Skip to main content

Organogenesis From Transformed Tomato Explants

  • Protocol
Transgenic Plants: Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 286))

Summary

Tomato was one of the first crops for which a genetic transformation system was reported involving regeneration by organogenesis from Agrobacterium-transformed explants. Since the initial reports, various factors have been studied that affect the efficiency of tomato transformation and the technique has been useful for the isolation and identification of many genes involved in plant disease resistance, morphology and development. In this method, cotyledon explants from in vitro-grown seedlings are precultured overnight on a tobacco suspension feeder layer. The explants are then inoculated with Agrobacterium and returned to the feeder layer for a 2-d period of cocultivation. After cocultivation, the explants are transferred to an MS-based selective regeneration medium containing zeatin. Regenerated shoots are then rooted on a separate selective medium. This protocol has been used with several tomato cultivars and routinely yields transformation efficiencies of 10–15%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horsch, R. B., Fry, J. B., Hoffmann, N. L., et al. (1985) A simple and general method for transferring genes into plants. Science 227, 1229–1231.

    Article  CAS  Google Scholar 

  2. McCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R., and Fraley, R. (1986) Leaf disc transformation of cultivated tomato (Lycopersicon esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5, 81–84.

    Article  CAS  Google Scholar 

  3. Toyoda, H., Matsuda, Y., Utsumi, R., and Ouchi, S. (1988) Intranuclear microinjection for transformation of tomato callus cultures. Plant Cell Rep. 7, 293–296.

    Article  CAS  Google Scholar 

  4. Xu, Y., Yu, H., and Hall, T.C. (1994) Rice triosephosphate isomerase gene 5′ sequence directs glucuronidase activity in transgenic tobacco but requires an intron for expression in rice. Plant Physiol. 106, 459–467.

    Article  CAS  PubMed  Google Scholar 

  5. Van Eck, J. M., Blowers, A. D., and Earle, E. D. (1995) Stable transformation of tomato cell cultures after bombardment with plasmid and YAC DNA. Plant Cell Rep. 14, 299–304.

    Article  Google Scholar 

  6. Nakata, K., Tanaka, H., Yano, K., and Takagi, M. (1992) An effective transformation system for Lycopersicon peruvianum by electroporation. Jpn. J. Breed. 42, 487–495.

    CAS  Google Scholar 

  7. Koornneef, M., Hanhart, C., Jongsma, M., et al. (1986) Breeding of a tomato genotype readily accessible to genetic manipulation. Plant Sci. 45, 201–208.

    Article  Google Scholar 

  8. Tanksley, S. D., Ganal, M. W., Prince, J. P., et al. (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132, 1141–1160.

    CAS  PubMed  Google Scholar 

  9. Martin, G. B., Frary, A., Wu, T., et al. (1994) A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell 6, 1543–1552.

    Article  CAS  PubMed  Google Scholar 

  10. Frary, A., Nesbitt, T. C., Frary, A., et al. (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289, 85–88.

    Article  CAS  PubMed  Google Scholar 

  11. Jones, D. A., Thomas, C. M., Hammond-Kosack, K. E., Balint-Kurti, P. J., and Jones, J. D. (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266, 789–793.

    Article  CAS  PubMed  Google Scholar 

  12. Milligan, S. B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P., and Williamson, V. M. (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide-binding leucine-rich repeat family of plant genes. Plant Cell 10, 1307–1319.

    Article  CAS  PubMed  Google Scholar 

  13. Liu, J., Van Eck, J., Cong, B., and Tanksley, S. D. (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc. Natl. Acad Sci. USA 99, 13,302–13,306.

    Article  CAS  PubMed  Google Scholar 

  14. Sheehy, R. E., Kramer, M., and Hiatt, W. R. (1988) Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proc. Nat. Acad. Sci. USA 85, 8805–8809.

    Article  CAS  PubMed  Google Scholar 

  15. Frary, A. and Hamilton, C. M. (2001) Efficiency and stability of high molecular weight DNA transformation: an analysis in tomato. Transgenic Res. 10, 121–132.

    Article  CAS  PubMed  Google Scholar 

  16. Chyi, Y. S. and Phillips, G. C. (1987) High efficiency Agrobacterium-mediated transformation of Lycopersicon based on conditions favorable for regeneration. Plant Cell Rep. 6, 105–108.

    CAS  Google Scholar 

  17. Fillatti, J. J., Kiser, J., Rose, R., and Comai, L. (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Biotechnology 5, 726–730.

    Article  CAS  Google Scholar 

  18. Hamza, S. and Chupeau, Y. (1993) Re-evaluation of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum). J. Exp. Bot. 44, 1837–1845.

    Article  CAS  Google Scholar 

  19. Davis, M. E., Miller, A. R., and Lineberger, R. D. (1991) Temporal competence for transformation of Lycopersicon esculentum (L. Mill.) cotyledons by Agrobacterium tumefaciens: relation to wound-healing and soluble plant factors. J. Exp. Bot. 42, 359–364.

    Article  Google Scholar 

  20. van Roekel, J. S., Damm, B., Melchers, L. S., and Hoekema, A. (1993) Factors influencing transformation frequency of tomato (Lycopersicon esculentum). Plan Cell Rep. 12, 644–647.

    Google Scholar 

  21. Frary, A. and Earle, E. D. (1996) An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Rep. 16, 235–240.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Frary, A., Van Eck, J. (2005). Organogenesis From Transformed Tomato Explants. In: Peña, L. (eds) Transgenic Plants: Methods and Protocols. Methods in Molecular Biology™, vol 286. Humana Press. https://doi.org/10.1385/1-59259-827-7:141

Download citation

  • DOI: https://doi.org/10.1385/1-59259-827-7:141

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-263-6

  • Online ISBN: 978-1-59259-827-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics