Skip to main content

Stable Transformation of Plant Cells by Particle Bombardment/Biolistics

  • Protocol
Book cover Transgenic Plants: Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 286))

Summary

Particle bombardment, or biolistics, is a commonly used method for genetic transformation of plants and other organisms. Millions of DNA-coated metal particles are shot at target cells or tissues using a biolistic device or gene gun. The DNA elutes off the particles that lodge inside the cells, and a portion may be stably incorporated in the host chromosomes. A protocol for the generation of transgenic grapevines via biolistic transformation of embryogenic cell suspension cultures is detailed in this chapter. In a typical experiment, transient gene expression averaged nearly 8000 “hits” per bombarded plate. Five months after bombardment, there were nearly five putative transgenic embryos per bombarded plate. About half of the embryos were regenerated into confirmed transgenic plants. The basic bombardment procedures described are applicable to a wide range of plant genotypes, especially those for which embryogenic cell cultures are available. All users of particle bombardment technology will find numerous useful tips to maximize the success of transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sanford, J. C., Klein, T. M, Wolf, E. D., and Allen, N. (1987). Delivery of substances into cells and tissues using a particle bombardment process. Particulate Sci. Technol. 5, 27–37.

    Article  CAS  Google Scholar 

  2. Sanford, J. C. (2000) The development of the biolistic process. In Vitro Cell. Dev. Biol. Plant 36, 303–308.

    Article  Google Scholar 

  3. Kikkert, J. R. (1993) The Biolistic® PDS-1000/He device. Plant Cell Tiss. Org. Cult. 33, 221–226.

    Article  CAS  Google Scholar 

  4. Southgate, E. M., Davey, M. R., Power, J. B., and Marchant, R. (1995). Factors affecting the genetic engineering of plants by microprojectile bombardment. Biotechnol. Adv. 13, 631–651.

    Article  CAS  PubMed  Google Scholar 

  5. Taylor, N. J. and Fauquet, C. M. (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol. 21, 963–977.

    Article  CAS  PubMed  Google Scholar 

  6. McCabe, D. and Christou, P. (1993) Direct DNA transfer using electric discharge particle acceleration (ACCELL™ technology). Plant Cell Tiss. Org. Cult. 33, 227–236.

    Article  CAS  Google Scholar 

  7. Sanford, J. C., Smith, F. D., and Russell, J. A. (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol. 217, 483–509.

    Article  CAS  PubMed  Google Scholar 

  8. Sanford, J. C., DeVit, M. J., Russell, J. A., et al. (1991) An improved, helium-driven biolistic device. Technique 3, 3–16.

    CAS  Google Scholar 

  9. Perl, A., Lotan, O., Abu-Abied, M., and Holland, D. (1996) Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape-Agrobacterium interactions. Nat. Biotechnol. 14, 624–628.

    Article  CAS  PubMed  Google Scholar 

  10. Francois, I. E. J. A., Broekaert, W. F., and Cammue, B. P. A. (2002) Different approaches for multi-transgene-stacking in plants. Plant Sci. 163, 281–295.

    Article  CAS  Google Scholar 

  11. Fu, X., Duc, L. T., Fontana, S., et al. (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgen. Res. 9, 11–19.

    Article  CAS  Google Scholar 

  12. Srivastava, V. and Ow, D. (2001) Biolistic mediated site-specific integration in rice. Mol. Breed. 8, 345–350.

    Article  CAS  Google Scholar 

  13. Vidal, J. R., Kikkert, J. R., Wallace, P. G., and Reisch, B. I. (2003) High-efficiency biolistic co-transformation and regeneration of ‘Chardonnay’ (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes. Plant Cell Rep. 22, 252–260.

    Article  CAS  PubMed  Google Scholar 

  14. Mauro, M. C., Toutain, S., Walter, B., et al. (1995) High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci. 112, 97–106.

    Article  CAS  Google Scholar 

  15. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473–497.

    Article  CAS  Google Scholar 

  16. Lloyd, G. and McCown, B. (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Int. Plant Prop. Soc. Proc. 30, 421–427.

    Google Scholar 

  17. Russell, J. A., Roy, M. K., and Sanford, J. C. (1992) Major improvements in biolistic transformation of suspension-cultured tobacco cells. In Vitro Cell. Dev. Biol. 28P, 97–105.

    CAS  Google Scholar 

  18. Vain, P., McMullen, M. D., and Finer, J. J. (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12, 84–88.

    Article  Google Scholar 

  19. Finer, J. J. and McMullen, M. D. (1991) Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell. Dev. Biol. 27P, 17–182.

    Google Scholar 

  20. Russell, J. A., Roy, M. K., and Sanford, J. C. (1992) Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol. 98, 1050–1056.

    Article  CAS  PubMed  Google Scholar 

  21. Sawant, S. S., Singh, P. K., and Tuli, R. (2000) Pretreatment of microprojectiles to improve the delivery of DNA in plant transformation. BioTechniques 29, 246–248

    CAS  PubMed  Google Scholar 

  22. Birch, R. G. and Franks, T. (1991) Development and optimisation of microprojectile systems for plant genetic transformation. Aust. J. Plant Physiol. 18, 453–469.

    Article  CAS  Google Scholar 

  23. Smith, F. D., Harpending, P. R., and Sanford, J. C. (1992) Biolistic transformation of prokaryotes: factors that affect biolistic transformation of very small cells. J. Gen. Microbiol. 138, 239–248.

    CAS  PubMed  Google Scholar 

  24. Martinelli, L. and Mandolino, G. (1994) Genetic transformation and regeneration of transgenic plants in grapevine (Vitis rupestris S.). Theor. Appl. Genet. 88, 621–628.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Kikkert, J.R., Vidal, J.R., Reisch, B.I. (2005). Stable Transformation of Plant Cells by Particle Bombardment/Biolistics. In: Peña, L. (eds) Transgenic Plants: Methods and Protocols. Methods in Molecular Biology™, vol 286. Humana Press. https://doi.org/10.1385/1-59259-827-7:061

Download citation

  • DOI: https://doi.org/10.1385/1-59259-827-7:061

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-263-6

  • Online ISBN: 978-1-59259-827-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics