. IV. The output of the heart. J Physiol 1897;22: 159–183.

    PubMed  CAS  Google Scholar 

  27. Hamilton WF, Moore JW, Kinsman JM, Spurling RG. Studies on circulation IV. Further analysis of the injection method and of changes in hemodynamics under physiological and pathophysiological conditions. Am J Physiol 1932; 99:534–551.

    CAS  Google Scholar 

  28. Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 1954; 6(12):731–744.

    PubMed  CAS  Google Scholar 

  29. Zierler KL. A simplified explanation of the theory of indicator dilution for measurement of fluid flow and volume and other distributive phenomena. Bull Johns Hopkins Hosp 1958;103:199–217.

    PubMed  CAS  Google Scholar 

  30. Zierler KL. Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ Res 1962;10:393–407.

    Google Scholar 

  31. Zierler KL. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 1965: 16(4):309–321.

    PubMed  CAS  Google Scholar 

  32. Ritman EL, Kinsey JH, Robb RA, Harris LD, Gilbert BK. Physics and technical considerations in the design of the DSR: a high temporal resolution volume scanner. AJR 1980;135:369–374.

    Google Scholar 

  33. Boyd DP, Lipton MJ. Cardiac computed tomography. Proc IEEE 1983;71(3):298–307.

    Article  Google Scholar 

  34. Wolfkiel CJ, Ferguson JL, Chomka EV, et al. Measurement of myocardial blood flow by ultrafast CT. Circulation 1987;76(6): 1262–1273.

    PubMed  CAS  Google Scholar 

  35. Liu YH, Bahn RC, Ritman EL. Dynamic intramyocardial blood volume: evaluation with a radiological opaque marker method. Am J Physiol 1992;263:H963–H967.

    PubMed  CAS  Google Scholar 

  36. Liu YH, Bahn RC, Ritman EL. Microvascular blood volume to flow relationship in porcine heart wall: Whole body CT evaluation in vivo. Am J Physiol 1995;269(38):H1820–1826.

    PubMed  CAS  Google Scholar 

  37. Weiss RM, Otoadese EA, Noel MP, DeJong SC, Heery SD. Quantitation of absolute regional myocardial perfusion using cine CT. J Am Coll Cardiol 1994;23:1186–1193.

    Article  PubMed  CAS  Google Scholar 

  38. Bell MR, Lerman LO, Rumberger JA. Validation of minimally invasive measurement of myocardial perfusion using electron beam computed tomography and application in human volunteers. Heart 1999;81:628–635.

    PubMed  CAS  Google Scholar 

  39. Lerman LO, Siripornpitak S, Maffei NL, et al. Measurement of in vivo myocardial microcirculatory function with EBCT. J Comput Assist Tomogr 1999;23(3):390–398.

    Article  PubMed  CAS  Google Scholar 

  40. Möhlenkamp S, Lerman LO, Lerman A, et al. Minimally invasive evaluation of coronary microvascular function by EBCT. Circulation 2000; 102(19):2411–2416.

    PubMed  Google Scholar 

  41. Möhlenkamp S, Behrenbeck TR, Lerman LO, Lerman A, Sheedy PF II, Ritman EL. Quantitation of long-term changes in coronary microvascular functional reserve using EBT. Radiology 2001;221: 229–236.

    Article  PubMed  Google Scholar 

  42. Möhlenkamp S, Lerman LO, Bajzer Z, Lund PE, Ritman EL. Quantitation of myocardial microcirculatory function with X-ray CT. Ann NY Acad Sci 2002;972:307–316.

    Article  PubMed  Google Scholar 

  43. Möhlenkamp S, Bailey PE, Pfeifer EA, Behrenbeck TR, Sheedy PF II, Ritman EL. Intramyocardial blood volume, perfusion and transit time in response to embolization of different sized microvessels. Cardiovasc Res 2003;57(3):843–852.

    Article  PubMed  Google Scholar 

  44. Jaschke W, Gould RG, Cogan MG, Sievers RG, Lipton MJ. Cine-CT measurement of cortical renal blood flow. J Comput Assist Tomogr 1987;11:779–784.

    Article  PubMed  CAS  Google Scholar 

  45. Lerman LO, Bell MR, Lahera V, et al. Quantification of global and regional renal blood flow with EBCT. Am J Hypertens 1994;7: 829–837.

    PubMed  CAS  Google Scholar 

  46. Bentley MD, Lerman LO, Hoffman EA, et al. Measurement of renal perfusion and blood flow with fast computed tomography. Circ Res 1994;74:945–951.

    PubMed  CAS  Google Scholar 

  47. Gobbel TG, Cann CE, Fike JR. Measurement of regional cerebral blood flow using ultrafast CT. Theoretical aspects. Stroke 1991;22:768–771.

    PubMed  CAS  Google Scholar 

  48. Jaschke W, Lipton MJ, Boyd D, et al. Dynamic CT scanning of the normal canine liver: interpretation of time density curves resulting from an intravenous bolus injection of contrast material. Eur J Radiol 1985;5: 256–60.

    PubMed  CAS  Google Scholar 

  49. Clough AV, Al-Tinami A, Linehan JH, Dawson CA. Regional transit time estimation from image residue curves. Ann Biomed Eng 1994; 22:128–143.

    Article  PubMed  CAS  Google Scholar 

  50. Wu X, Latson LA, Wang T, et al. Regional pulmonary perfusion estimated by high-speed volume scanning CT. Am J Physiol Imag 1988;3:73–80.

    CAS  Google Scholar 

  51. Olsson B, Aulie A, Svenn K, Andrew E. Human pharmakokinetics of iohexol, a new non-ionic contrast medium. Invest Radiol 1983; 18:177–182.

    Article  PubMed  CAS  Google Scholar 

  52. Canty JM, Judd RM, Brody AS, Klocke FJ. First-pass entry of non-ionic contrast agent into the myocardial extravascular space. Effects on radiographic estimates of transit time and blood volume. Circulation 1991; 84:2071–2078.

    PubMed  CAS  Google Scholar 

  53. Ritman EL. Myocardial capillary permeability to iohexol. Invest Radiol 1994;29:612–617.

    Article  PubMed  CAS  Google Scholar 

  54. Judd RM, Resar JR, Yin FCP. Rapid measurements of diastolic intramyocardial vascular volume. Am J Physiol 1993;265:H1038–H1047.

    PubMed  CAS  Google Scholar 

  55. Levick JR. An Introduction to Cardiovascular Physiology, 2nd Ed. Butterworth-Heinemann Ltd., Oxford: 1992.

    Google Scholar 

  56. Crone C, Levitt DG. Capillary permeability to small solutes. In: Renkin EM, Michel CC, Geiger SR (eds), Handbook of Physiology, Vol. IV: The Cardiovascular System, Part I, Microcirculation, Section 2, The Cardiovascular System. American Physiological Society, Bethesda, MD: 1984:411–466.

    Google Scholar 

  57. Renkin EM. Capillary transport of macromolecules: pores and other endothelial pathways. J Appl Physiol 1985;58(2):315–325.

    PubMed  CAS  Google Scholar 

  58. Wu XS, Ewert DL, Liu YH, Ritman EL. In vivo relation of intramyocardial blood volume to myocardial perfusion. Evidence supporting microvascular site for autoregulation. Circulation 1992;85: 730–737.

    PubMed  CAS  Google Scholar 

  59. Rodriguez-Porcel M, Lerman A, Best PJM, et al. Hypercholesterolemia impairs myocardial perfusion and permeability: role of oxidative stress and endogenous scavenging activity. J Am Coll Cardiol 2001;37: 608–615.

    Article  PubMed  CAS  Google Scholar 

  60. Bonetti PO, Wilson SH, Rodriguez-Porcel M, et al. Simvastatin preserves myocardial perfusion and coronary microvascular permeability in experimental hypercholesterolemia independent of lipid lowering. J Am Coll Cardiol 2002;40:546–554.

    Article  PubMed  CAS  Google Scholar 

  61. Senneff MJ, Geltman EM, Bergmann SR, Hartman J. Noninvasive delineation of the effects of moderate aging on myocardial perfusion. J Nucl Med 1991;32:2037–2042.

    PubMed  CAS  Google Scholar 

  62. Czernin J, Muller P, Chan S, et al. Coronary and peripheral blood flow: influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 1993;88(1):62–69.

    PubMed  CAS  Google Scholar 

  63. Rakusan K, Cicutti N, Flanagan MF. Changes in the microvascular network during cardiac growth, development and aging. Cell Mol Biol Res 1994;40:117–122.

    PubMed  CAS  Google Scholar 

  64. White FC, Bloor CM, McKirnan D, Carroll SM. Exercise training in swine promotes growth of arteriolar bed and capillary angiogenesis in heart. J Appl Physiol 1998;85:1160–1168.

    PubMed  CAS  Google Scholar 

  65. Hamaoka K, Onouchi Z, Ohmochi Y, Sakata K. Coronary arterial flow-velocity dynamics in children with angiographically normal coronary arteries. Circulation 1995;92:2457–2462.

    PubMed  CAS  Google Scholar 

  66. Buss DD, Hennemann III WW, Posner P. Maturation of coronary responsiveness to exogenous adenosine in the rabbit. Basic Res Cardiol 1987;82:290–296.

    Article  PubMed  CAS  Google Scholar 

  67. Schachinger V, Zeiher A. Alterations of coronary blood flow and myocardial perfusion in hypercholesterolemia. Heart 1996;76(4): 295–298.

    Article  PubMed  CAS  Google Scholar 

  68. Kelm M, Schrader J. Control of coronary vascular tone by nitric oxide. Circ Res 1990;66: 1561–1575.

    PubMed  CAS  Google Scholar 

  69. Komaru T, Lamping K, Eastham CL, et al. Effect of an arginine analogue on acetylcholine-induced coronary microvascular dilatation in dogs. Am J Physiol. 1991;261:H2001–H2007.

    PubMed  CAS  Google Scholar 

  70. Lerman A, Burnett JC Jr. Intact and altered endothelium in regulation of vasomotion. Circulation 1992;86[Suppl III]:III12–III19.

    Google Scholar 

  71. Mathew V, Cannan CR, Miller VM, et al. Enhanced endothelinmediated coronary vasoconstriction and attenuated basal nitric oxide activity in experimental hypercholesterolemia. Circulation 1997;96(6):1930–36.

    PubMed  CAS  Google Scholar 

  72. Hein TW, Kuo L. LDLs impair vasomotor function of the coronary microcirculation. Role of superoxide anions. Circ Res 1998;83: 404–414.

    PubMed  CAS  Google Scholar 

  73. Cooper A, Heagerty AM. Endothelial dysfunction in human intramyocardial small arteries in atherosclerosis and hypercholesterolemia. Am J Physiol 1998;275:H1482–1488.

    PubMed  CAS  Google Scholar 

  74. Stepp DW, Nishikawa Y, Chilian WM. Regulation of shear stress in the canine coronary microcirculation. Circulation 1999;100: 1555–1561.

    PubMed  CAS  Google Scholar 

  75. Kanatsuka H, Lamping KG, Eastham CL, et al. Comparison of the effects of increased myocardial oxygen consumption and adenosine on the coronary microvascular resistance. Circ Res 1989;65: 1296–1305.

    PubMed  CAS  Google Scholar 

  76. Grover GJ, Rosolowski M, Kedem JK, et al. Effect of hypoxia and adenosine on the microvascular reserve in the rabbit heart. Microcirc Endothel Lymph 1986;3:359–382.

    Google Scholar 

  77. Dell’Omo G, Bandinelli S, Penno G, et al. Simvastatin, capillary permeability, and acetylcholine-mediated vasomotion in atherosclerotic, hypercholesterolemic men. Clin Pharmacol Ther 2000;68:427–434.

    Article  PubMed  CAS  Google Scholar 

  78. Egashira K, Hirooka Y, Kai H, et al. Reduction in serum cholesterol with pravastatin improves endothelium-dependent coronary vasomotion in patients with hypercholesterolemia. Circulation 1994;89: 2519–2524.

    PubMed  CAS  Google Scholar 

  79. Gould KL, Martucci JP, Goldberg DI, et al. Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamol in patients with coronary artery disease. A potential noninvasive marker of healing endothelium. Circulation 1994;89:1530–1538.

    PubMed  CAS  Google Scholar 

  80. Hasler-Rapacz J, Kempen HJ, Princen HMG, et al. Effects of simvastatin on plasma lipids and apolipoproteins in familial hyper-cholesterolemic swine. Arterioscler Thromb Vasc Biol 1996;16: 137–43.

    PubMed  CAS  Google Scholar 

  81. Lefer AM, Scalia R, Lefer DJ. Vascular effects of HMG CoA-reductase inhibitors (statins) unrelated to cholesterol lowering: new concepts for cardiovascular disease. Cardiovasc Res 2001;49: 281–287.

    Article  PubMed  CAS  Google Scholar 

  82. Wu CC, Chang SW, Chen MS, Lee YT. Early change of vascular permeability in hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol 1995;15:529–533.

    PubMed  CAS  Google Scholar 

  83. Wilson SH, Simari RD, Best PJM, et al. Simvastatin preserves coronary endothelial function in hypercholesterolemia in the absence of lipid lowering. Arterioscler Thromb Vasc Biol 2001;21: 122–128.

    PubMed  CAS  Google Scholar 

  84. Gould KL, Lipscomb K, Calvert C. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974;33:87–94.

    Article  PubMed  CAS  Google Scholar 

  85. Pijls NHJ, de Bruyne B, Peels KH, et al. Measurement of fractional flow reserve to assess functional severity of coronary-artery stenoses. N Engl J Med 1996;334:1703–1708.

    Article  PubMed  CAS  Google Scholar 

  86. Erbel R, Ge J, Görge G, et al. Neue bildgebende Verfahren zur Darstellung der Koronararterien. Z Kardiol 1998;87(Suppl 2): 61–73.

    Article  PubMed  Google Scholar 

  87. Wu XS, Bahn RC, Ritman EL. Myocardial microcirculation as evaluated with CT. In: Sideman S, Beyar R (eds), Molecular and Subcellular Cardiology: Effects of Structure and Function. Plenum, New York: 1995; 261-268.

    Google Scholar 

  88. Lindner JR, Skyba DM, Goodman NC, et al. Changes in myocardial blood volume with graded coronary stenosis: an experimental evaluation using myocardial contrast echocardiography. Am J Physiol 1997;272:H567–H575.

    PubMed  CAS  Google Scholar 

  89. Berne RM. The role of adenosine in the regulation of coronary blood flow. Circ Res 1980;47: 808–813.

    Google Scholar 

  90. Topol EJ, Yadav JS. Recognition of the importance of embolization in atherosclerotic vascular disease. Circulation 2000;101: 570–580.

    PubMed  CAS  Google Scholar 

  91. Erbel R, Heusch G. Coronary microembolization. J Am Coll Cardiol 2000;36:22–24.

    Article  PubMed  CAS  Google Scholar 

  92. Heusch G, Schulz R, Baumgart D, Haude M, Erbel R. Coronary microembolization. Prog Cardiovasc Dis 2001;44:217–230.

    Article  PubMed  CAS  Google Scholar 

  93. Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation 1985; 71:699–708.

    PubMed  CAS  Google Scholar 

  94. Willerson JT, Cohen LS, Maseri A. Pathophysiology and clinical recognition. In: Willerson JT, Cohn JN (eds), Cardiovascular Medicine. Churchill Livingston, New York: 1995;333-365.

    Google Scholar 

  95. Van Liebergen RAM, Piek JJ, Koch KT, de Winter RJ, Li KI. Immediate and long-term effect of balloon angioplasty or stent implantation on the absolute and relative coronary blood flow velocity reserve. Circulation 1998;98:2133–2140.

    PubMed  Google Scholar 

  96. Kern MJ, Puri S, Bach RG, et al. Abnormal coronary flow velocity reserve after coronary artery stenting in patients. Role of relative coronary reserve to assess potential mechanisms. Circulation 1999;100: 2491–2498.

    PubMed  CAS  Google Scholar 

  97. Dörge H, Neumann T, Behrends M, Schulz R, Erbel R, Heusch G. Perfusion-contraction mismatch with coronary microvascular obstruction: role of inflammation. Am J Physiol 2000;279: H2587–2592.

    Google Scholar 

  98. Hori M, Inoue M, Kitakaze M, et al. Role of adenosine in hyperemic response of coronary blood flow in microcirculation. Am J Physiol 1986;250:H509–H518.

    PubMed  CAS  Google Scholar 

  99. Grund F, Sommerschild HT, Lyberg T, Kirkeboen KA, Ilebekk A. Microembolization in pigs: effects on coronary blood flow and myocardial ischemic tolerance. Am J Physiol 1999;277: H533–H542.

    PubMed  CAS  Google Scholar 

  100. Malyar NM, Lerman LO, Goessl M, Möhlenkamp S, Ritman EL. Myocardial microvascular permeability after microembolization. The FASEB J (Part I) 2003;17(4):136.

    Google Scholar 

  101. Herrmann J, Haude M, Lerman A, et al. Abnormal coronary flow velocity reserve after coronary intervention is associated with cardiac marker elevation. Circulation 2001;103:2339–2345.

    PubMed  CAS  Google Scholar 

  102. Herzberg RM, Rubio R, Berne RM. Coronary occlusion and embolization: effect on blood flow in adjacent arteries. Am J Physiol 1966;210:169–175.

    PubMed  CAS  Google Scholar 

  103. Hori M, Tamai J, Kitakaze M, et al. Adenosine-induced hyperemia attenuates myocardial ischemia in coronary microembolization in dogs. Am J Physiol 1989;257:H244–H251.

    PubMed  CAS  Google Scholar 

  104. Möhlenkamp S, Lerman LO, Behrenbeck TR, et al. EBCT-based evaluation of coronary microembolization: evidence for a faster transit of blood through non-embolized microvessels. Circulation 2000;102(18):II 112.

    Google Scholar 

  105. Balaban RS, Arai A. Function, metabolic and flow heterogeneity of the heart. The view is getting better. Circ Res 2001;88: 265–267.

    PubMed  CAS  Google Scholar 

  106. Bassingthwaighte JB, King RB, Roger SA. Fractal nature of regional myocardial blood flow heterogeneity. Circ Res 1989;65: 578–590.

    PubMed  CAS  Google Scholar 

  107. Deussen A. Blood flow heterogeneity in the heart. Basic Res Cardiol 1998;93:430–438.

    Article  PubMed  CAS  Google Scholar 

  108. Wieneke H, Schmermund A, Ge J, Altmann C, et al. Increased heterogeneity of coronary perfusion in patients with early coronary atherosclerosis. Am Heart J 2001;142(4):691–697.

    Article  PubMed  CAS  Google Scholar 

  109. Van Bavel E, Spaan JAE. Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity. Circ Res 1992; 71:1200–1212.

    Google Scholar 

  110. Bassingthwaighte JB, VanBeek JH, King RB. Fractal branchings: the basis of myocardial flow heterogeneities? Ann NY Acad Sci 1995;591:392–401.

    Article  Google Scholar 

  111. King RB, Bassingthwaighte JB. Temporal fluctuations in regional myocardial flows. Pflugers Arch 1989; 413:336–342.

    Article  PubMed  CAS  Google Scholar 

  112. Ritman EL. Temporospatial heterogeneity of myocardial perfusion and blood volume in the porcine heart wall. Ann Biomed Eng 1998; 26:519–525.

    Article  PubMed  CAS  Google Scholar 

  113. King RB, Bassingthwaighte JB, Shales JR, Rowell LB: Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ Res 1985;57:285–295.

    PubMed  CAS  Google Scholar 

  114. Shu N-H, Ritman EL. Heterogeneity of intramyocardial blood flow, blood volume and transit time—fractal analysis of fast CT images. The Physiologist 1989;32:188 (abstract).

    Google Scholar 

  115. Passariello R, De Santis M. Magnetic resonance imaging evaluation of myocardial perfusion. Am J Cardiol 1998;81:68G–73G.

    Article  PubMed  CAS  Google Scholar 

  116. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 1998; 97(5):473–483.

    PubMed  CAS  Google Scholar 

  117. Wilke N, Kroll K, Merkle H, et al. Regional myocardial blood volume and flow: first-pass MR imaging with polylysine-Gd-DTPA. J Magn Res Imag 1995;2:227–237.

    Article  Google Scholar 

  118. Wu CC, Feldman MD, Mills JD, et al. Myocardial contrast echocardiography can be used to quantify intramyocardial blood volume: new insights into structural mechanisms of coronary autoregulation. Circulation 1997;96:1004–1011.

    PubMed  CAS  Google Scholar 

  119. Rakusan K, Flanagan MF, Geva T, Southern J, Van Praagh R. Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overload hypertrophy. Circulation 1992; 86:38–46.

    PubMed  CAS  Google Scholar 

  120. Lüscher TF, Barton M. Endothelins and endothelin receptor antagonists—therapeutic considerations for a novel class of cardiovascular drugs. Circulation 2000;102:2434–2440.

    PubMed  Google Scholar 

  121. Schmermund A, Lerman LO, Rumberger JA, et al. Effects of acute and chronic angiotensin receptor blockade on myocardial vascular blood volume and perfusion in a pig model of coronary microembolization. Am J Hypertens 2000; 13:838–845.

    Article  Google Scholar 

  122. Frazier OH, March RJ, Horvath KA. Transmyocardial revascularization with a carbon dioxide laser in patients with end-stage coronary artery disease. New Engl J Med 1999;341:1021–1028.

    Article  PubMed  CAS  Google Scholar 

  123. Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 1998;98: 2800–2804.

    PubMed  CAS  Google Scholar 

  124. Möhlenkamp S. Myocardial blood flow measured by EBT. Eur Radiol 2002;12(11):H6.

    Google Scholar 

  125. Erbel R, Budde T, Kerkhoff G, Möhlenkamp S, Schmermund A. Understanding the pathophysiology of the arterial wall: which method should we choose? Electron-beam computed tomography. Eur Heart J 2002;4: F47–F53.

    Article  Google Scholar 

  126. Möhlenkamp S, Schmermund A, Gerber T, et al. Nicht-invasive CT Koronarangiographie als Ergänzung zur Koronarkalkquantifizierung bei symptomatischen Patienten. Herz 2003;28: 106–118.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press, Inc., Totowa, NJ

About this chapter

Cite this chapter

Möhlenkamp, S., Schmermund, A., Kantor, B., Erbel, R., Ritman, E.L. (2005). Imaging Intramyocardial Microcirculatory Function Using Fast Computed Tomography. In: Schoepf, U.J. (eds) CT of the Heart. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-818-8:195

Download citation

  • DOI: https://doi.org/10.1385/1-59259-818-8:195

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-303-9

  • Online ISBN: 978-1-59259-818-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics