Skip to main content

Genomic Imprinting in Plants

  • Protocol
Genomic Imprinting

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 181))

Imprinting in Plants Affects the Endosperm but Not the Embryo

Genomic imprinting, though most extensively studied in mammals, has long been known to perform an important role in seed development in flowering plants. In this chapter, an overview of what is known to date about genomic imprinting in flowering plants and how this knowledge came into being will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaufman, M. H., Barton, S. C., and Surani, M. A. (1977) Normal postimplantation development of mouse parthenogenetic embryos to the forelimb bud stage. Nature 265, 53–55.

    PubMed  CAS  Google Scholar 

  2. Barton, S. C., Surani, M. A., and Norris, M. L. (1984) Role of paternal and maternal genomes in mouse development. Nature 311, 374–376.

    PubMed  CAS  Google Scholar 

  3. Surani, M. A. H., Barton, S. C., and Norris, M. L. (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548–550.

    PubMed  CAS  Google Scholar 

  4. McGrath, J. and Solter, D. (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183.

    PubMed  CAS  Google Scholar 

  5. Surani, M. A. H., Barton, S. C., and Norris, M. L. (1986) Nuclear transplantation in the mouse: heritable differences between maternal and paternal genomes after activation of the embryonic genome. Cell 45, 127–136.

    PubMed  CAS  Google Scholar 

  6. Thomson, J. A. and Solter, D. (1988) The developmental fate of androgenetic, parthenogenetic and gynogenetic cells in chimeric gastrulating mouse embryos. Genes Dev. 2, 1344–1351.

    PubMed  CAS  Google Scholar 

  7. Surani, M. A. H., Barton, S. C., and Norris, M. L. (1987) Influence of parental chromosomes on spatial specificity in androgenetic vs. parthenogenetic chimaeras in the mouse. Nature 326, 395–397.

    PubMed  CAS  Google Scholar 

  8. Nagy, A., Paldi, A., Dezso, L., Varga, L., and Magyar, A. (1987) Prenatal fate of parthenogenetic cells in mouse aggregation chimeras. Development 101, 67–71.

    PubMed  CAS  Google Scholar 

  9. Surani, M. A., Kothary, R., Allen, N. D., Singh, P. B., Fundele, R., Ferguson-Smith, A. C., and Barton, S. C. (1990) Genome imprinting and development in the mouse. Development 113(Suppl.), 89–98.

    Google Scholar 

  10. Schwere, S. (1896) Zur Entwicklungsgeschichte der Frucht von Taraxacum officinale Web.; ein Beitrag zur Embryologie der Compositen, “Flora” Bd. 82, pp. 32–66, Taf. II-V, Marburg.

    Google Scholar 

  11. Raunkiær, C. (1903) Kimdannelse uden Befrugtning hos Mælkebøtte (Taraxacum). Botanisk Tidsskrift 25, 110–140.

    Google Scholar 

  12. Murbeck, S. (1904) Parthenogenese bei den Gattungen Taraxacum und Hieracium. Bot. Not. 6, 285–296.

    Google Scholar 

  13. Rutishauser, A. (1954) Entwicklungserregung der Eizelle bei pseudogamen Arten der Gattung Ranunculus. (in German, with English, Italian, and French summary) Bull. Schweiz. Akad. Med. Wissensch. 10, 491–512.

    CAS  Google Scholar 

  14. Rutishauser, A. (1967) Fortpflanzungsmodus und Meiose apomiktischer Blütenpflanzen. Protoplasmatologia 6(3), 3–243.

    Google Scholar 

  15. Richards, A. J. (1970) Eutriploid facultative agamospermy in Taraxacum. New Phytol. 69, 761–774.

    Google Scholar 

  16. Richards, A. J. (1973) The origin of Taraxacum agamospecies. Bot. J. Linn. Soc. 66, 189–211.

    Google Scholar 

  17. Pogan, E. and Wcislo, H. (1995) Embryological analysis of Hieracium pilosella L from Poland. Acta Biol. Cracov. Ser. Bot. 37, 53–61.

    Google Scholar 

  18. Bruun, L. (1991) Histological and semiquantitative approaches to in vitro cellularresponses of ovule, embryo and endosperm in sugar beet, Beta vulgaris L. Sex. Plant Reprod. 4, 64–72.

    Google Scholar 

  19. Ferrant, V. and Bouharmont, J. (1994) Origin of gynogenetic embryos of Beta vulgaris L. Sex. Plant Reprod. 7, 12–16.

    Google Scholar 

  20. Hansen, A. L., Gertz, A., and Joersbo, M. (1995) Short-duration colchicine treatment for in vitro chromosome doubling during ovule culture of Beta vulgaris L. Plant Breeding 114, 515–519.

    CAS  Google Scholar 

  21. Miyoshi, K. and Asakura, N. (1996) Callus induction, regeneration of haploid plants and chromosome doubling in ovule cultures of pot gerbera (Gerbera jamesonii) Plant Cell Rep. 16, 1–5.

    CAS  Google Scholar 

  22. Mdarhri-Alaoui, M., Saidi, N., Chlyah, A., and Chlyah, H. (1998) Green haploid plant formation in durum wheat through in vitro gynogenesis. C.R. Acad. Sci. Ser. III: Life Sci. 321, 25–30.

    Google Scholar 

  23. Michalik, B., Adamus, A., and Nowak, E. (2000) Gynogenesis in Polish onion cultivars. J. Plant Physiol. 156, 211–216.

    CAS  Google Scholar 

  24. Clapham, D. (1971) In vitro development of callus from the pollen of Lolium and Hordeum. Z. Pfl anzenzüchtg. 65, 285–292.

    Google Scholar 

  25. Ouyang, K. H., Hu, H., Chuang, C. C., and Tseng, C.-C. (1973) Induction of pollen plants from anthers of Triticum aestivum L. cultured in vitro. Sci. Sinic. 16, 79–95.

    Google Scholar 

  26. Pretova, A., de Ruijter, N. C. A., van Lammeren, A. A. M., and Schel, J. H. N. (1993) Structural observations during androgenic microspore culture of the 4C1 genotype of Zea mays L. Euphytica 65, 61–69.

    Google Scholar 

  27. van den Bulk, R. W., de Vries van Hulten, H. P. J., Custers, J. B. M. and Dons, J. J. M. (1994) Induction of embryogenesis in isolated microspores of tulip. Plant Sci. 104, 101–111.

    Google Scholar 

  28. Binarova, P., Hause, G., Genklova, V., Cordewener, J. H. G., and Campagne, M. M. V. (1997) A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sex. Plant Reprod. 10, 200–208.

    Google Scholar 

  29. Atanassov, A., Zagorska, N, Boyadjiev, P., and Djilianov, D. (1995) In-vitro production of haploid plants. World J. Microbiol. Biotechnol. 11, 400–408.

    Google Scholar 

  30. Raghavan, V. (1976) Role of the generative cell in androgenesis in henbane. Science 191, 388–389.

    PubMed  CAS  Google Scholar 

  31. Tyukavin, G. B., Shmykova, N. A., and Monakhova, M. A. (1999) Cytological study of embryogenesis in cultured carrot anthers. Russian J. Plant Physiol. 46, 767–773.

    CAS  Google Scholar 

  32. Richards, A. J. (1986) Plant Breeding Sytems. George Allen & Unwin, London.

    Google Scholar 

  33. Sterk, A. A., Hommels, C. H., Jenniskens, M. J. P. J., Neuteboom, J. H., den Nijs, J. C. M., Oosterveld, P., and Segal, S. (1987) Paardebloemen-planten zonder vader. Koninklijke Nederlandse Natuurhistorische Vereniging, Utrecht, The Netherlands.

    Google Scholar 

  34. Schulz, P. and Jensen, W. A. (1974) Capsella embryogenesis: the development of the free nuclear endosperm. Protoplasma 80, 183–205.

    Google Scholar 

  35. Bhatnagar, S. P. and Sawhney, V. (1981) Endosperm-its morphology, ultrastructure, and histochemistry. Int. Rev. Cytol. 73, 55–102.

    Google Scholar 

  36. Lopes, M. A. and Larkins, B. A. (1993) Endosperm origin, development, and function. Plant Cell 5, 1383–1399.

    PubMed  CAS  Google Scholar 

  37. Berger, F. (1999) Endosperm development. Curr. Opin. Plant Biol. 2, 28–32.

    PubMed  CAS  Google Scholar 

  38. Schulz, P. and Jensen, W. A. (1971) Capsella embryogenesis: the chalazal proliferating tissue. J. Cell Sci. 8, 201–227.

    PubMed  CAS  Google Scholar 

  39. Mansfield, S. G. and Briarty, L. G. (1990) Development of the free-nuclear endosperm in Arabidopsis thaliana (L.) Arabidopsis Inf. Serv. 27.

    Google Scholar 

  40. Mansfield, S. G. (1994) Endosperm development, in Arabidopsis, An Atlas of Morphology and Development. (Bowman, J., ed.), Springer-Verlag, Berlin-Heidelberg-New York, pp. 385–397.

    Google Scholar 

  41. Håkansson, A. (1956) Seed development of Brassica oleracea and B. rapa after certain reciprocal pollinations. Hereditas 42, 373–396.

    Google Scholar 

  42. Mansfield, S. G., Briarty, L. G., and Erni, S. (1991) Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac. Can. J. Bot. 69, 447–460.

    Google Scholar 

  43. Chamberlin, M. A., Horner, H. T., and Palmer, R. G. (1993) Nutrition of the ovule, embryo sac, and young embryo in soybean: an anatomical and autoradiographic study. Can. J. Bot. 71, 1152–1168.

    Google Scholar 

  44. Brink, R. A. and Cooper, D. C. (1947) The endosperm in seed development. Bot. Rev. 13, 423–541.

    Google Scholar 

  45. Maheswari, P. (1950) An Introduction to the Embryology of the Angiosperms. McGraw-Hill, New York.

    Google Scholar 

  46. Vijayaraghavan, M. R. and Prabhakar, K. (1984) The endosperm, in Embryology of Angiosperms (Johri, B. M., ed.), Springer-Verlag, Berlin, pp. 319–376.

    Google Scholar 

  47. Mansfield, S. G. and Briarty, L. G. (1990b) Endosperm cellularization in Arabidopsis thaliana L. Arabidopsis Inf. Serv. 27.

    Google Scholar 

  48. Brown, R. C., Lemmon, B. E., Nguyen, H., and Olsen, O.-A. (1999) Development of endosperm in Arabidopsis thaliana. Sex. Plant Reprod. 12, 32–42.

    Google Scholar 

  49. Marinos, N. G. (1970) Embryogenesis of the pea (Pisum sativum) I. The cytological environment of the developing embryo. Protoplasma 70, 261–279.

    Google Scholar 

  50. Haig, D. and Westoby, M. (1991) Genomic imprinting in endosperm: its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Phil. Trans. R. Soc. Lond. B 333, 1–13.

    Google Scholar 

  51. Müntzing, A. (1930) Über Chromosomenvermehrung in Galeopsis-Kreuzungen und ihre phylogenetische Bedeutung. Hereditas (Lund) 14, 153–172.

    Google Scholar 

  52. Müntzing, A. (1933) Hybrid incompatibility and the origin of polyploidy. Hereditas (Lund) 18, 33–55.

    Google Scholar 

  53. Watkins, A. E. (1932) Hybrid sterility and incompatibility. J. Genet. 25, 125–162.

    Google Scholar 

  54. Howard, H. W. (1939) The size of seeds in diploid and autotetraploid Brassica oleracea L. J. Genet. 38, 325–340.

    Google Scholar 

  55. Cooper, D. C. and Brink, R. A. (1945) Seed collapse following matings between diploid and tetraploid races of Lycopersicon pimpinellifolium. Genetics 30, 376–401.

    PubMed  CAS  Google Scholar 

  56. Cooper, D. C. (1951) Caryopsis development following matings between diploid and tetraploid strains in Zea mays. Am. J. Bot. 38, 702–708.

    Google Scholar 

  57. Håkansson, A. (1952) Seed development after 2x, 4x crosses in Galeopsis pubescens. Hereditas 38, 425–448.

    Google Scholar 

  58. Håkansson, A. (1953) Endosperm formation after 2x, 4x crosses in certain cereals, especially in Hordeum vulgare. Hereditas 39, 57–64.

    Google Scholar 

  59. Håkansson, A. and Ellerström, S. (1950) Seed development after reciprocal crosses between diploid and tetraploid rye. Hereditas 36, 256–296.

    Google Scholar 

  60. Fagerlind, F. (1937) Embryologische, zytologische und bestäubungsexperimentelle Studien in der Familie Rubiaceae nebst Bemerkungen über einige Polyploiditätssprobleme. Acta Horti Bergiana 11, 195–470.

    Google Scholar 

  61. Boyes, J. W. and Thompson, W. P. (1937) The development of the endosperm and embryo in reciprocal interspecific crosses in cereals. J. Genet. 34.

    Google Scholar 

  62. Kihara, H. and Nishiyama, I. (1932) Different compatibility in reciprocal crosses of Avena with special reference to tetraploid hybrids between hexaploid and diploid species. Jpn. J. Bot. 6.

    Google Scholar 

  63. von Wangenheim, K.-H. (1962) Zur Ursache der Abortion von Samenanlagen in Diploid-Polyploid-Kreuzungen. II. Unterschiedliche Differenzierung von Endospermen mit gleichem Genom. Z. Vererbungslehre 93, 319–334.

    Google Scholar 

  64. Nishiyama, I. and Inomata, N. (1966) Embryological studies on cross-incompatibility between 2x and 4x in Brassica. Jpn. J. Genet. 41, 27–42.

    Google Scholar 

  65. Sarkar, K. R. and Coe, E. H., Jr. (1971) Anomalous fertilisation in diploid-tetraploid crosses in maize. Crop Sci. 11, 539–542.

    Google Scholar 

  66. Kermicle, J. L. (1971) Pleiotropic effects on seed development of the indeterminate gametophyte gene in maize. Science 166, 1422–1424.

    Google Scholar 

  67. Lin, B.-Y. (1984) Ploidy barrier to endosperm development in maize. Genetics 107, 103–115.

    PubMed  CAS  Google Scholar 

  68. Ehlenfeldt, M. K. and Ortiz, R. (1995) Evidence on the nature and origins of endosperm dosage requirements in Solanum and other Angiosperm genera. Sex. Plant Reprod. 8, 189–196.

    Google Scholar 

  69. Thompson, W. P. (1930) Causes of difference in success of reciprocal interspecific crosses. Am. Naturalist 64, 407–421.

    Google Scholar 

  70. Woodell, S. R. J. and Valentine, D. H. (1961) Studies in British primulas. IX. Seed incompatibility in diploid-autotetraploid crosses. New Phytol. 60, 282–294.

    Google Scholar 

  71. RĂ©dei, G. (1964) Crossing experiments with polyploids. Arabidopsis Electronic Information Service 1.

    Google Scholar 

  72. Scott, R. J., Spielman, M., Bailey, J., and Dickinson, H. G. (1998) Parent-oforigin effects on seed development in Arabidopsis thaliana. Development 125, 3329–3341.

    PubMed  CAS  Google Scholar 

  73. Kermicle, J. L. (1970) Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics 66, 69–85.

    PubMed  CAS  Google Scholar 

  74. Lin, B.-Y. (1982) Association of endosperm reduction with parental imprinting in maize. Genetics 100, 475–486.

    PubMed  CAS  Google Scholar 

  75. Haig, D., and Westoby, M. (1989) Parent-specific gene expression and the triploid endosperm. Am. Nat. 134, 147–155.

    Google Scholar 

  76. Kermicle, J. L. and Alleman, M. (1990) Gametic imprinting in maize in relation to the angiosperm life cycle. Development 113(Suppl.), 9–14.

    Google Scholar 

  77. Lund, G., Ciceri, P., and Viotti, A. (1995) Maternal-specific demethylation and expression of specific alleles of zein genes in the endosperm of Zea mays L. Plant J. 8, 571–581.

    PubMed  CAS  Google Scholar 

  78. Lund, G., Messing, J., and Viotti, A. (1995) Endosperm-specific demethylation and activation of specific alleles of alpha-tubulin genes of Zea mays L. Mol. Gen. Genet. 246, 716–722.

    PubMed  CAS  Google Scholar 

  79. Abbot, R. J. and Gomes, M. F. (1989) Population genetic structure and outcrossing rate in Arabidopsis thaliana (L.) Heynh. Heredity 62, 411–418.

    Google Scholar 

  80. Stebbins, G.L. (1974) Flowering Plants: Evolution Above the Species Level. London, Edward Arnold.

    Google Scholar 

  81. Finnegan, E. J., Peacock, W. J., and Dennis, E. S. (1998) Reduced DNA methylation in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 223–247.

    PubMed  CAS  Google Scholar 

  82. Adams, S., Vinkenoog, R., Spielman, M., Dickinson, H. G., and Scott, R. J. (2000) Parental imprinting in Arabidopsis requires DNA methylation. Development 127, 2493–2502.

    PubMed  CAS  Google Scholar 

  83. Finnegan, E. J., Peacock, W. J., and Dennis, E. S. (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc. Natl. Acad. Sci. USA 93, 8449–8454.

    PubMed  CAS  Google Scholar 

  84. van Blokland, R., ten Lohuis, M. and Meyer, P. (1997) Condensation of chromatin in transcriptional regions of an inactivated plant transgene: evidence for an active role of transcription in gene silencing. Mol. Gen. Genet. 257, 1–13.

    PubMed  Google Scholar 

  85. Assaad, F. F. and Signer, E. R. (1992) Somatic and germinal recombination of a direct repeat in Arabidopsis. Genetics 132, 553–566.

    PubMed  CAS  Google Scholar 

  86. Ye, F. and Signer, E. R. (1996) RIGS (repeat-induced gene silencing) in Arabidopsis is transcriptional and alters chromatin configuration. Proc. Natl. Acad. Sci. USA 93, 10,881–10,886.

    PubMed  CAS  Google Scholar 

  87. Razin, A. (1998) CpG methylation, chromatin structure and gene silencing-a three way connection. EMBO J. 17, 4905–4908.

    PubMed  CAS  Google Scholar 

  88. Görz, A., Schafer, W., Hirasawa, E., and Kahl, G. (1988) Constitutive and lightinduced Dnase I hypersensitive sites in the rbcS-genes of pea (Pisum sativum). Plant Mol. Biol. 11, 561–573.

    Google Scholar 

  89. Amedeo, P., Habu, Y., Afsar, K., Mittelsten Sceid, O., and Paszkowski, J. (2000) Disruption of the plant gene MOM releases transcriptional silencing of methylated genes. Nature 405, 203–206.

    PubMed  CAS  Google Scholar 

  90. Jaenisch, R. (1997) DNA methylation and imprinting: why bother? Trends Genet. 13, 323–329.

    PubMed  CAS  Google Scholar 

  91. Li, E., Bestor, T. H., and Jaenisch, R. (1992) Targeted mutation of the DNA methyltranferase gene results in embryonic lethality. Cell 69, 915–926.

    PubMed  CAS  Google Scholar 

  92. Genger, R. K., Kovac, K. A., Dennis, E. S., Peacock, W. J., and Finnegan, E. J. (1999) Multiple DNA methyltransferase genes in Arabidopsis thaliana. Plant Mol. Biol. 41, 269–278.

    PubMed  CAS  Google Scholar 

  93. Finnegan, E. J., Peacock, W. J., and Dennis, E. S. (2000) DNA methylation, a key regulator of plant development and other processes. Curr. Opin. Genet. Dev. 10, 217–223.

    PubMed  CAS  Google Scholar 

  94. Jacobsen, S. E. and Meyerowitz, E. M. (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277, 1100–1103.

    PubMed  CAS  Google Scholar 

  95. Li, E., Beard, C., and Jaenisch, R. (1993) Role for DNA methylation in genomic imprinting. Nature 366, 362–365.

    PubMed  CAS  Google Scholar 

  96. Tilghman, S. M. (1999) The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 96, 185–193.

    PubMed  CAS  Google Scholar 

  97. Chaudhuri, S. and Messing, J. (1994) Allele-specific parental imprinting of dzr1, a posttranscriptional regulator of zein accumulation. Proc. Natl. Acad. Sci. USA 91, 4867–4871.

    PubMed  CAS  Google Scholar 

  98. Matzke, M. and Matzke, A. J. M. (1993) Genomic imprinting in plants: parental effects and trans-inactivation phenomena. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 53–76.

    CAS  Google Scholar 

  99. Martienssen, R. (1998) Chromosomal imprinting in plants. Curr. Opin. Genet. Dev. 8, 240–244.

    PubMed  CAS  Google Scholar 

  100. Castle, L. A., Errampalli, D., Atherton, T. L., Franzmann, L. H., Yoon, E. S., and Meinke, D. W. (1993) Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol. Gen. Genet. 241, 504–514.

    PubMed  CAS  Google Scholar 

  101. Ohad, N., Margossian, L., Hsu, Y.-C., Williams, C., Repetti, P., and Fischer, R. L. (1996) A mutation that allows endosperm development without fertilization. Proc. Natl. Acad. Sci. USA 93, 5319–5324.

    PubMed  CAS  Google Scholar 

  102. Ohad, N., Yadegari, R., Margossian, L., Hannon, M., Michaeli, D., Harada, J. J., Goldberg, R. B., and Fischer, R. L. (1999) Mutations in FIE, a WD Polycomb group gene, allow endosperm development without fertilization. Plant Cell 11, 407–415.

    PubMed  CAS  Google Scholar 

  103. Chaudhury, A. M., Ming, L., Miller, C., Craig, S., Dennis, E. S., and Peacock, W. J. (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94, 4223–4228.

    PubMed  CAS  Google Scholar 

  104. Grossniklaus, U., Vielle-Calzada, J.-P., Hoeppner, M. A., and Gagliano, W. (1998) Maternal control of embryogenesis by MEDEA, a Polycomb group gene in Arabidopsis. Science 280, 446–450.

    PubMed  CAS  Google Scholar 

  105. Kiyosue, T., Ohad, N., Yadegari, R., Hannon, M., Dinneny, J., Wells, D., Katz, A., Margossian, L., Harada, J. J., Goldberg, R. B., and Fischer, R. L. (1999) Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc. Natl. Acad. Sci. USA 96, 4186–4191.

    PubMed  CAS  Google Scholar 

  106. Luo, M., Bilodeau, P., Koltunow, A., Dennis, E. S., Peacock, W. J., and Chaudhury, A. (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 96, 296–301.

    PubMed  CAS  Google Scholar 

  107. Vinkenoog, R., Spielman, M., Adams, S., Fischer, R. L., Dickinson, H. G., and Scott, R. J. (2000) Hypomethylation promotes autonomous endosperm development and rescues post-fertilisation lethality in fie-mutants. Plant Cell 12, 2271–2282.

    PubMed  CAS  Google Scholar 

  108. Vielle-Calzada, J.-P., Thomas, J., Spillane, C., Coluccio, A., Hoeppner, M. A., and Grossniklaus, U. (1999) Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev. 13, 2971–2982.

    PubMed  CAS  Google Scholar 

  109. Vongs, A., Kakutani, T., Martienssen, R. A., and Richards, E. J. (1993) Arabidopsis thaliana DNA methylation mutants. Science 260, 1926–1928.

    PubMed  CAS  Google Scholar 

  110. Kakutani, T., Jeddeloh, J. A., and Richards, E. J. (1995) Characterisation of an Arabidopsis thaliana DNA hypomethylation mutant. Nucleic Acids Res. 23, 130–137.

    PubMed  CAS  Google Scholar 

  111. Jeddeloh, J. A., Stokes, T. L., and Richards, E. J. (1999) Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nature Genet. 22, 94–97.

    PubMed  CAS  Google Scholar 

  112. Peterson, C. L. and Workman, J. L. (2000) Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr. Opin. Genet. Dev. 10, 187–192.

    PubMed  CAS  Google Scholar 

  113. Campbell, R. B., Sinclair, D. A. R., Couling, M., and Brock, H. W. (1995) Genetic interactions and dosage effects of polycomb group genes of Drosophila. Mol. Gen. Genet. 246, 291–300.

    PubMed  CAS  Google Scholar 

  114. Shermoen, A. W. and O’Farrell, P. H. (1991) Progression of the cell cycle through mitosis leads to abortion of nascent transcripts. Cell 67, 303–310.

    PubMed  CAS  Google Scholar 

  115. Kinoshita, T., Yadegari, R., Harada, J. J., Goldberg, R. B., and Fischer, R. L. (1999) Imprinting of the MEDEA Polycomb gene in the Arabidopsis endosperm. Plant Cell 11, 1945–1952.

    PubMed  CAS  Google Scholar 

  116. Vielle-Calzada, J-P., Baskar, R., and Grossniklaus, U. (2000) Delayed activation of the paternal genome during seed development. Nature 404, 91–94.

    PubMed  CAS  Google Scholar 

  117. Pirotta, V. (1997) PcG complexes and chromatin silencing. Curr. Opin. Genet. Dev. 7, 249–258.

    Google Scholar 

  118. van Lohuizen, M., Tijms, M., Voncken. J. W., Schumacher, A., Magnuson, T., and Wientjens, E. (1998) Interaction of mouse Polycomb-Group (Pc-G) proteins Enx1 and Enx2 with Eed: indication for separate Pc-G complexes. Mol. Cell Biol. 18, 3572–3579.

    PubMed  Google Scholar 

  119. Sewalt, R. G. A. B., van der Vlag, J., Gunster, M. J., Hamer, K. M., den Blaauwen, J. L., Satijn, D. P. E., Hendrix, T., van Driel, R., and Otte, A. P. (1998) Characterization of interactions between the mammalian Polycomb-Group proteins Enx1/EZH2 and EED suggests the existence of different mammalian Polycomb-Group protein complexes. Mol. Cell Biol. 18, 3586–3595.

    PubMed  CAS  Google Scholar 

  120. Sondek, J., Boh, A., Lambright, D. G., Hamm, H. E., and Sigler, P. B. (1996) Crystal structure of a GA protein ′′ dimer at 2.1 Å resolution. Nature 379, 369–374.

    PubMed  CAS  Google Scholar 

  121. Ng, J., Li, R. H., Morgan, K., and Simon, J. (1997) Evolutionary conservation and predicted structure of the Drosophila extra sex combs repressor protein. Mol. Cell Biol. 17, 6663–6672.

    PubMed  CAS  Google Scholar 

  122. Jenuwein, T., Laible, G., Dorn, R., and Reuter, G. (1998) SET domain proteins modulate chromatin domains in eu-and heterochromatin. Cell. Mol. Life Sci. 54, 80–93.

    PubMed  CAS  Google Scholar 

  123. Jones, C. A., Ng, J., Peterson, A. J., Morgan, K., Simon, J., and Jones, R. S. (1998) The Drosophila esc and E(z) proteins are direct partners in Polycomb group-mediated repression. Mol. Cell Biol. 18, 2825–2834.

    PubMed  CAS  Google Scholar 

  124. Ma, H. (1997) Polycomb in plants. Trends Genet. 13, 167.

    PubMed  CAS  Google Scholar 

  125. Preuss, D. (1999) Chromatin silencing and Arabidopsis development: a role for Polycomb proteins. Plant Cell 11, 765–767.

    PubMed  CAS  Google Scholar 

  126. Gutjahr, T., Frei, E., Spicer, C., Baumgartner, S., White, R. A. H., and Noll, M. (1995) The Polycomb-group gene, extra sex combs, encodes a nuclear member of the WD-40 repeat family. EMBO J. 14, 4296–4306.

    PubMed  CAS  Google Scholar 

  127. Cassar, G., Mohammed, M., John, T. M., Gadzinski, P., and Etches, R. J. (1998) Differentiating between parthenogenetic and positive development embryos in turkeys by molecular sexing. Poultry Sci. 77, 1463–1468.

    CAS  Google Scholar 

  128. Moritz, C., McCallum, H., Donnellan, S., and Roberts, J. D. (1991) Parasite loads in parthenogenetic and sexual lizards (Heteronotia binoei): support for the Red Queen hypothesis. Proc. R. Soc. Lond. B 244, 145–149.

    Google Scholar 

  129. MacGulloch, R. D., Murphy, R. W., Kupriyanova, L. A., and Darevski, I. S. (1997) The Caucasian rock lizard Lacerta rostombekovi: a monoclonal parthenogenetic vertebrate. Biochem. Syst. Ecol. 25, 33–37.

    Google Scholar 

  130. Price, A. H. (1992) Comparative behavior in lizards of the genus Cnemidophorus (Teiidae) with comments on the evolution of parthenogenesis in reptiles. Copeia 2, 323–331.

    Google Scholar 

  131. Krotoski, D. M., Reinschmidt, D. C., and Tompkins, R. (1985) Developmental mutants isolated from wild-caught Xenopus laevis by gynogenesis and inbreeding. J. Exp. Zool. 233, 443–449.

    PubMed  CAS  Google Scholar 

  132. Yu, H. J., Shi, C. P., and Liang, J. H. (1986) Production of tetraploid and androgenetic diploid adults of Xenopus laevis by suppression of first cleavage. Kexue Tongbao 31, 720.

    Google Scholar 

  133. Tompkins, R. and Reinschmidt, D. (1991) Experimentally induced homozygosity in Xenopus laevis. Methods Cell Biol. 36, 35–44.

    PubMed  CAS  Google Scholar 

  134. Hubbs, C. L. and Hubbs, L. C. (1932) Apparent pathenogenesis in nature, in a form of fish of hybrid origin. Science 76, 628–630.

    PubMed  CAS  Google Scholar 

  135. Vrijenhoek, R. (1994) Unisexual fish: model systems for studying ecology and evolution. Annu. Rev. Ecol. Syst. 25, 71–96.

    Google Scholar 

  136. Streisinger, G., Walker, C., Dower, N., Knauber, D., and Singer, F. (1981) Production of clones of homozygous diploid zebra fish (Brachyodanio rerio). Nature 291, 293–296.

    PubMed  CAS  Google Scholar 

  137. May, B., Henley, K. J., Krueger, C. C., and Gloss, S. P. (1988) Androgenesis as a mechanism for chromosome set manipulation in brook trout (Salvelinus fontinalis). Aquaculture 75, 57–70.

    Google Scholar 

  138. Ihssen, P. E., McKay, L. R., McMillan, I., and Phillips, R. B. (1990) Ploidy manipulation and gynogenesis in fishes: cytogenetic and fisheries applications. Trans. Am. Fish. Soc. 119, 698–717.

    Google Scholar 

  139. Corley-Smith, G. E., Lin, C. J., and Brandhorst, B. P. (1996) Production of androgenetic zebrafish (Danio rerio). Genetics 142, 1265–1276.

    PubMed  CAS  Google Scholar 

  140. Hörstgen-Schwark, G. (1993) Production of homozygous diploid zebra fish (Brachydanio rerio). Aquaculture 112, 25–37.

    Google Scholar 

  141. Martin, C. C. and McGowan, R. (1995) Parent-of-origin specific effects on the methylation and expression of a transgene in the zebrafish, Danio rero. Genet. Res. Camb. 65, 21–28.

    CAS  Google Scholar 

  142. Drosopoulos, S. (1976) Triploid pseudogamous biotype of the leaf-hopper Muellerianella fairmairei. Nature 263, 499–500.

    PubMed  CAS  Google Scholar 

  143. Drosopoulos, S. (1978) Laboratory synthesis of a pseudogamous triploid species of the genus Muellerianella (Homoptera, Delphacidae. Evolution 32, 916–920.

    Google Scholar 

  144. Normark, B. B. (2000) Molecular systematics and evolution of the aphid family Lachnidae. Mol. Phylogen. Evol. 14, 131–140.

    CAS  Google Scholar 

  145. Gautam, D. C., Crema, R., and Pagliai, A. M. B. (1993) Cytogenetic mechanisms in Aphids. Bollettino di Zoologia 60, 233–244.

    Google Scholar 

  146. Tinti, F. and Scali, V. (1993) Chromosomal evidence of hemiclonal and allpaternal offspring production in Bacillus rossius grandii benazzii (Insecta, Phasmatodea). Chromosoma 102, 403–414.

    Google Scholar 

  147. Tinti, F. and Scali, V. (1995) Allozymic and cytological evidence for hemiclonal, all paternal, and mosaic offspring of the hybridogenetic stick insect Bacillus rossius grandii grandii. J. Exp. Zool. 273, 149–159.

    Google Scholar 

  148. Komma, D. J. and Endow, S. A. (1995) Haploidy and androgenesis in Drosophila. Proc. Natl. Acad. Sci. USA 92, 11,884–11,888.

    PubMed  CAS  Google Scholar 

  149. Presgraves, D. C. (2000) A genetic test of the mechanism of Wolbachia-induced cytoplasmic incompatibility in Drosophila. Genetics 154, 771–776.

    PubMed  CAS  Google Scholar 

  150. Cook, J. M. (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71, 421–435.

    Google Scholar 

  151. Beukeboom, L. W. (1995) Sex determination in Hymenoptera: a need for genetic and molecular studies. BioEssays 17, 813–817.

    PubMed  CAS  Google Scholar 

  152. Huigens, M. E., Luck, R. F., Klaassen, R. H. G., Maas, M. F. P. M., Timmermans, M. J. T. N., and Stouthamer, R. (2000) Infectious parthenogenesis. Nature 405, 178–179.

    PubMed  CAS  Google Scholar 

  153. Crouse, H. V. (1960) The controlling element in sex chromosome behaviour in Sciara. Genetics 45, 1425–1443.

    Google Scholar 

  154. Crouse, H. V. (1966) An inducible change in state on the chromosome inheritance and the problem of “imprinting” in Sciara (Sciaridae, Diptera). Chromosoma 18, 230–253.

    Google Scholar 

  155. Birger, Y., Shemer, R., Perk, J., and Razin, A. (1999) The imprinting box of the mouse Igf2r gene. Nature 397, 84–88.

    PubMed  CAS  Google Scholar 

  156. Stephens, S. G. (1942) Colchicine-produced polyploids in Gossypium: an autotetraploid asiatic cotton and certain of its hybrids with diploid species. J. Genet. 44, 272–295.

    Google Scholar 

  157. von Wangenheim, K.-H. (1957) Untersuchungen über den Zusammenhang zwischen Chromosomenzahl und Kreuzbarkeit bei Solanum-Arten. Zeitschrift für indukt. Abstammungs-und Vererbungslehre 88, 21–37.

    Google Scholar 

  158. Howard, H. W. (1947) Seed size in crosses between diploid and autotetraploid Nasturtium officinale and allotetraploid N. uniseriatum. J. Genet. 48, 111–118.

    CAS  Google Scholar 

  159. Johnston, S. A., den Nijs, T. P. M., Peloquin, S. J., and Hanneman, R. E. (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor. Appl. Genet. 57, 5–9.

    Google Scholar 

  160. Ortiz, R. and Ehlenfeldt, M. K. (1992) The importance of endosperm balance number in potato breeding and the evolution of tuber-bearing Solanum species. Euphytica 60, 105–113.

    Google Scholar 

  161. Johnston, S. A. and Hanneman, R. E. (1982) Manipulations of endosperm balance number overcome crossing barriers between diploid Solanum species. Science 217, 446–448.

    PubMed  CAS  Google Scholar 

  162. Quarin, C. L. (1999) Effect of pollen source and pollen ploidy on endosperm formation and seed set in pseudogamous apomictic Paspalum notatum. Sex. Plant Reprod. 11, 331–335.

    Google Scholar 

  163. van Dijk, P. and J. van Damme (2000) Apomixis technology and the paradox of sex. Trends Plant Sci. 5, 81–84.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Vinkenoog, R., Spielman, M., Adams, S., Dickinson, H.G., Scott, R.J. (2002). Genomic Imprinting in Plants. In: Ward, A. (eds) Genomic Imprinting. Methods in Molecular Biology™, vol 181. Humana Press. https://doi.org/10.1385/1592592112:327

Download citation

  • DOI: https://doi.org/10.1385/1592592112:327

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-741-0

  • Online ISBN: 978-1-59259-211-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics