Skip to main content

Tomato (Lycopersicum esculentum)

  • Protocol
Book cover Agrobacterium Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 343))

Summary

Tomato (Lycopersicum esculentum) is an important fruit crop in the Americas, southern Europe, the Middle East, and India, with increasing production in China, Japan, and Southeast Asia. It is amenable to producing pharmaceuticals, particularly for oral delivery; for many of the same reasons, it is a popular vegetable. Its fruit does not contain toxic substances and is palatable uncooked; it is easily processed; the plants are able to be propagated by seed or clonally by tip or shoot cuttings; the plants have a high yield of fruit; there is reasonable biomass and protein content; and they are easily grown under containment. This chapter describes Agrobacterium-mediated transformation of the tomato nucleus using cotyledons as explants. We have used this protocol to generate transgenic lines from several tomato cultivars expressing various genes of interest and selectable markers. We also provide protocols for molecular characterization of transgenic lines and batch processing tomato fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hsieh, T. H., Lee, J. T., Yang, P. T., et al. (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 129, 1086–1094.

    Article  PubMed  CAS  Google Scholar 

  2. Jia, G. X., Zhu, Z. Q., Chang, F. Q., and Li, Y. X. (2002) Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep. 21, 141–146.

    Article  CAS  Google Scholar 

  3. Mishra, S. K., Tripp, J., Winkelhaus, S., Tschiersch, B., Theres, K., Nover, L., and Scharf, K. D. (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev. 16, 1555–1567.

    Article  PubMed  CAS  Google Scholar 

  4. Gubba, A., Gonsalves, C., Stevens, M. R., Tricoli, D. M., and Gonsalves, D. (2002) Combining transgenic and natural resistance to obtain broad resistance to topovirus infection in tomato (Lycopersicon esculentum Mill). Mol. Breeding 9, 13–23.

    Article  CAS  Google Scholar 

  5. Li, L. and Steffens, J. C. (2002) Over expression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215, 239–247.

    Article  PubMed  CAS  Google Scholar 

  6. Lincoln, J. E., Richael, C., Overduin, B., Smith, K., Bostock, R., and Gilchrist, D. G. (2002) Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proc. Natl. Acad. Sci. USA 99, 15217–15221.

    Article  PubMed  CAS  Google Scholar 

  7. Carey, A. T., Smith, D. L., Harrison, E., et al. (2001) Down-regulation of a ripening-related beta-galactosidase gene (TBG1) in transgenic tomato fruits. J. Exp. Bot. 52, 663–668.

    PubMed  CAS  Google Scholar 

  8. Mehta, R. A., Cassol, T., Li, N., Ali, N., Handa, A. K., and Mattoo, A. K. (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat. Biotechnol. 20, 613–618.

    Article  PubMed  CAS  Google Scholar 

  9. Sandhu, J. S., Krasnyanski, S. F., Domier, L. L., Korban, S. S., Osadjan, M. D., and Buetow, D. E. (2000) Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res. 9, 127–135.

    Article  PubMed  CAS  Google Scholar 

  10. Kim, C. H., Kim, K. I., Hong, S. H., Lee, Y. H., and Chung, I. S. (2001) Improved production of recombinant rotavirus VP6 in sodium butyrate-supplemented suspension cultures of transgenic tomato (Lycopersicon esculentum Mill.) cells. Biotechnol. Letts. 23, 1061–1066.

    Article  CAS  Google Scholar 

  11. Jani, D., Meena, L. S., Mohammad, Q., et al. (2002) Expression of cholera toxin B subunit in transgenic tomato plants. Transgenic Res. 11, 447–454.

    Article  PubMed  CAS  Google Scholar 

  12. Ma, Y., Lin, S. Q., Gao, Y., et al. (2003) Expression of ORF2 partial gene of hepatitis E virus in tomatoes and immunoactivity of expression products. World J. Gastroenterol. 9, 2211–2215.

    PubMed  CAS  Google Scholar 

  13. Walmsley, A. M., Kirk, D. D., and Mason, H. S. (2003) Passive immunization of mice pups through oral immunization of dams with a plant-derived vaccine. Immunol. Lett. 86, 71–76.

    Article  PubMed  CAS  Google Scholar 

  14. Walmsley, A. M., Alvarez, M. L., Jin, Y., et al. (2003) Expression of the B subunit of Escherichia coli heat-labile enterotoxin as a fusion protein in transgenic tomato. Plant Cell Rep. 21, 1020–1026.

    Article  PubMed  CAS  Google Scholar 

  15. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning—A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  16. Crowther, J. R. (1995) ELISA. Theory and practice. Methods Mol. Biol. 42, 1–218.

    PubMed  CAS  Google Scholar 

  17. Bruyns, A.-M., De Neve, M., De Jaeger, G., De Wilde, C., Rouzé, P., and Depicker, A. (1998), in Recombinant Proteins from Plants, vol. 3 (Cunningham, C. and Porter, A. J. R., eds.), Humana Press, Totowa, NJ, pp. 251–269.

    Chapter  Google Scholar 

  18. Ling, H.-Q., Kriseleit, D., and Ganal, M. W. (1998) Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.). Plant Cell Rep. 17, 843–847.

    Article  CAS  Google Scholar 

  19. Costa, M. G. C., Nogueira, F. T. S., Figueira, M. L., Otoni, W. C., Brommonschenket, S. H., and Cecon, P. R. (2000) Influence of the antibiotic timentin on plant regeneration of tomato (Lycopersicon esculentum Mill.) cultivars. Plant Cell Rep. 19, 327–332.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Eck, J.V., Kirk, D.D., Walmsley, A.M. (2006). Tomato (Lycopersicum esculentum). In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 343. Humana Press. https://doi.org/10.1385/1-59745-130-4:459

Download citation

  • DOI: https://doi.org/10.1385/1-59745-130-4:459

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-536-1

  • Online ISBN: 978-1-59745-130-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics