Skip to main content

Functional Analysis of Nocturnin

A Circadian Clock-Regulated Gene Identified by Differential Display

  • Protocol
  • 636 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 317))

Abstract

Within the retina there is a circadian clock that controls the 24-h timing of processes such as hormone release, cell movement, and gene transcription. In an effort to better understand the molecular nature of this retinal clock, a differential display (DD) screen was performed to isolate a gene with high amplitude circadian rhythmicity in the Xenopus retina. A novel gene expressed in the early evening in photoreceptor cells was isolated and named nocturnin for night factor. This article outlines the steps we took to study a protein of unknown function, particularly highlighting the analyses one can perform when little more than the primary sequence of a gene is known. In addition, we describe the results of sequence analysis that assisted in predicting the function of nocturnin. We have shown that nocturnin acts as a deadenylase in vitro, removing the poly(A) tail from a mature messenger RNA in a process that either leads to degradation or translational silencing of a message. Although the role of nocturnin in the retina is unknown, future studies to identify target mRNAs that are deadenylated by nocturnin will assist in elucidating its physiological role in this tissue.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yamazaki, S., Numano, R., Abe, M., et al. (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685.

    Article  PubMed  CAS  Google Scholar 

  2. Besharse, J. C. and Iuvone, P. M. (1983) Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature 305, 133–135.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson, F. E. and Green, C. B. (2000) Symphony of rhythms in the Xenopus laevis retina. Microsc. Res. Tech. 50, 360–372.

    Article  PubMed  CAS  Google Scholar 

  4. Green, C. B. and Besharse, J. C. (1997) Identification of vertebrate circadian clock-regulated genes by differential display. Methods Mol. Biol. 85, 219–230.

    PubMed  CAS  Google Scholar 

  5. Green, C. B. and Besharse, J. C. (1996) Use of a high stringency differential display screen for identification of retinal mRNAs that are regulated by a circadian clock. Brain Res. Mol. Brain Res. 37, 157–165.

    Article  PubMed  CAS  Google Scholar 

  6. Green, C. B. and Besharse, J. C. (1996) Identification of a novel vertebrate circadian clock-regulated gene encoding the protein nocturnin. Proc. Natl. Acad. Sci. USA 93, 14,884–14,888.

    Article  PubMed  CAS  Google Scholar 

  7. Liu, X. and Green, C. B. (2002) Circadian regulation of nocturnin transcription by phosphorylated CREB in Xenopus retinal photoreceptor cells. Mol. Cell Biol. 22, 7501–7511.

    Article  PubMed  CAS  Google Scholar 

  8. Cahill, G. M. and Besharse, J. C. (1993) Circadian clock functions localized in Xenopus retinal photoreceptors. Neuron 10, 573–577.

    Article  PubMed  CAS  Google Scholar 

  9. Hayasaka, N., LaRue, S. I., and Green, C. B. (2002) In vivo disruption of Xenopus CLOCK in the retinal photoreceptor cells abolishes circadian melatonin rhythmicity without affecting its production levels. J. Neurosci. 22, 1600–1607.

    PubMed  CAS  Google Scholar 

  10. Zhu, H. and Green, C. B. (2001) Three cryptochromes are rhythmically expressed in Xenopus laevis retinal photoreceptors. Mol. Vis. 7, 210–215.

    PubMed  CAS  Google Scholar 

  11. Zhu, H., LaRue, S., Whiteley, A., Steeves, T. D., Takahashi, J. S., and Green, C. B. (2000) The Xenopus clock gene is constitutively expressed in retinal photoreceptors. Brain Res. Mol. Brain Res. 75, 303–308.

    Article  PubMed  CAS  Google Scholar 

  12. Amaya, E. and Kroll, K. L. (1999) A method for generating transgenic frog embryos. Methods Mol. Biol. 97, 393–414.

    PubMed  CAS  Google Scholar 

  13. Kroll, K. L. and Amaya, E. (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–3183.

    PubMed  CAS  Google Scholar 

  14. Liu, X. and Green, C. B. (2001) A novel promoter element, photoreceptor conserved element II, directs photoreceptor-specific expression of nocturnin in Xenopus laevis. J. Biol. Chem. 276, 15,146–15,154.

    Article  PubMed  CAS  Google Scholar 

  15. Knox, B. E., Schlueter, C., Sanger, B. M., Green, C. B., and Besharse, J. C. (1998) Transgene expression in Xenopus rods. FEBS Lett. 423, 117–121.

    Article  PubMed  CAS  Google Scholar 

  16. Altschul, S. F., Madden, T. L., Schaffer, A. A., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  17. Green, C. B. (2003) Molecular control of Xenopus retinal circadian rhythms. J. Neuroendocrinoloy 15, 350–354.

    Article  CAS  Google Scholar 

  18. Dupressoir, A., Morel, A. P., Barbot, W., Loireau, M. P., Corbo, L., and Heidmann, T. (2001) Identification of four families of yCCR4-and Mg2+-dependent endonuclease-related proteins in higher eukaryotes, and characterization of orthologs of yCCR4 with a conserved leucine-rich repeat essential for hCAF1/hPOP2 binding. BMC Genomics 2, 9.

    Article  PubMed  CAS  Google Scholar 

  19. Whisstock, J. C., Romero, S., Gurung, R., et al. (2000) The inositol polyphosphate 5-phosphatases and the apurinic/apyrimidinic base excision repair endonucleases share a common mechanism for catalysis. J. Biol. Chem. 275, 37,055–37,0561.

    Article  PubMed  CAS  Google Scholar 

  20. Dlakic, M. (2000) Functionally unrelated signalling proteins contain a fold similar to Mg2+-dependent endonucleases. Trends Biochem. Sci. 25, 272–273.

    Article  PubMed  CAS  Google Scholar 

  21. Chen, J., Chiang, Y. C., and Denis, C. L. (2002) CCR4, a 3′–5′ poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMB0 J. 21, 1414–1426.

    Article  CAS  Google Scholar 

  22. Draper, M. P., Liu, H. Y., Nelsbach, A. H., Mosley, S. P., and Denis, C. L. (1994) CCR4 is a glucose-regulated transcription factor whose leucine-rich repeat binds several proteins important for placing CCR4 in its proper promoter context. Mol. Cell Biol. 14, 4522–4531.

    PubMed  CAS  Google Scholar 

  23. Tucker, M., Valencia-Sanchez, M. A., Staples, R. R., Chen, J., Denis, C. L., and Parker, R. (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377–386.

    Article  PubMed  CAS  Google Scholar 

  24. Wilusz, C. J., Wormington, M., and Peltz, S. W. (2001) The cap-to-tail guide to mRNA turnover. Nat. Rev. Mol. Cell Biol. 2, 237–246.

    Article  PubMed  CAS  Google Scholar 

  25. Wickens, M., Goodwin, E.B., Kimble, J., Strickland, S. and Hentze, M.W. (2000) Translational control of developmental decisions, in Translational Control of Gene Expression (Sonenberg, N., Hershey, J. W. B., and Mathews, M. B., eds.), Cold Spring Harbor, NY, pp. 295–370.

    Google Scholar 

  26. Baggs, J. E. and Green, C. B. (2003) Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA. Curr. Biol. 13, 189–198.

    Article  PubMed  CAS  Google Scholar 

  27. So, W. V. and Rosbash, M. (1997) Post-transcriptional regulation contributes to Drosophila clock gene mRNA cycling. EMB0 J. 16, 7146–7155.

    Article  CAS  Google Scholar 

  28. Wilsbacher, L. D., Yamazaki, S., Herzog, E. D., et al. (2002) Photic and circadian expression of luciferase in mPeriod1-luc transgenic mice in vivo. Proc. Natl. Acad. Sci. USA 99, 489–494.

    Article  PubMed  CAS  Google Scholar 

  29. Adamus, G., Zam, Z. S., Arendt, A., Palczewski, K., McDowell, J. H., and Hargrave, P. A. (1991) Anti-rhodopsin monoclonal antibodies of defined specificity: characterization and application. Vision Res. 31, 17–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A portion of the original data presented in this chapter was generated by Xiaorong Liu, and we thank her for her major contributions toward the current understanding of nocturnin. The authors thank Andrea Forbes, Argy Stampas, and Angie Trevino for constructing the GST-nocturnin plasmids and Paul Hargrave for the gift of the B630N antibody. We also thank Dr. Ammasi Periasamy and the staff of the Keck Center for Cellular Imaging for assistance with confocal microscopy.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Baggs, J.E., Green, C.B. (2006). Functional Analysis of Nocturnin. In: Liang, P., Meade, J.D., Pardee, A.B. (eds) Differential Display Methods and Protocols. Methods in Molecular Biology, vol 317. Humana Press. https://doi.org/10.1385/1-59259-968-0:243

Download citation

  • DOI: https://doi.org/10.1385/1-59259-968-0:243

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-338-1

  • Online ISBN: 978-1-59259-968-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics