Skip to main content

Tetracycline-Regulated Gene Expression in Epidermal Keratinocytes

  • Protocol
Epidermal Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 289))

  • 1282 Accesses

Abstract

The tetracycline-regulated expression system developed by Gossen and Bujard is a powerful genetic tool that permits the expression of any gene construct introduced into either cultured cells or transgenic animals to be precisely controlled. It involves two components, a regulatory component based on the prokaryotic tetracycline repressor (TetR) and a response plasmid that expresses the gene of interest under control of the tetracycline-response element. In this paper, we review the Tet system methodology, discuss the available vector systems, and describe how to prepare and characterize keratinocyte cell lines that express a gene under tetracycline control. The methodology involves the development of stable cell lines expressing the TetR protein (either tTA or rtTA, expressed as a fusion with the VP16 activation domain), and a second set of double-stable cell lines that contain both TetR and the response plasmid (tetracycline-response element-gene X) expressed under tetracycline control. As an example of this methodology, we discuss our recently developed keratinocyte cell lines that express human filaggrin in a tetracycline-regulated manner. This technique, now also available in retrovirus and adenovirus-based vectors, is applicable both to the study of genes that are toxic to cells and more generally to understand how genes regulate cell structure/function, growth, and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Presland, R. B., Kuechle, M. K., Lewis, S. P., Fleckman, P., and Dale, B. A. (2001) Regulated expression of human filaggrin in keratinocytes results in cytoskeletal disruption, loss of cell-cell adhesion, and cell cycle arrest. Exp. Cell Res. 270, 199–213.

    Article  PubMed  CAS  Google Scholar 

  2. Dale, B. A., Presland, R. B., Lewis, S. P., Underwood, R. A., and Fleckman, P. (1997) Transient expression of epidermal filaggrin in cultured cells causes collapse of intermediate filament networks with alteration of cell shape and nuclear integrity. J. Invest. Dermatol. 108, 179–187.

    Article  PubMed  CAS  Google Scholar 

  3. Gossen, M. and Bujard, H. (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551.

    Article  PubMed  CAS  Google Scholar 

  4. Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.

    Article  PubMed  CAS  Google Scholar 

  5. Resnitzky, D., Gossen, M., Bujard, H., and Reed, S. I. (1994) Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol. Cell Biol. 14, 1669–1679.

    PubMed  CAS  Google Scholar 

  6. Hofmann, A., Nolan, G. P., and Blau, H. M. (1996) Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc. Natl. Acad. Sci. USA 93, 5185–5190.

    Article  PubMed  CAS  Google Scholar 

  7. Lindemann, D., Patriquin, E., Feng, S., and Mulligan, R. C. (1997) Versatile retrovirus vector systems for regulated gene expression in vitro and in vivo. Mol. Med. 3, 466–476.

    Article  PubMed  CAS  Google Scholar 

  8. Neering, S. J., Hardy, S. F., Minamoto, D., Spratt, S. K., and Jordan, C. T (1996) Transduction of primitive human hematopoietic cells with recombinant adenovirus vectors. Blood 88, 1147–1155.

    PubMed  CAS  Google Scholar 

  9. Shockett, P., Difilippantonio, M., Hellman, N., and Schatz, D. G. (1995) A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc. Natl. Acad. Sci. USA 92, 6522–6526.

    Article  PubMed  CAS  Google Scholar 

  10. Kistner, A., Gossen, M., Zimmermann, F., Jerecic, J., Ullmer, C., Lubbert, H., and Bujard, H. (1996). Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. USA 93, 10,933–10,938.

    Article  PubMed  CAS  Google Scholar 

  11. Weinmann, P., Gossen, M., Hillen, W., Bujard, H., and Gatz, C. (1994). A chimeric transactivator allows tetracycline-responsive gene expression in whole plants. Plant J. 5, 559–569.

    Article  PubMed  CAS  Google Scholar 

  12. Li, J. J., Cao, Y., Young, M. R., and Colburn, N. H. (2000) Induced expression of dominantnegative c-jun downregulates NFkappaB and AP-1 target genes and suppresses tumor phenotype in human keratinocytes. Mol. Carcinog. 29, 159–169.

    Article  PubMed  CAS  Google Scholar 

  13. Diamond, I., Owolabi, T., Marco, M., Lam, C., and Glick, A. (2000) Conditional gene expression in the epidermis of transgenic mice using the tetracycline-regulated transactivators tTA and rTA linked to the keratin 5 promoter. J. Invest. Dermatol. 115, 788–794.

    Article  PubMed  CAS  Google Scholar 

  14. Liu, X., Alexander, V., Vijayachandra, K., Bhogte, E., Diamond, I., and Glick, A. (2001) Conditional epidermal expression of TGFbeta 1 blocks neonatal lethality but causes a reversible hyperplasia and alopecia. Proc. Natl. Acad. Sci. USA 98, 9139–9144.

    Article  PubMed  CAS  Google Scholar 

  15. Jaubert, J., Cheng, J., and Segre, J. A. (2003) Ectopic expression of Kruppel like factor 4 (Klf4) accelerates formation of the epidermal permeability barrier. Development 130, 2767–2777.

    Article  PubMed  CAS  Google Scholar 

  16. Yao, F., Svensjo, T., Winkler, T., Lu, M., Eriksson, C., and Eriksson, E. (1998) Tetracycline repressor, tetR, rather than the tetR-mammalian cell transcription factor fusion derivatives, regulates inducible gene expression in mammalian cells. Hum. Gene Ther. 9, 1939–1950.

    Article  PubMed  CAS  Google Scholar 

  17. T-REx™ System (1999), in Expressions, Vol. 6, Invitrogen Newsletter, pp. 2–3.

    Google Scholar 

  18. Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A., and Fusenig, N. E. (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106, 761–771.

    Article  PubMed  CAS  Google Scholar 

  19. Kuechle, M. K., Presland, R. B., Lewis, S. P., Fleckman, P., and Dale, B. A. (2000) Inducible expression of filaggrin increases keratinocyte susceptibility to apoptotic cell death. Cell Death Differ. 7, 566–573.

    Article  PubMed  CAS  Google Scholar 

  20. Haydock, P. V., Blomquist, C., Brumbaugh, S., Dale, B. A., Holbrook, K. A., and Fleckman, P. (1993) Antisense profilaggrin RNA delays and decreases profilaggrin expression and alters in vitro differentiation of rat epidermal keratinocytes. J. Invest. Dermatol. 101, 118–126.

    Article  PubMed  CAS  Google Scholar 

  21. Baden, H. P. and Kubilus, J. (1983) The growth and differentiation of cultured newborn rat keratinocytes. J. Invest. Dermatol. 80, 124–130.

    Article  PubMed  CAS  Google Scholar 

  22. Baden, H. P., Kubilus, J., Wolman, S. R., Steinberg, M. L., Phillips, S. B., and Kvedar, J. C. (1987) NM1 keratinocyte line is cytogenetically and biologically stable and exhibits a unique structural protein. J. Invest. Dermatol. 89, 574–579.

    Article  PubMed  CAS  Google Scholar 

  23. Baden, H. P., Kubilus, J., Kvedar, J. C., Steinberg, M. L., and Wolman, S. R. (1987) Isolation and characterization of a spontaneously arising long-lived line of human keratinocytes (NM 1). In Vitro Cell Dev. Biol. 23, 205–213.

    Article  PubMed  CAS  Google Scholar 

  24. Rhim, J. S., Jay, G., Arnstein, P., Price, F. M., Sanford, K. K., and Aaronson, S. A. (1985) Neoplastic transformation of human epidermal keratinocytes by AD12-SV40 and Kirsten sarcoma viruses. Science 227, 1250–1252.

    Article  PubMed  CAS  Google Scholar 

  25. Tsao, M. C., Walthall, B. J., and Ham, R. G. (1982) Clonal growth of normal human epidermal keratinocytes in a defined medium. J. Cell Physiol. 110, 219–229.

    Article  PubMed  CAS  Google Scholar 

  26. Jiang, C. K., Connolly, D., and Blumenberg, M. (1991) Comparison of methods for transfection of human epidermal keratinocytes. J. Invest. Dermatol. 97, 969–973.

    Article  PubMed  CAS  Google Scholar 

  27. Gossen, M. and Bujard, H. (1993) Anhydrotetracycline, a novel effector for tetracycline controlled gene expression systems in eukaryotic cells. Nucleic Acids Res. 21, 4411–4412.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Presland, R.B., Fleckman, P. (2005). Tetracycline-Regulated Gene Expression in Epidermal Keratinocytes. In: Turksen, K. (eds) Epidermal Cells. Methods in Molecular Biology™, vol 289. Humana Press. https://doi.org/10.1385/1-59259-830-7:273

Download citation

  • DOI: https://doi.org/10.1385/1-59259-830-7:273

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-267-4

  • Online ISBN: 978-1-59259-830-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics