Skip to main content

Developmental Control of Growth and Cell Cycle Progression in Drosophila

  • Protocol
Book cover Cell Cycle Control

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 296))

Abstract

Drosophila melanogaster provides an outstanding experimental system to study the regulation of cell cycle progression during animal development. Sophisticated forward and reverse genetic techniques and the ability to observe detailed cell biological phenomena in vivo have allowed an unparalleled analysis of the cell cycle in the context of a whole animal. This chapter provides an overview of the diverse modes of cell cycle control that are utilized at different stages of Drosophila development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubin, G. M. and Lewis, E. B. (2000) A brief history of Drosophila’s contributions to genome research. Science 287, 2216–2218.

    PubMed  Google Scholar 

  2. Adams, M. D., Celniker, S. E., Holt, R. A., et al. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.

    PubMed  Google Scholar 

  3. Adams, M. D. and Sekelsky, J. J. (2002) From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nat. Rev. Genet. 3, 189–198.

    PubMed  Google Scholar 

  4. St. Johnston, D. (2002) The art and design of genetic screens: Drosophila melanogaster. Nat. Rev. Genet. 3, 176–188.

    PubMed  Google Scholar 

  5. Edgar, B. A. and Lehner, C. F. (1996) Developmental control of cell cycle regulators: a fly’s perspective. Science 274, 1646–1652.

    PubMed  Google Scholar 

  6. Follette, P. J. and O’Farrell, P. H. (1997) Cdks and the Drosophila cell cycle. Curr. Opin. Genet. Dev. 7, 17–22.

    PubMed  Google Scholar 

  7. Edgar, B. A. and Orr-Weaver, T. L. (2001) Endoreplication cell cycles: more for less. Cell 105, 297–306.

    PubMed  Google Scholar 

  8. Vidwans, S. J. and Su, T. T. (2001) Cycling through development in Drosophila and other metazoa. Nat. Cell Biol. 3, E35–E39.

    PubMed  Google Scholar 

  9. Foe, V. E., Odell, G. M., and Edgar, B. A. (1993) Mitosis and morphogenesis in the Drosophila embryo: Point and counterpoint. In The Development of Drosophila melanogaster, Vol. 1 (Bate, M. and Martinez Arias, A., eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 149–300.

    Google Scholar 

  10. Cohen, S. M. (1993) Imaginal disc development. In The Development of Drosophila melanogaster, Vol. 2, (Bate, M. and Martinez Arias, A., eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 747–842.

    Google Scholar 

  11. Serrano, N. and O’Farrell, P. H. (1997) Limb morphogenesis: connections between patterning and growth. Curr. Biol. 7, R186–195.

    PubMed  Google Scholar 

  12. Royzman, I. and Orr-Weaver, T. L. (1998) S phase and differential DNA replication during Drosophila oogenesis. Genes Cells 3, 767–776.

    PubMed  Google Scholar 

  13. Calvi, B. R. and Spradling, A. C. (1999) Chorion gene amplification in Drosophila: A model for metazoan origins of DNA replication and S-phase control. Methods 18, 407–417.

    PubMed  Google Scholar 

  14. Wieschaus, E. and Sweeton, D. (1988) Requirements for X-linked zygotic gene activity during cellularization of early Drosophila embryos. Development 104, 483–493.

    PubMed  Google Scholar 

  15. Merrill, P. T., Sweeton, D., and Wieschaus, E. (1988) Requirements for autosomal gene activity during precellular stages of Drosophila melanogaster. Development 104,495–509.

    PubMed  Google Scholar 

  16. Edgar, B. A., Sprenger, F., Duronio, R. J., Leopold, P., and O’Farrell, P. H. (1994) Distinct molecular mechanisms regulate cell cycle timing at successive stages of Drosophila embryogenesis. Genes Dev. 8, 440–452.

    PubMed  Google Scholar 

  17. Huang, J. and Raff, J. W. (1999) The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBOJ. 18, 2184–2195.

    Google Scholar 

  18. Su, T. T., Sprenger, F., DiGregorio, P. J., Campbell, S. D., and O’Farrell, P. H. (1998) Exit from mitosis in Drosophila syncytial embryos requires proteolysis and cyclin degradation, and is associated with localized dephosphorylation. Genes Dev. 12,1495–1503.

    PubMed  Google Scholar 

  19. Huang, J. Y. and Raff, J. W. (2002) The dynamic localisation of the Drosophila APC/C: evidence for the existence of multiple complexes that perform distinct functions and are differentially localised. J. Cell Sci. 115, 2847–2856.

    PubMed  Google Scholar 

  20. Raff, J. W., Jeffers, K., and Huang, J. Y. (2002) The roles of Fzy/Cdc20 and Fzr/Cdh1 in regulating the destruction of cyclin B in space and time. J. Cell Biol. 157, 1139–1149.

    PubMed  Google Scholar 

  21. Shamanski, F. L. and Orr-Weaver, T. L. (1991) The Drosophila plutonium and pan gu genes regulate entry into S phase at fertilization. Cell 66, 1289–1300.

    PubMed  Google Scholar 

  22. Freeman, M., Nusslein-Volhard, C., and Glover, D. M. (1986) The dissociation of nuclear and centrosomal division in gnu, a mutation causing giant nuclei in Drosophila. Cell 46, 457–468.

    PubMed  Google Scholar 

  23. Freeman, M. and Glover, D. M. (1987) The gnu mutation of Drosophila causes inappropriate DNA synthesis in unfertilized and fertilized eggs. Genes Dev. 1, 924–930.

    PubMed  Google Scholar 

  24. Lee, L. A., Elfring, L. K., Bosco, G., and Orr-Weaver, T. L. (2001) A genetic screen for suppressors and enhancers of the Drosophila PAN GU cell cycle kinase identifies cyclin B as a target. Genetics 158, 1545–1556.

    PubMed  Google Scholar 

  25. Axton, J. M., Shamanski, F. L., Young, L. M., Henderson, D. S., Boyd, J. B., and Orr-Weaver, T. L. (1994) The inhibitor of DNA replication encoded by the Drosophila gene plutonium is a small, ankyrin repeat protein. EMBO J. 13, 462–470.

    PubMed  Google Scholar 

  26. Fenger, D. D., Carminati, J. L., Burney-Sigman, D. L., et al. (2000) PAN GU: a protein kinase that inhibits S phase and promotes mitosis in early Drosophila development. Development 127, 4763–4774.

    PubMed  Google Scholar 

  27. Renault, A. D., Zhang, X. H., Alphey, L. S., et al. (2003) giant nuclei is essential in the cell cycle transition from meiosis to mitosis. Development 130, 2997–3005.

    PubMed  Google Scholar 

  28. Fogarty, P., Campbell, S. D., Abu-Shumays, R., et al. (1997) The Drosophila grapes gene is related to checkpoint gene chk1/rad27 and is required for late syncytial division fidelity. Curr. Biol. 7, 418–426.

    PubMed  Google Scholar 

  29. Sibon, O. C., Stevenson, V. A., and Theurkauf, W. E. (1997) DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 388, 93–97.

    PubMed  Google Scholar 

  30. Sibon, O. C., Laurencon, A., Hawley, R., and Theurkauf, W. E. (1999) The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition. Curr. Biol. 9, 302–312.

    PubMed  Google Scholar 

  31. Su, J. Y., Rempel, R. E., Erikson, E., and Maller, J. L. (1995) Cloning and characterization of the Xenopus cyclin-dependent kinase inhibitor p27XIC1. Proc. Natl. Acad. Sci. USA 92, 10187–10191.

    PubMed  Google Scholar 

  32. Yu, K. R., Saint, R. B., and Sullivan, W. (2000) The Grapes checkpoint coordinates nuclear envelope breakdown and chromosome condensation. Nat. Cell Biol. 2, 609–615.

    PubMed  Google Scholar 

  33. Price, D., Rabinovitch, S., O’Farrell, P. H., and Campbell, S. D. (2000) Drosophila wee1 has an essential role in the nuclear divisions of early embryogenesis. Genetics 155, 159–166.

    PubMed  Google Scholar 

  34. Edgar, B. A. and Datar, S. A. (1996) Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila’s early cell cycle program. Genes Dev. 10, 1966–1977.

    PubMed  Google Scholar 

  35. Courtot, C., Fankhauser, C., Simanis, V., and Lehner, C. F. (1992) The Drosophila cdc25 homolog twine is required for meiosis. Development 116, 405–416.

    PubMed  Google Scholar 

  36. Alphey, L., Jimenez, J., White, C. H., Dawson, I., Nurse, P., and Glover, D. M. (1992) twine, a cdc25 homolog that functions in the male and female germline of Drosophila. Cell 69, 977–988.

    PubMed  Google Scholar 

  37. Edgar, B. A., Kiehle, C. P., and Schubiger, G. (1986) Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell 44, 365–372.

    PubMed  Google Scholar 

  38. Grosshans, J., Muller, H. A., and Wieschaus, E. (2003) Control of cleavage cycles in Drosophila embryos by fruhstart. Dev. Cell 5, 285–294.

    PubMed  Google Scholar 

  39. Grosshans, J. and Wieschaus, E. (2000) A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell 101, 523–531.

    PubMed  Google Scholar 

  40. Foe, V. E. and Odell, G. M. (1989) Mitotic domains partition fly embryos, reflecting early cell biological consequences of determination in progress. Am. Zool. 29, 617–652.

    Google Scholar 

  41. Edgar, B. A. and O’Farrell, P. H. (1989) Genetic control of cell division patterns in the Drosophila embryo. Cell 57, 177–187.

    PubMed  Google Scholar 

  42. Edgar, B. A. and O’Farrell, P. H. (1990) The three postblastoderm cell cycles of Drosophila embryogenesis are regulated in G2 by string. Cell 62, 469–480.

    PubMed  Google Scholar 

  43. Edgar, B. A., Lehman, D. A., and O’Farrell, P. H. (1994) Transcriptional regulation of string (cdc25): a link between developmental programming and the cell cycle. Development 120,3131–3143.

    PubMed  Google Scholar 

  44. Lehman, D. A., Patterson, B., Johnston, L. A., et al. (1999) Cis-regulatory elements of the mitotic regulator, string/Cdc25. Development 126, 1793–1803.

    PubMed  Google Scholar 

  45. Knoblich, J. A. and Lehner, C. F. (1993) Synergistic action of Drosophila cyclins A and B during the G2-M transition. EMBO J. 12, 65–74.

    PubMed  Google Scholar 

  46. Jacobs, H. W., Knoblich, J. A., and Lehner, C. F. (1998) Drosophila cyclin B3 is required for female fertility and is dispensable for mitosis like cyclin B. Genes Dev. 12,3741–3751.

    PubMed  Google Scholar 

  47. Knoblich, J. A., Sauer, K., Jones, L., Richardson, H., Saint, R., and Lehner, C. F. (1994) Cyclin E controls S phase progression and its down-regulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell 77, 107–120.

    PubMed  Google Scholar 

  48. Sauer, K., Knoblich, J. A., Richardson, H., and Lehner, C. F. (1995) Distinct modes of cyclin E/cdc2c kinase regulation and S-phase control in mitotic and endoreduplication cycles of Drosophila embryogenesis. Genes Dev. 9, 1327–1339.

    PubMed  Google Scholar 

  49. Lehner, C. F. (1992) The pebble gene is required for cytokinesis in Drosophila. J. Cell Sci. 103, 1021–1030.

    PubMed  Google Scholar 

  50. Hime, G. and Saint, R. (1992) Zygotic expression of the pebble locus is required for cytokinesis during postblastoderm mitoses of Drosophila. Development 114, 165–171.

    PubMed  Google Scholar 

  51. Echard, A. and O′Farrell, P. H. (2003) The degradation of two mitotic cyclins contributes to the timing of cytokinesis. Curr. Biol. 13, 373–383.

    PubMed  Google Scholar 

  52. Sigrist, S., Jacobs, H., Stratmann, R., and Lehner, C. F. (1995) Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A, B and B3. EMBOJ. 14, 4827–4838.

    Google Scholar 

  53. D′Andrea, R. J., Stratmann, R., Lehner, C. F., John, U. P., and Saint, R. (1993) The three rows gene of Drosophila melanogaster encodes a novel protein that is required for chromosome disjunction during mitosis. Mol. Biol. Cell 4, 1161–1174.

    PubMed  Google Scholar 

  54. Leismann, O., Herzig, A., Heidmann, S., and Lehner, C. F. (2000) Degradation of Drosophila PIM regulates sister chromatid separation during mitosis. Genes Dev. 14, 2192–2205.

    PubMed  Google Scholar 

  55. Stratmann, R. and Lehner, C. F. (1996) Separation of sister chromatids in mitosis requires the Drosophila pimples product, a protein degraded after the metaphase/anaphase transition. Cell 84, 25–35.

    PubMed  Google Scholar 

  56. Vidwans, S. J., DiGregorio, P. J., Shermoen, A. W., et al. (2002) Sister chromatids fail to separate during an induced endoreplication cycle in Drosophila embryos. Curr. Biol. 12, 829–833.

    PubMed  Google Scholar 

  57. Parry, D. H., Hickson, G. R., and O′Farrell, P. H. (2003) Cyclin B destruction triggers changes in kinetochore behavior essential for successful anaphase. Curr. Biol. 13, 647–653.

    PubMed  Google Scholar 

  58. Vidwans, S. J., Wong, M. L., and O′Farrell, P. H. (1999) Mitotic regulators govern progress through steps in the centrosome duplication cycle. J. Cell Biol. 147, 1371–1378.

    PubMed  Google Scholar 

  59. Duronio, R. J. and O′Farrell, P. H. (1994) Developmental control of a G1-S transcrip-tional program in Drosophila. Development 120, 1503–1515.

    PubMed  Google Scholar 

  60. Richardson, H. E., O′Keefe, L. V., Reed, S. I., and Saint, R. (1993) A Drosophila G1-specific cyclin E homolog exhibits different modes of expression during embryogenesis. Development 119, 673–690.

    PubMed  Google Scholar 

  61. de Nooij, J. C., Letendre, M. A., and Hariharan, I. K. (1996) A cyclin-dependent kinase inhibitor, Dacapo, is necessary for timely exit from the cell cycle during Drosophila embryogenesis. Cell 87, 1237–1247.

    PubMed  Google Scholar 

  62. Lane, M. E., Sauer, K., Wallace, K., Jan, Y. N., Lehner, C. F., and Vaessin, H. (1996) Dacapo, a cyclin-dependent kinase inhibitor, stops cell proliferation during Drosophila development. Cell 87, 1225–1235.

    PubMed  Google Scholar 

  63. Liu, T. H., Li, L., and Vaessin, H. (2002) Transcription of the Drosophila CKI gene dacapo is regulated by a modular array of cis-regulatory sequences. Mech. Dev. 112, 25–36.

    PubMed  Google Scholar 

  64. Meyer, C. A., Kramer, I., Dittrich, R., Marzodko, S., Emmerich, J., and Lehner, C. F. (2002) Drosophila p27Dacapo expression during embryogenesis is controlled by a complex regulatory region independent of cell cycle progression. Development 129, 319–328.

    PubMed  Google Scholar 

  65. Dyson, N. (1998) The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262.

    PubMed  Google Scholar 

  66. DeGregori, J. (2002) The genetics of the E2F family of transcription factors: shared functions and unique roles. Biochem. Biophys. Acta 1602, 131–150.

    Google Scholar 

  67. Dynlacht, B. D., Brook, A., Dembski, M., Yenush, L., and Dyson, N. (1994) DNA-binding and trans-activation properties of Drosophila E2F and DP proteins. Proc. Natl. Acad. Sci. USA 91, 6359–6363.

    PubMed  Google Scholar 

  68. Ohtani, K. and Nevins, J. R. (1994) Functional properties of a Drosophila homolog of the E2F1 gene. Mol. Cell. Biol. 14, 1603–1612.

    PubMed  Google Scholar 

  69. Sawado, T., Yamaguchi, M., Nishimoto, Y., Ohno, K., Sakaguchi, K., and Matsukage, A. (1998) dE2F2, a novel E2F-family transcription factor in Drosophila melanogaster. Biochem. Biophys. Res. Commun. 251, 409–415.

    PubMed  Google Scholar 

  70. Du, W., Vidal, M., Xie, J. E., and Dyson, N. (1996) RBF, a novel RB-related gene that regulates E2F activity and interacts with cyclin E in Drosophila. Genes Dev. 10, 1206–1218.

    PubMed  Google Scholar 

  71. Stevaux, O., Dimova, D., Frolov, M. V., Taylor-Harding, B., Morris, E., and Dyson, N. (2002) Distinct mechanisms of E2F regulation by Drosophila RBF1 and RBF2. EMBO J. 21, 4927–4937.

    PubMed  Google Scholar 

  72. Duronio, R. J., O′Farrell, P. H., Xie, J. E., Brook, A., and Dyson, N. (1995) The transcription factor E2F is required for S phase during Drosophila embryogenesis. Genes Dev. 9, 1445–1455.

    PubMed  Google Scholar 

  73. Duronio, R. J. and O′Farrell, P. H. (1995) Developmental control of the G1 to S transition in Drosophila: cyclin E is a limiting downstream target of E2F. Genes Dev. 9, 1456–1468.

    PubMed  Google Scholar 

  74. Royzman, I., Whittaker, A. J., and Orr-Weaver, T. L. (1997) Mutations in Drosophila DP and E2F distinguish G1-S progression from an associated transcriptional program. Genes Dev. 11, 1999–2011.

    PubMed  Google Scholar 

  75. Cayirlioglu, P., Ward, W. O., Silver Key, S. C., and Duronio, R. J. (2003) Transcriptional repressor functions of Drosophila E2F1 and E2F2 cooperate to inhibit genomic DNA synthesis in ovarian follicle cells. Mol. Cell. Biol. 23, 2123–2134.

    PubMed  Google Scholar 

  76. Du, W. and Dyson, N. (1999) The role of RBF in the introduction of G1 regulation during Drosophila embryogenesis. EMBO J. 18, 916–925.

    PubMed  Google Scholar 

  77. Xin, S., Weng, L., Xu, J., and Du, W. (2002) The role of RBF in developmentally regulated cell proliferation in the eye disc and in Cyclin D/Cdk4 induced cellular growth. Development 129, 1345–1356.

    PubMed  Google Scholar 

  78. Meyer, C. A., Jacobs, H. W., and Lehner, C. F. (2002) Cyclin D-cdk4 is not a master regulator of cell multiplication in Drosophila embryos. Curr. Biol. 12, 661–666.

    PubMed  Google Scholar 

  79. Chen, X., Oh, S. W., Zheng, Z., Chen, H. W., Shin, H. H., and Hou, S. X. (2003) Cyclin D-Cdk4 and cyclin E-Cdk2 regulate the Jak/STAT signal transduction pathway in Drosophila. Dev. Cell 4, 179–190.

    PubMed  Google Scholar 

  80. Smith, A. V. and Orr-Weaver, T. L. (1991) The regulation of the cell cycle during Drosophila embryogenesis: the transition to polyteny. Development 112, 997–1008.

    PubMed  Google Scholar 

  81. Lilly, M. A. and Spradling, A. C. (1996) The Drosophila endocycle is controlled by cyclin E and lacks a checkpoint ensuring S-phase completion. Genes Dev. 10, 2514–2526.

    PubMed  Google Scholar 

  82. Su, T. T. and O′Farrell, P. H. (1998) Chromosome association of minichromosome maintenance proteins in Drosophila endoreplication cycles. J. Cell Biol. 140, 451–460.

    PubMed  Google Scholar 

  83. Geng, Y., Yu, Q., Sicinska, E., et al. (2003) Cyclin E ablation in the mouse. Cell 114, 431–443.

    PubMed  Google Scholar 

  84. Duronio, R. J., Bonnette, P. C., and O′Farrell, P. H. (1998) Mutations of the Drosophila dDP, dE2F, and cyclin E genes reveal distinct roles for the E2F-DP transcription factor and cyclin E during the G1-S transition. Mol. Cell. Biol. 18, 141–151.

    PubMed  Google Scholar 

  85. Follette, P. J., Duronio, R. J., and O′Farrell, P. H. (1998) Fluctuations in cyclin E levels are required for multiple rounds of endocycle S phase in Drosophila. Curr. Biol. 8, 235–238.

    PubMed  Google Scholar 

  86. Weiss, A., Herzig, A., Jacobs, H., and Lehner, C. F. (1998) Continuous cyclin E expression inhibits progression through endoreduplication cycles in Drosophila. Curr. Biol. 8, 239–242.

    PubMed  Google Scholar 

  87. Weng, L., Zhu, C., Xu, J., and Du, W. (2003) Critical role of active repression by E2F and Rb proteins in endoreplication during Drosophila development. EMBO J. 22, 3865–3875.

    PubMed  Google Scholar 

  88. Lehner, C. F. and O′Farrell, P. H. (1990) The roles of Drosophila cyclins A and B in mitotic control. Cell 61, 535–547.

    PubMed  Google Scholar 

  89. Sigrist, S. J. and Lehner, C. F. (1997) Drosophila fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 90, 671–681.

    PubMed  Google Scholar 

  90. Reimann, J. D., Freed, E., Hsu, J. Y., Kramer, E. R., Peters, J. M., and Jackson, P. K. (2001) Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105, 645–655.

    PubMed  Google Scholar 

  91. Grosskortenhaus, R. and Sprenger, F. (2002) Rca1 inhibits APC-Cdh1(Fzr) and is required to prevent cyclin degradation in G2. Dev. Cell 2, 29–40.

    PubMed  Google Scholar 

  92. Dong, X., Zavitz, K. H., Thomas, B. J., Lin, M., Campbell, S., and Zipursky, S. L. (1997) Control of G1 in the developing Drosophila eye: rca1 regulates Cyclin A. Genes Dev. 11, 94–105.

    PubMed  Google Scholar 

  93. Edgar, B. A. (1999) From small flies come big discoveries about size control. Nat. Cell Biol. 1, E191–E193.

    PubMed  Google Scholar 

  94. Stocker, H., and Hafen, E. (2000) Genetic control of cell size. Curr. Opin. Genet. Dev. 10, 529–535.

    PubMed  Google Scholar 

  95. Johnston, L. A. and Gallant, P. (2002) Control of growth and organ size in Drosophila. Bioessays 24, 54–64.

    PubMed  Google Scholar 

  96. Saucedo, L. J., and Edgar, B. A. (2002) Why size matters: altering cell size. Curr. Opin. Genet. Dev. 12, 565–571.

    PubMed  Google Scholar 

  97. Chen, C., Jack, J., and Garofalo, R. S. (1996) The Drosophila insulin receptor is required for normal growth. Endocrinology 137, 846–856.

    PubMed  Google Scholar 

  98. Bohni, R., Riesgo-Escovar, J., Oldham, S., et al. (1999) Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97, 865–875.

    PubMed  Google Scholar 

  99. Weinkove, D., Neufeld, T. P., Twardzik, T., Waterfield, M. D., and Leevers, S. J. (1999) Regulation of imaginal disc cell size, cell number and organ size by Drosophila class I(A) phosphoinositide 3-kinase and its adaptor. Curr. Biol. 9, 1019–1029.

    PubMed  Google Scholar 

  100. Verdu, J., Buratovich, M. A., Wilder, E. L., and Birnbaum, M. J. (1999) Cell-autonomous regulation of cell and organ growth inDrosophila by Akt/PKB. Nat. Cell Biol. 1, 500–506.

    PubMed  Google Scholar 

  101. Montagne, J., Stewart, M. J., Stocker, H., Hafen, E., Kozma, S. C., and Thomas, G. (1999) Drosophila S6 kinase: a regulator of cell size. Science 285, 2126–2129.

    PubMed  Google Scholar 

  102. Zhang, H., Stallock, J. P., Ng, J. C., Reinhard, C., and Neufeld, T. P. (2000) Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 14, 2712–2724.

    PubMed  Google Scholar 

  103. Zhang, Y., Gao, X., Saucedo, L. J., Ru, B., Edgar, B. A., and Pan, D. (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5, 578–581.

    PubMed  Google Scholar 

  104. Saucedo, L. J., Gao, X., Chiarelli, D. A., Li, L., Pan, D., and Edgar, B. A. (2003) Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 5, 566–571.

    PubMed  Google Scholar 

  105. Stocker, H., Radimerski, T., Schindelholz, B., et al. (2003) Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat. Cell Biol. 5, 559–565.

    PubMed  Google Scholar 

  106. Patel, P. H., Thapar, N., Guo, L., et al. (2003) Drosophila Rheb GTPase is required for cell cycle progression and cell growth. J. Cell Sci. 116, 3601–3610.

    PubMed  Google Scholar 

  107. Gao, X., Neufeld, T. P., and Pan, D. (2000) Drosophila PTEN regulates cell growth and proliferation through PI3K-dependent and-independent pathways. Dev. Biol. 221, 404–418.

    PubMed  Google Scholar 

  108. Scanga, S. E., Ruel, L., Binari, R. C., et al. (2000) The conserved PI3′K/PTEN/Akt signaling pathway regulates both cell size and survival in Drosophila. Oncogene 19, 3971–3977.

    PubMed  Google Scholar 

  109. Goberdhan, D. C., Paricio, N., Goodman, E. C., Mlodzik, M., and Wilson, C. (1999) Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signaling pathway. Genes Dev. 13, 3244–3258.

    PubMed  Google Scholar 

  110. Huang, H., Potter, C. J., Tao, W., et al. (1999) PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. Development 126, 5365–5372.

    PubMed  Google Scholar 

  111. Gao, X. and Pan, D. (2001) TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev. 15, 1383–1392.

    PubMed  Google Scholar 

  112. Gao, X., Zhang, Y., Arrazola, P., et al. (2002) Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat. Cell Biol. 4, 699–704.

    PubMed  Google Scholar 

  113. Tapon, N., Ito, N., Dickson, B. J., Treisman, J. E., and Hariharan, I. K. (2001) The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105, 345–355.

    PubMed  Google Scholar 

  114. Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N., and Gallant, P. (1999) Drosophila myc regulates cellular growth during development. Cell 98, 779–790.

    PubMed  Google Scholar 

  115. Prober, D. A. and Edgar, B. A. (2002) Interactions between Ras1, dMyc, and dPI3K signaling in the developing Drosophila wing. Genes Dev. 16, 2286–2299.

    PubMed  Google Scholar 

  116. Karim, F. D. and Rubin, G. M. (1998) Ectopic expression of activated Ras1 induces hyperplastic growth and increased cell death in Drosophila imaginal tissues. Development 125, 1–9.

    PubMed  Google Scholar 

  117. Prober, D. A. and Edgar, B. A. (2000) Ras1 promotes cellular growth in the Drosophila wing. Cell 100, 435–446.

    PubMed  Google Scholar 

  118. Prober, D. A. and Edgar, B. A. (2001) Growth regulation by oncogenes-new insights from model organisms. Curr. Opin. Genet. Dev. 11, 19–26.

    PubMed  Google Scholar 

  119. Datar, S. A., Jacobs, H. W., de la Cruz, A. F., Lehner, C. F., and Edgar, B. A. (2000) The Drosophila cyclin D-Cdk4 complex promotes cellular growth. EMBOJ. 19, 4543–4554.

    Google Scholar 

  120. Meyer, C. A., Jacobs, H. W., Datar, S. A., Du, W., Edgar, B. A., and Lehner, C. R (2000) Drosophila cdk4 is required for normal growth and is dispensable for cell cycle progression. EMBOJ. 19, 4533–4542.

    Google Scholar 

  121. Neufeld, T. P., de la Cruz, A. F., Johnston, L. A., and Edgar, B. A. (1998) Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193.

    PubMed  Google Scholar 

  122. Weigmann, K., Cohen, S. M., and Lehner, C. F. (1997) Cell cycle progression, growth and patterning in imaginal discs despite inhibition of cell division after inactivation of Drosophila Cdc2 kinase. Development 124, 3555–3563.

    PubMed  Google Scholar 

  123. Justice, R. W., Zilian, O., Woods, D. F., Noll, M., and Bryant, P. J. (1995) The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 9, 534–546.

    PubMed  Google Scholar 

  124. Xu, T., Wang, W., Zhang, S., Stewart, R. A., and Yu, W. (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063.

    PubMed  Google Scholar 

  125. Kango-Singh, M., Nolo, R., Tao, C., et al. (2002) Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129, 5719–5730.

    PubMed  Google Scholar 

  126. Tapon, N., Harvey, K. F., Bell, D. W., et al. (2002) salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467–478.

    PubMed  Google Scholar 

  127. Harvey, K. F., Pfleger, C. M., and Hariharan, I. K. (2003) The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–467.

    PubMed  Google Scholar 

  128. Wu, S., Huang, J., Dong, J., and Pan, D. (2003) hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445–456.

    PubMed  Google Scholar 

  129. Yoo, S. J., Huh, J. R., Muro, I., et al. (2002) Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat. CellBiol. 4, 416–424.

    Google Scholar 

  130. Hipfner, D. R., Weigmann, K., and Cohen, S. M. (2002) The bantam gene regulates Drosophila growth. Genetics 161, 1527–1537.

    PubMed  Google Scholar 

  131. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., and Cohen, S. M. (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36.

    PubMed  Google Scholar 

  132. Baker, N. E. (2001) Cell proliferation, survival, and death in the Drosophila eye. Semin. Cell Dev. Biol. 12, 499–507.

    PubMed  Google Scholar 

  133. de Nooij, J. C. and Hariharan, I. K. (1995) Uncoupling cell fate determination from patterned cell division in the Drosophila eye. Science 270, 983–985.

    PubMed  Google Scholar 

  134. Ma, C. and Moses, K. (1995) Wingless and patched are negative regulators of the mor-phogenetic furrow and can affect tissue polarity in the developing Drosophila compound eye. Development 121, 2279–2289.

    PubMed  Google Scholar 

  135. Treisman, J. E. and Rubin, G. M. (1995) wingless inhibits morphogenetic furrow movement in the Drosophila eye disc. Development 121, 3519–3527.

    PubMed  Google Scholar 

  136. Duman-Scheel, M., Weng, L., Xin, S., and Du, W. (2002) Hedgehog regulates cell growth and proliferation by inducing cyclin D and cyclin E. Nature 417, 299–304.

    PubMed  Google Scholar 

  137. Frolov, M. V., Huen, D. S., Stevaux, O., et al. (2001) Functional antagonism between E2F family members. Genes Dev. 15, 2146–2160.

    PubMed  Google Scholar 

  138. Jones, L., Richardson, H., and Saint, R. (2000) Tissue-specific regulation of cyclin E transcription during Drosophila melanogaster embryogenesis. Development 127, 4619–4630.

    PubMed  Google Scholar 

  139. Baker, N. E. and Yu, S. Y. (2001) The EGF receptor defines domains of cell cycle progression and survival to regulate cell number in the developing Drosophila eye. Cell 104, 699–708.

    PubMed  Google Scholar 

  140. Thomas, B. J., Gunning, D. A., Cho, J., and Zipursky, L. (1994) Cell cycle progression in the developing Drosophila eye: roughex encodes a novel protein required for the establishment of G1. Cell 77, 1003–1014.

    PubMed  Google Scholar 

  141. Avedisov, S. N., Krasnoselskaya, I., Mortin, M., and Thomas, B. J. (2000) Roughex mediates G(1) arrest through a physical association with cyclin A. Mol. Cell. Biol. 20, 8220–8229.

    PubMed  Google Scholar 

  142. Foley, E., O’Farrell, P. H., and Sprenger, F. (1999) Rux is a cyclin-dependent kinase inhibitor (CKI) specific for mitotic cyclin-Cdk complexes. Curr. Biol. 9, 1392–1402.

    PubMed  Google Scholar 

  143. Sprenger, F., Yakubovich, N., and O’Farrell, P. H. (1997) S-phase function of Drosophila cyclin A and its downregulation in G1 phase. Curr. Biol. 7, 488–499.

    PubMed  Google Scholar 

  144. Horsfield, J., Penton, A., Secombe, J., Hoffman, F. M., and Richardson, H. (1998) decapentaplegic is required for arrest in G1 phase during Drosophila eye development. Development 125, 5069–5078.

    PubMed  Google Scholar 

  145. Jones, L. (2001) Stem cells: so what’s in a niche? Curr. Biol. 11, R484–R486.

    PubMed  Google Scholar 

  146. Lin, H., and Spradling, A. C. (1997) A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 2463–2476.

    PubMed  Google Scholar 

  147. Margolis, J. and Spradling, A. (1995) Identification and behavior of epithelial stem cells in the Drosophila ovary. Development 121, 3797–3807.

    PubMed  Google Scholar 

  148. Cox, D. N., Chao, A., and Lin, H. (2000) piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127, 503–514.

    PubMed  Google Scholar 

  149. Forbes, A. and Lehmann, R. (1998) Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125, 679–690.

    PubMed  Google Scholar 

  150. Parisi, M. and Lin, H. (1999) The Drosophila pumilio gene encodes two functional protein isoforms that play multiple roles in germline development, gonadogenesis, oogen-esis and embryogenesis. Genetics 153, 235–250.

    PubMed  Google Scholar 

  151. Cox, D. N., Chao, A., Baker, J., Chang, L., Qiao, D., and Lin, H. (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12, 3715–3727.

    PubMed  Google Scholar 

  152. King, F. J. and Lin, H. (1999) Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis. Development 126, 1833–1844.

    PubMed  Google Scholar 

  153. Xie, T., and Spradling, A. C. (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290, 328–330.

    PubMed  Google Scholar 

  154. Song, X., Zhu, C. H., Doan, C., and Xie, T. (2002) Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 296, 1855–1857.

    PubMed  Google Scholar 

  155. King, F. J., Szakmary, A., Cox, D. N., and Lin, H. (2001) Yb modulates the divisions of both germline and somatic stem cells through piwi-and hh-mediated mechanisms in the Drosophila ovary. Mol. Cell 7, 497–508.

    PubMed  Google Scholar 

  156. Xie, T. and Spradling, A. C. (1998) decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94, 251–260.

    PubMed  Google Scholar 

  157. Forbes, A. J., Lin, H., Ingham, P. W., and Spradling, A. C. (1996) hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development 122, 1125–1135.

    PubMed  Google Scholar 

  158. King, F. J., Szakmary, A., Cox, D. N., and Lin, H. (2001) Yb modulates the divisions of both germline and somatic stem cells through piwi-and hh-mediated mechanisms in the Drosophila ovary. Mol. Cell 7, 497–508.

    PubMed  Google Scholar 

  159. Song, X. and Xie, T. (2003) Wingless signaling regulates the maintenance of ovarian somatic stem cells in Drosophila. Development 130, 3259–3268.

    PubMed  Google Scholar 

  160. McKearin, D. M. and Spradling, A. C. (1990) bag-of-marbles: a Drosophila gene required to initiate both male and female gametogenesis. Genes Dev. 4, 2242–2251.

    PubMed  Google Scholar 

  161. McKearin, D., and Ohlstein, B. (1995) A role for the Drosophila bag-of-marbles protein in the differentiation of cystoblasts from germline stem cells. Development 121, 2937–2947.

    PubMed  Google Scholar 

  162. Ohlstein, B. and McKearin, D. (1997)Ectopic expression of the Drosophila Bam protein eliminates oogenic germline stem cells. Development 124, 3651–3662.

    PubMed  Google Scholar 

  163. Parisi, M. J., Deng, W., Wang, Z., and Lin, H. (2001) The arrest gene is required for germline cyst formation during Drosophila oogenesis. Genesis 29, 196–209.

    PubMed  Google Scholar 

  164. Webster, P. J., GLiang, L., Berg, C. A., Lasko, P., and Macdonald, P. M. (1997) Transla-tional repressor bruno plays multiple roles in development and is widely conserved. Genes Dev. 11, 2510–2521.

    PubMed  Google Scholar 

  165. Hawkins, N. C., Thorpe, J., and Schupbach, T. (1996) Encore, a gene required for the regulation of germ line mitosis and oocyte differentiation during Drosophila oogenesis. Development 122, 281–290.

    PubMed  Google Scholar 

  166. King, R. C., and Storto, P. D. (1988) The role of the otu gene in Drosophila oogenesis. Bioessays 8, 18–24.

    PubMed  Google Scholar 

  167. Spradling, A. C. (1993) Developmental genetics of oogenesis. In The Development of Drosophila melanogaster, Vol. 1 (Bate, M. and Martinez Arias, A., eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 1–70.

    Google Scholar 

  168. Hong, A., Lee-Kong, S., Iida, T., Sugimura, I., and Lilly, M. A. (2003) The p27cip/kip ortholog dacapo maintains the Drosophila oocyte in prophase of meiosis I. Development 130, 1235–1242.

    PubMed  Google Scholar 

  169. Dej, K. J. and Spradling, A. C. (1999) The endocycle controls nurse cell polytene chromosome structure during Drosophila oogenesis. Development 126, 293–303.

    PubMed  Google Scholar 

  170. McCall, K. and Steller, H. (1998) Requirement for DCP-1 caspase during Drosophila oogenesis. Science 279, 230–234.

    PubMed  Google Scholar 

  171. Foley, K. and Cooley, L. (1998) Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency. Development 125, 1075–1082.

    PubMed  Google Scholar 

  172. Matova, N., Mahajan-Miklos, S., Mooseker, M. S., and Cooley, L. (1999) Drosophila Quail, a villin-related protein, bundles actin filaments in apoptotic nurse cells. Development 126, 5645–5657.

    PubMed  Google Scholar 

  173. Myster, D. L., Bonnette, P. C., and Duronio, R. J. (2000) A role for the DP subunit of the E2F transcription factor in axis determination during Drosophila oogenesis. Development 127, 3249–3261.

    PubMed  Google Scholar 

  174. Royzman, I., Hayashi-Hagihara, A., Dej, K. J., Bosco, G., Lee, J. Y., and Orr-Weaver, T. L. (2002) The E2F cell cycle regulator is required for Drosophila nurse cell DNA replication and apoptosis. Mech. Dev. 119, 225–237.

    PubMed  Google Scholar 

  175. de Nooij, J. C., Graber, K. H., and Hariharan, I. K. (2000) Expression of the cyclin-dependent kinase inhibitor Dacapo is regulated by cyclin E. Mech. Dev. 97, 73–83.

    PubMed  Google Scholar 

  176. Reed, B. H. and Orr-Weaver, T. L. (1997) The Drosophila gene morula inhibits mitotic functions in the endo cell cycle and the mitotic cell cycle. Development 124, 3543–3553.

    PubMed  Google Scholar 

  177. Kashevsky, H., Wallace, J. A., Reed, B. H., Lai, C., Hayashi-Hagihara, A., and Orr-Weaver, T. L. (2002) The anaphase promoting complex/cyclosome is required during development for modified cell cycles. Proc. Natl. Acad. Sci. USA 99, 11217–11222.

    PubMed  Google Scholar 

  178. Calvi, B. R., Lilly, M. A., and Spradling, A. C. (1998) Cell cycle control of chorion gene amplification. Genes Dev. 12, 734–744.

    PubMed  Google Scholar 

  179. Roth, S. (2001) Drosophila oogenesis: coordinating germ line and soma. Curr. Biol. 11, R779–R781.

    PubMed  Google Scholar 

  180. Lopez-Schier, H., and St. Johnston, D. (2001) Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Genes Dev. 15, 1393–1405.

    PubMed  Google Scholar 

  181. Deng, W. M., Althauser, C., and Ruohola-Baker, H. (2001) Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells. Development 128, 4737–4746.

    PubMed  Google Scholar 

  182. Spradling, A. C. (1999) ORC binding, gene amplification, and the nature of metazoan replication origins. Genes Dev. 13, 2619–2623.

    PubMed  Google Scholar 

  183. Tzolovsky, G., Deng, W. M., Schlitt, T., and Bownes, M. (1999) The function of the broad-complex during Drosophila melanogaster oogenesis. Genetics 153, 1371–1383.

    PubMed  Google Scholar 

  184. Lu, L., Zhang, H., and Tower, J. (2001) Functionally distinct, sequence-specific replicator and origin elements are required for Drosophila chorion gene amplification. Genes Dev. 15, 134–146.

    PubMed  Google Scholar 

  185. Landis, G., Kelley, R., Spradling, A. C., and Tower, J. (1997) The k43 gene, required for chorion gene amplification and diploid cell chromosome replication, encodes the Drosophila homolog of yeast origin recognition complex subunit 2. Proc. Natl. Acad. Sci. USA 94, 3888–3892.

    PubMed  Google Scholar 

  186. Landis, G. and Tower, J. (1999) The Drosophila chiffon gene is required for chorion gene amplification, and is related to the yeast Dbf4 regulator of DNA replication and cell cycle. Development 126, 4281–4293.

    PubMed  Google Scholar 

  187. Austin, R. J., Orr-Weaver, T. L., and Bell, S. P. (1999) Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element. Genes Dev. 13, 2639–2649.

    PubMed  Google Scholar 

  188. Schwed, G., May, N., Pechersky, Y., and Calvi, B. R. (2002) Drosophila minichromosome maintenance 6 is required for chorion gene amplification and genomic replication. Mol. Biol. Cell 13, 607–620.

    PubMed  Google Scholar 

  189. Cayirlioglu, P., Bonnette, P. C., Dickson, M. R., and Duronio, R. J. (2001) Drosophila E2f2 promotes the conversion from genomic DNA replication to gene amplification in ovarian follicle cells. Development 128, 5085–5098.

    PubMed  Google Scholar 

  190. Asano, M. and Wharton, R. P. (1999) E2F mediates developmental and cell cycle regulation of ORC1 in Drosophila. EMBO J. 18, 2435–2448.

    PubMed  Google Scholar 

  191. Bosco, G., Du, W., and Orr-Weaver, T. L. (2001) DNA replication control through interaction of E2F-RB and the origin recognition complex. Nat. Cell Biol. 3, 289–295.

    PubMed  Google Scholar 

  192. Royzman, I., Austin, R. J., Bosco, G., Bell, S. P., and Orr-Weaver, T. L. (1999) ORC localization in Drosophila follicle cells and the effects of mutations in dE2F and dDP. Genes Dev. 13, 827–840.

    PubMed  Google Scholar 

  193. Cayirlioglu, P. and Duronio, R. J. (2001) Cell cycle: Flies teach an old dogma new tricks. Curr. Biol. 11, R178–R181.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Lisa, S., Jeremy, K., Robert, J. (2005). Developmental Control of Growth and Cell Cycle Progression in Drosophila. In: Humphrey, T., Brooks, G. (eds) Cell Cycle Control. Methods in Molecular Biology™, vol 296. Humana Press. https://doi.org/10.1385/1-59259-857-9:069

Download citation

  • DOI: https://doi.org/10.1385/1-59259-857-9:069

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-144-8

  • Online ISBN: 978-1-59259-857-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics