Skip to main content

Impairment of Synaptic Function by Exposure to Lead

  • Protocol
In Vitro Neurotoxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 382 Accesses

Abstract

Of all known neurotoxicants, lead (Pb) has received by far the most research attention. Because of increasing awareness of its untoward effects, investigation of the metal’s central nervous system (CNS) actions has extended over several decades and across multiple experimental species, methods, and approaches. As a result, numerous actions of lead on the brain have been uncovered at the cellular and systems levels (e.g., ref. 1). Nonetheless, progress toward defining the specific bases of the neurotoxicity observed in exposed young children has been slow and inefficient and has not been commensurate with the magnitude of effort invested. Multiple factors have limited the development of this new information, but one of the most prominent has been the difficulty in linking findings obtained with in vitro approaches to neurotoxicity present in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cory-Slechta, D. A. (1995) Relationships between lead-induced learning impairments and changes in dopaminergic, cholinergic, and glutamatergic neu-rotransmitter system functions. Annu. Rev. Pharmacol. Toxicol. 35, 391–415.

    Article  PubMed  CAS  Google Scholar 

  2. Long, G. J., Rosen, J. F., and Schanne, F. A. X. (1994) Lead activation of protein kinase C from rat brain. J. Biol. Chem. 269, 834–837.

    PubMed  CAS  Google Scholar 

  3. Kern, M. and Audesirk, G. (1995) Inorganic lead may inhibit neurite development in cultured rat hippocampal neurons through hyperphosphorylation. Toxicol. Appl. Pharmacol. 134, 111–123.

    Article  PubMed  CAS  Google Scholar 

  4. Tomsig, J. L. and Suszkiw, J. B. (1995) Multisite interactions between Pb2+ and protein kinase C and its role in norepinephrine release from bovine adrenal chromaffin cells. J. Neurochem. 64, 2667–2773.

    Article  PubMed  CAS  Google Scholar 

  5. Paoletti, P., Ascher, P., and Neyton, J. (1997) High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J. Neurosci. 17, 5711–5725.

    PubMed  CAS  Google Scholar 

  6. Traynelis, S. F., Burgess, M. F., Zheng, F., Lyuboslavsky, P., and Powers, J. L. (1998) Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J. Neurosci. 18, 6163–6175.

    PubMed  CAS  Google Scholar 

  7. Smith, R. M. and Martell, A. E. (1976) Critical Stability Constants, Plenum, New York.

    Google Scholar 

  8. Simons, T. J. B. (1985) Influence of lead ions on cation permeability in human red cell ghosts. J. Membr. Biol. 84, 61–71.

    Article  PubMed  CAS  Google Scholar 

  9. Schoenmakers, T. J. M., Visser, G. J., Flik, G., and Theuvenet, A. P. R. (1992) Chelator: an improved method for computing metal ion concentrations in physiological solutions. BioTechniques 12, 870–879.

    PubMed  CAS  Google Scholar 

  10. Fabiato, A. (1988) Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 157, 378–417.

    Article  PubMed  CAS  Google Scholar 

  11. Srivastava, D., Hurwitz, R. L., and Fox, D. A. (1995) Lead-and calcium-mediated inhibition of bovine rod cGMP phosphodiesterase: interactions with magnesium. Toxicol. Appl. Pharmacol. 134, 43–52.

    Article  PubMed  CAS  Google Scholar 

  12. Kober, T. E. and Cooper, G. P. (1976) Lead competitively inhibits calcium-dependent synaptic transmission in the bullfrog sympathetic ganglion. Nature 262, 704–705.

    Article  PubMed  CAS  Google Scholar 

  13. Manalis, R. S., Cooper, G. P., and Pomeroy, S. L. (1984) Effects of lead on neuromuscular transmission in the bullfrog. Brain Res. 294, 95–109.

    Article  PubMed  CAS  Google Scholar 

  14. Suszkiw, J., Toth, G., Murawsky, M., and Cooper, G. P. (1984) Effects of Pb2+ and Cd2+ on acetylcholine release and Ca2+ movements in synaptosomes and subcellular fractions from rat brain and Torpedo electric organ. Brain Res. 323, 31–46.

    Article  PubMed  CAS  Google Scholar 

  15. Minnema, D. J., Greenland, R. D., and Michaelson, I. A. (1986) Effect of in vitro inorganic lead on dopamine release from superfused rat striatal synapto-somes. Toxicol. Appl. Pharmacol. 84, 400–411.

    Article  PubMed  CAS  Google Scholar 

  16. Minnema, D. J. and Michaelson, I. A. (1986) Differential effects of inorganic lead and delta-aminolevulinic acid in vitro on synaptosomal gamma-aminobutyric acid release. Toxicol. Appl. Pharmacol. 86, 437–447.

    Article  PubMed  CAS  Google Scholar 

  17. Minnema, D. J., Michaelson, I. A., and Cooper, G. P. (1988) Calcium efflux and neurotransmitter release from rat hippocampal synaptosomes exposed to lead. Toxicol. Appl. Pharmacol. 92, 351–357.

    Article  PubMed  CAS  Google Scholar 

  18. Shao, Z. and Suszkiw, J. B. (1991) Ca2+ surrogate action of Pb2+ on acetylcholine release from rat brain synaptosomes. J. Neurochem. 56, 568–574.

    Article  PubMed  CAS  Google Scholar 

  19. Audesirk, G. and Audesirk, T. (1991) Effects of inorganic lead on voltage-sensitive calcium channels in N1E-115 neuroblastoma cells. NeuroToxicology 12, 519–528.

    PubMed  CAS  Google Scholar 

  20. Sun, L. R. and Suszkiw, J. B. (1995) Extracellular inhibition and intracellular enhancement of Ca2+ currents by Pb2+ in bovine adrenal chromaffin cells. J. Neurophysiol. 74, 574–581.

    PubMed  CAS  Google Scholar 

  21. Tomsig, J. L. and Suszkiw, J. B. (1996) Metal selectivity of exocytosis in α-toxin-permeabilized bovine chromaffin cells. J. Neurochem. 66, 644–650.

    Article  PubMed  CAS  Google Scholar 

  22. Westerink, R. H. S. and Vijverberg, H. P. M. (2002) Ca2+-independent vesicular catecholamine release in PC12 cells by nanomolar concentrations of Pb2+. J. Neurochem. 80, 861–873.

    Article  PubMed  CAS  Google Scholar 

  23. Goldstein, G. W. (1993) Evidence that lead acts as a calcium substitute in second messenger metabolism. NeuroToxicology 14, 97–102.

    PubMed  CAS  Google Scholar 

  24. Braga, M. F. M., Pereira, E. F. R., and Albuquerque, E. X. (1999) Nanomolar concentrations of lead inhibit glutamatergic and GABAergic transmission in hippocampal neurons. Brain Res. 826, 22–34.

    Article  PubMed  CAS  Google Scholar 

  25. Braga, M. F. M., Pereira, E. F. R., Marchioro, M., and Albuquerque, E. X. (1999) Lead increases tetrodotoxin-insensitive spontaneous release of glutamate and GABA from hippocampal neurons. Brain Res. 826, 10–21.

    Article  PubMed  CAS  Google Scholar 

  26. Lasley, S. M. and Gilbert, M. E. (1996) Presynaptic glutamatergic function in dentate gyrus in vivo is diminished by chronic exposure to inorganic lead. Brain Res. 736, 125–134.

    Article  PubMed  CAS  Google Scholar 

  27. Lasley, S. M., Green, M. C, and Gilbert, M. E. (1999) Influence of exposure period on in vivo hippocampal glutamate and GABA release in rats chronically exposed to lead. NeuroToxicology 20, 619–630.

    PubMed  CAS  Google Scholar 

  28. Lasley, S. M. and Gilbert, M. E. (2002) Rat hippocampal glutamate and GABA release exhibit biphasic effects as a function of chronic lead exposure level. Toxicol. Sci. 66, 139–147.

    Article  PubMed  CAS  Google Scholar 

  29. Alkondon, M., Costa, A. C. S., Radhakrishnan, V., Aronstam, R. S., and Albuquerque, E. X. (1990) Selective blockade of NMDA-activated channel currents may be implicated in learning deficits caused by lead. FEBS Lett. 261, 124–130.

    Article  PubMed  CAS  Google Scholar 

  30. Guilarte, T. R. and Miceli, R. C. (1992) Age-dependent effects of lead on [3H]MK-801 binding to the NMDA receptor-gated ionophore: in vitro and in vivo studies. Neurosci. Lett. 148, 27–30.

    Article  PubMed  CAS  Google Scholar 

  31. Schulte, S., Muller, W. E., and Friedberg, K. D. (1995) In vitro and in vivo effects of lead on specific 3H-MK-801 binding to NMDA receptors in the brain of mice. NeuroToxicology 16, 309–318.

    PubMed  CAS  Google Scholar 

  32. Guilarte, T. R., Miceli, R. C., and Jett, D. A. (1995) Biochemical evidence of an interaction of lead at the zinc allosteric sites of the NMDA receptor complex: effects of neuronal development. NeuroToxicology 16, 63–72.

    PubMed  CAS  Google Scholar 

  33. Guilarte, T. R., Miceli, R. C., and Jett, D. A. (1994) Neurochemical aspects of hippocampal and cortical Pb2+ neurotoxicity. NeuroToxicology 15, 459–466.

    PubMed  CAS  Google Scholar 

  34. Lasley, S. M. and Gilbert, M. E. (1999) Lead inhibits the rat N-methyl-d-aspar-tate receptor channel by binding to a site distinct from the zinc allosteric site. Toxicol. Appl. Pharmacol. 159, 224–233.

    Article  PubMed  CAS  Google Scholar 

  35. Ma, T., Chen, H-H., Chang, H. L., Hume, A. S., and Ho, I. K. (1997) Effects of chronic lead exposure on [3H]MK-801 binding in the brain of rat. Toxicol. Lett. 92, 59–66.

    Article  PubMed  CAS  Google Scholar 

  36. Guilarte, T. R., Miceli, R. C., Altmann, L., Weinsberg, F., Winneke, G., and Wiegand, H. (1993) Chronic prenatal and postnatal Pb2+ exposure increases [3H]MK-801 binding sites in adult rat forebrain. Eur. J. Pharmacol. 248, 273–275.

    PubMed  CAS  Google Scholar 

  37. Lasley, S. M., Green, M. C., and Gilbert, M. E. (2001) Rat hippocampal NMDA receptor binding as a function of chronic lead exposure level. Neurotoxicol. Teratol. 23, 185–189.

    Article  PubMed  CAS  Google Scholar 

  38. Chen, H-H., Ma, T., and Ho, I. K. (2001) Effects of developmental lead exposure on inhibitory avoidance learning and glutamate receptors in rats. Environ. Toxicol. Pharmacol. 9, 185–191.

    Article  PubMed  CAS  Google Scholar 

  39. Cory-Slechta, D. A., Garcia-Osuna, M., and Greenamyre, J. T. (1997) Leadinduced changes in NMDA receptor complex binding: correlations with learning accuracy and with sensitivity to learning impairments caused by MK-801 and NMDA administration. Behav. Brain Res. 85, 161–174.

    Article  PubMed  CAS  Google Scholar 

  40. Cory-Slechta, D. A., McCoy, L., and Richfield, E. K. (1997) Time course and regional basis of Pb-induced changes in MK-801 binding: Reversal by chronic treatment with the dopamine agonist apomorphine but not the D1 agonist SKF-82958. J. Neurochem. 68, 2012–2023.

    Article  PubMed  CAS  Google Scholar 

  41. Cohn, J. and Cory-Slechta, D. A. (1994) Lead exposure potentiates the effects of NMDA on repeated learning. Neurotoxicol. Teratol. 16, 455–465.

    Article  PubMed  CAS  Google Scholar 

  42. Cory-Slechta, D. A., Pokora, M. J., and Johnson, J. L. (1996) Postweaning lead exposure enhances the stimulus properties of N-methyl-d-aspartate: Possible dopaminergic involvement? NeuroToxicology 17, 509–522.

    PubMed  CAS  Google Scholar 

  43. Cohn, J. and Cory-Slechta, D. A. (1993) Subsensitivity of lead-exposed rats to the accuracy-impairing and rate-altering effects of MK-801 on a multiple schedule of repeated learning and performance. Brain Res. 600, 208–218.

    Article  PubMed  CAS  Google Scholar 

  44. Cory-Slechta, D. A. (1995) MK-801 subsensitivity following postweaning lead exposure. NeuroToxicology 16, 83–96.

    PubMed  CAS  Google Scholar 

  45. Lasley, S. M. and Gilbert, M. E. (2000) Glutamatergic components underlying lead-induced impairments in hippocampal synaptic plasticity. NeuroToxicology 21, 1057–1068.

    PubMed  CAS  Google Scholar 

  46. Markovac, J. and Goldstein, G. W. (1988) Picomolar concentrations of lead stimulate brain protein kinase C. Nature 334, 71–73.

    Article  PubMed  CAS  Google Scholar 

  47. Markovac, J. and Goldstein, G. W. (1988) Lead activates protein kinase C in immature rat brain microvessels. Toxicol. Appl. Pharmacol. 96, 14–23.

    Article  PubMed  CAS  Google Scholar 

  48. Sun, X., Tian, X., Tomsig, J. L., and Suszkiw, J. B. (1999) Analysis of differential effects of Pb2+ on protein kinase C isozymes. Toxicol. Appl. Pharmacol. 156, 40–45.

    Article  PubMed  CAS  Google Scholar 

  49. Laterra, J., Bressler, J. P., Indurti, R. R., Belloni-Olivi, L., and Goldstein, G. W. (1992) Inhibition of astroglia-induced endothelial differentiation by inorganic lead: a role for protein kinase C. Proc. Natl. Acad. Sci. USA 89, 10,748–10,752.

    Article  PubMed  CAS  Google Scholar 

  50. Lu, H., Guizzetti, M., and Costa, L. G (2001) Inorganic lead stimulates DNA synthesis in human astrocytoma cells: role of protein kinase C. J. Neurochem. 78, 590–599.

    Article  PubMed  CAS  Google Scholar 

  51. Kim, K-A., Chakraborti, T., Goldstein, G. W., and Bressler, J. P. (2000) Immediate early gene expression in PC12 cells exposed to lead: requirement for protein kinase C. J. Neurochem. 74, 1140–1146.

    Article  PubMed  CAS  Google Scholar 

  52. Nihei, M. K., McGlothan, J. L., Toscano, C. D., and Guilarte, T. R. (2001) Low level Pb2+ exposure affects hippocampal protein kinase Cγ gene and protein expression in rats. Neurosci. Lett. 298, 212–216.

    Article  PubMed  CAS  Google Scholar 

  53. Chen, H-H., Ma, T., and Ho, I. K. (1999) Protein kinase C in rat brain is altered by developmental lead exposure. Neurochem. Res. 24, 415–421.

    Article  PubMed  CAS  Google Scholar 

  54. Reinholz, M. M., Bertics, P. J., and Miletic, V. (1999) Chronic exposure to lead acetate affects the development of protein kinase C activity and the distribution of the PKCγ isozyme in the rat hippocampus. NeuroToxicology 20, 609–618.

    PubMed  CAS  Google Scholar 

  55. Crumpton, T., Atkins, D. S., Zawia, N. H., and Barone, S. (2001) Lead exposure in pheochromocytoma (PC12) cells alters neural differentiation and Sp1 DNA-binding. NeuroToxicology 22, 49–62.

    Article  PubMed  CAS  Google Scholar 

  56. Kern, M., Wisniewski, M., Cabell, L., and Audesirk, G. (2000) Inorganic lead and calcium interact positively in activation of calmodulin. NeuroToxicology 21, 353–364.

    PubMed  CAS  Google Scholar 

  57. Kern, M. and Audesirk, G. (2000) Stimulatory and inhibitory effects of inorganic lead on calcineurin. Toxicology 150, 171–178.

    Article  PubMed  CAS  Google Scholar 

  58. Ferguson, C., Kern, M., and Audesirk, G. (2000) Nanomolar concentrations of inorganic lead increase Ca2+ efflux and decrease intracellular free Ca2+ ion concentrations in cultured rat hippocampal neurons by a calmodulin-dependent mechanism. NeuroToxicology 21, 365–378.

    PubMed  CAS  Google Scholar 

  59. Audesirk, T., Pedersen, C., Audesirk, G., and Kern, M. (1998) Low levels of inorganic lead noncompetitively inhibit μ-calpain. Toxicology 131, 169–174.

    Article  PubMed  CAS  Google Scholar 

  60. Cline, H. T., Witte, S., and Jones, K. W. (1996) Low lead levels stunt neuronal growth in a reversible manner. Proc. Natl. Acad. Sci. USA 93, 9915–9920.

    Article  PubMed  CAS  Google Scholar 

  61. Reuhl, K. R., Rice, D. C., Gilbert, S. G., and Mallett, J. (1989) Effects of chronic developmental lead exposure on monkey neuroanatomy: visual system. Toxicol. Appl. Pharmacol. 99, 501–509.

    Article  PubMed  CAS  Google Scholar 

  62. Fox, D. A. and Sillman, A. J. (1979) Heavy metals affect rod, but not cone, photoreceptors. Science 206, 78–80.

    Article  PubMed  CAS  Google Scholar 

  63. Fox, D. A., Campbell, M. L., and Blocker, Y. S. (1997) Functional alterations and apoptotic cell death in the retina following developmental or adult lead exposure. NeuroToxicology 18, 645–664.

    PubMed  CAS  Google Scholar 

  64. Fox, D. A. and Srivastava, D. (1995) Molecular mechanism of the lead-induced inhibition of rod cGMP phosphodiesterase. Toxicol. Lett. 82–83, 263–270.

    Article  PubMed  Google Scholar 

  65. Fox, D. A., He, L., Poblenz, A. T., Medrano, C. J., Blocker, Y. S., and Srivastava, D. (1998) Lead-induced alterations in retinal cGMP phosphodi-esterase trigger calcium overload, mitochondrial dysfunction and rod photore-ceptor apoptosis. Toxicol. Lett. 102–103, 359–361.

    Article  PubMed  Google Scholar 

  66. He, L., Poblenz, A. T., Medrano, C. J., and Fox, D. A. (2000) Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. J. Biol. Chem. 275, 12,175–12,184.

    Article  PubMed  CAS  Google Scholar 

  67. Fox, D. A. and Farber, D. B. (1988) Rods are selectively altered by lead: I. Electrophysiology and biochemistry. Exp. Eye Res. 46, 597–611.

    Article  PubMed  CAS  Google Scholar 

  68. Lilienthal, H., Lenaerts, C., Winneke, G., and Hennekes, R. (1988) Alteration of the visual evoked potential and the electroretinogram in lead-treated monkeys. Neurotoxicol. Teratol. 10, 417–422.

    Article  PubMed  CAS  Google Scholar 

  69. Fox, D. A., Srivastava, D., and Hurwitz, R. L. (1994) Lead-induced alterations in rod-mediated visual functions and cGMP metabolism: new insights. NeuroToxicology 15, 503–512.

    PubMed  CAS  Google Scholar 

  70. Fox, D. A., Rubinstein, S. D., and Hsu, P. (1991) Developmental lead exposure inhibits adult rat retinal, but not kidney, Na+,K+-ATPase. Toxicol. Appl. Pharmacol. 109, 482–493.

    Article  PubMed  CAS  Google Scholar 

  71. Barnes, C. (1995) Involvement of LTP in memory: are we “searching under the street light?” Neuron 15, 751–754.

    Article  PubMed  CAS  Google Scholar 

  72. Bliss, T. V. P. and Collingridge, G. L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39.

    Article  PubMed  CAS  Google Scholar 

  73. Cain, D. P., Hargreaves, E. L., Boon, F., and Dennison, Z. (1993) An examination of the relations between hippocampal long-term potentiation, kindling, afterdischarge, and place learning in the water maze. Hippocampus 5, 153–163.

    Article  Google Scholar 

  74. Sutherland, R. J., Dringenberg, H. C., and Hoesing, J. M. (1993) Induction of long-term potentiation at perforant path dentate synapses does not affect place learning or memory. Hippocampus 3, 141–148.

    Article  PubMed  CAS  Google Scholar 

  75. Hargreaves, E. L., Cain, D. P., and Vanderwolf, C H. (1990) Learning and behavioral long-term potentiation: importance of controlling for motor activity. J. Neurosci. 10, 1472–1478.

    PubMed  CAS  Google Scholar 

  76. Gilbert, M. E., Mack, C. M., and Lasley, S. M. (1999) The influence of developmental period of lead exposure on long-term potentiation in the adult rat dentate gyrus in vivo. NeuroToxicology 20, 57–70.

    PubMed  CAS  Google Scholar 

  77. Gilbert, M. E., Mack, C. M., and Lasley, S. M. (1996) Chronic developmental lead exposure increases threshold for long-term potentiation in the rat dentate gyrus in vivo. Brain Res. 736, 118–124.

    Article  PubMed  CAS  Google Scholar 

  78. Grover, C. A. and Frye, G. D. (1996) Ethanol effects on synaptic neurotrans-mission and tetanus-induced synaptic plasticity in hippocampal slices of chronic in vivo lead-exposed adult rats. Brain Res. 734, 61–71.

    Article  PubMed  CAS  Google Scholar 

  79. Lasley, S. M., Polan-Curtain, J., and Armstrong, D. L. (1993) Chronic exposure to environmental levels of lead impairs in vivo induction of long-term potentiation in rat hippocampal dentate. Brain Res. 614, 347–351.

    Article  PubMed  CAS  Google Scholar 

  80. Ruan, D., Chen, J., Zhao, C., Xu, Y., Wang, M., and Zhao, W. (1998) Impairment of long-term potentiation and paired-pulse facilitation in rat hippocampal dentate gyrus following developmental lead exposure in vivo. Brain Res. 806, 196–201.

    Article  PubMed  CAS  Google Scholar 

  81. Gilbert, M. E., Mack, C. M., and Lasley, S. M. (1999) Chronic developmental lead exposure and hippocampal long-term potentiation: biphasic dose-response relationship. NeuroToxicology 20, 71–82.

    PubMed  CAS  Google Scholar 

  82. Gilbert, M. E. and Mack, C. M. (1998) Chronic developmental lead exposure accelerates decay of long-term potentiation in rat dentate gyrus in vivo. Brain Res. 789, 139–149.

    Article  PubMed  CAS  Google Scholar 

  83. Nihei, M. K., Desmond, N. L., McGlothan, J. L., Kuhlmann, A. C., and Guilarte, T. R. (2000) N-Methyl-d-aspartate receptor subunit changes are associated with lead-induced deficits of long-term potentiation and spatial learning. Neuroscience 99, 233–242.

    Article  PubMed  CAS  Google Scholar 

  84. Altmann, L., Weinsberg, F., Sveinsson, K., Lilienthal, H., Wiegand, H., and Winneke, G. (1993) Impairment of long-term potentiation and learning following chronic lead exposure. Toxicol. Lett. 66, 105–112.

    Article  PubMed  CAS  Google Scholar 

  85. Zaiser, A. E. and Miletic, V. (1997) Prenatal and postnatal chronic exposure to low levels of inorganic lead attenuates long-term potentiation in the adult rat hippocampus in vivo. Neurosci. Lett. 239, 128–130.

    Article  PubMed  CAS  Google Scholar 

  86. Xu, Y., Ruan, D., Wu, Y., et al. (1998) Nitric oxide affects LTP in area CA1 and CA3 of hippocampus in low-level lead-exposed rat. Neurotoxicol. Teratol. 20, 69–73.

    Article  PubMed  CAS  Google Scholar 

  87. Gutowski, M., Altmann, L., Sveinsson, K., and Wiegand, H. (1998) Synaptic plasticity in the CA1 and CA3 hippocampal region of pre-and postnatally lead-exposed rats. Toxicol. Lett. 95, 195–203.

    Article  PubMed  CAS  Google Scholar 

  88. Zhao, W., Ruan, D., Xu, Y., Chen, J., Wang, M., and Ge, S. (1999) The effects of chronic lead exposure on long-term depression in area CA1 and dentate gyrus of rat hippocampus in vitro. Brain Res. 818, 153–159.

    Article  PubMed  CAS  Google Scholar 

  89. Zaiser, A. E. and Miletic, V. (2000) Differential effects of inorganic lead on hippocampal long-term potentiation in young rats in vivo. Brain Res. 876, 201–204.

    Article  PubMed  CAS  Google Scholar 

  90. Cai, L., Ruan, D-Y., Xu, Y-Z., Liu, Z., Meng, X-M., and Dai, X-Q. (2001) Effects of lead exposure on long-term potentiation induced by 2-deoxy-D-glucose in area CA1 of rat hippocampus in vitro. Neurotoxicol. Teratol. 23, 481–487.

    Article  PubMed  CAS  Google Scholar 

  91. Altmann, L., Gutowski, M., and Wiegand, H. (1994) Effects of maternal lead exposure on functional plasticity in the visual cortex and hippocampus of immature rats. Dev. Brain Res. 81, 50–56.

    Article  CAS  Google Scholar 

  92. Wilson, M. A., Johnston, M. V., Goldstein, G. W., and Blue, M. E. (2000) Neonatal lead exposure impairs development of rodent barrel field cortex. Proc. Natl. Acad. Sci. USA 97, 5540–5545.

    Article  PubMed  CAS  Google Scholar 

  93. Rema, V. and Ebner, F. F. (1999) Effect of enriched environment rearing on impairments in cortical excitability and plasticity after prenatal alcohol exposure. J. Neurosci. 19, 10,993–11,006.

    PubMed  CAS  Google Scholar 

  94. Gilbert, M. E. and Lasley, S. M. (2002) Long-term consequences of developmental exposure to lead or polychlorinated biphenyls: synaptic transmission and plasticity in the rodent CNS. Environ. Toxicol. Pharmacol. 12, 105–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Lasley, S.M., Gilbert, M.E. (2004). Impairment of Synaptic Function by Exposure to Lead. In: Tiffany-Castiglioni, E., Hollinger, M.A. (eds) In Vitro Neurotoxicology. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-651-7:217

Download citation

  • DOI: https://doi.org/10.1385/1-59259-651-7:217

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-047-2

  • Online ISBN: 978-1-59259-651-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics