Skip to main content

Effects of Toxicants on Neural Differentiation

  • Protocol
Book cover In Vitro Neurotoxicology

Abstract

Differentiation is a complex process by which a terminal cell phenotype is determined. During neural development, in vivo cells of the nervous system reach this terminal phenotype through both preprogrammed genetic signaling and epigenetic signaling. This genetic program can set up initial organizational planes and an initial temporal sequence of events, but epigenetic signals drive much of the later gene expression and subsequent protein expression that determines different phases of differentiation. This epigenetic signaling can stimulate pluripotent cells to become more restricted in their fate, usually leading to multipotent cells and eventually to a final terminal phenotype. Epigenetic signals include a number of morphogenic and neurotrophic molecules that determine phenotype based on (1) the level of exposure to these endogenous substances, (2) the order of exposure, and (3) the mixture of exposure to these different epigenetic signaling molecules. These complex signaling events are being elucidated with advances in stem cell research in which the signals that stimulate multipotent cells to become neurons, glia, muscle, or bone are starting to be revealed (1). Because of this complexity, it is difficult to tease these different signaling events apart in many in vivo systems and this is why a reductionist approach with in vitro systems is often favored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Panchision, D. M. and McKay, R. D. (2002) The control of neural stem cells by morphogenic signals. Curr. Opin. Genet. Dev. 12, 478–487.

    Article  PubMed  CAS  Google Scholar 

  2. Rice, D. C. and Barone, S. J. (2000) Critical Periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect. 108(Suppl. 3), 511–533.

    Article  PubMed  Google Scholar 

  3. Edenfeld, G., Pielage, J., and Klambt, C. (2002) Cell lineage specification in the nervous system. Curr. Opin. Genet. Dev. 12, 473–477.

    Article  PubMed  CAS  Google Scholar 

  4. McConnell, S. K. (1990) The specification of neuronal identity in the mammalian cerebral cortex. Experientia 46, 922–929.

    Article  PubMed  CAS  Google Scholar 

  5. Eagleson, K. L., Lillien, L., Chan, A. V., and Levitt, P. (1997) Mechanisms specifying area fate in cortex include cell-cycle-dependent decisions and the capacity of progenitors to express phenotype memory. Development 124, 1623–1630.

    PubMed  CAS  Google Scholar 

  6. Greene, L. A. and Tischler, A. S. (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73, 2424–2428.

    Article  PubMed  CAS  Google Scholar 

  7. Greene, L. A., Bernd, P., Black, M. M., et al. (1983) Genomic and non-genomic actions of nerve growth factor in development. Prog. Brain Res. 58, 347–357.

    Article  PubMed  CAS  Google Scholar 

  8. Shaughnessy, L. W. and Barone, S. J. (1997) Damage to the NBM leads to a sustained lesion-induced increase in functional NGF in the cortex. NeuroReport 8, 2767–2774.

    Article  PubMed  CAS  Google Scholar 

  9. Bosco, A. and Linden, R. (1999) BDNF and NT-4 differentially modulate neurite outgrowth in developing retinal ganglion cells. J. Neurosci. Res. 57, 759–769.

    Article  PubMed  CAS  Google Scholar 

  10. Drubin, D. G., Feinstein, S. C., Shooter, E. M., and Kirschner, M. W. (1985) Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors. J. Cell Biol. 101, 1799–1807.

    Article  PubMed  CAS  Google Scholar 

  11. Das, K. D. and Barone, S. J. (1999) Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: is acetylcholinesterase inhibition the site of action? Toxicol. Appl. Pharmacol. 160, 217–230.

    Article  PubMed  CAS  Google Scholar 

  12. Crumpton, T. L., Atkins, D., Zawia, N., and Barone, S., Jr. (2001) Lead exposure in pheochromocytoma (PC12) cells alters neural differentiation and Sp1 DNA-binding. Neurotoxicology 22, 49–62.

    Article  PubMed  CAS  Google Scholar 

  13. Parran, D. K., Mundy, W. R., and Barone, S. J. (2001) Effects of methylmercury and mercuric chloride on differentiation and cell viability in PC12 cells. Toxicol. Sci. 59, 278–290.

    Article  PubMed  CAS  Google Scholar 

  14. Smith, S. L., Sadler, C. J., Dodd, C. C., et al. (2001) The role of glutathione in the neurotoxicity of artemisinin derivatives in vitro. Biochem. Pharmacol. 61, 409–416.

    Article  PubMed  CAS  Google Scholar 

  15. Brat, D. J. and Brimijoin, S. (1992) A paradigm for examining toxicant effects on viability, structure, and axonal transport of neurons in culture. Mol. Neurobiol. 6, 125–135.

    Article  PubMed  CAS  Google Scholar 

  16. Audesirk, T. and Cabell, L. (1999) Nanomolar concentrations of nicotine and cotinine alter the development of cultured hippocampal neurons via non-acetylcholine receptor-mediated mechanisms. Neurotoxicology 20, 639–646.

    PubMed  CAS  Google Scholar 

  17. Mariussen, E., Myhre, O., Reistad, T., and Fonnum, F. (2002) The polychlorinated biphenyl mixture aroclor 1254 induces death of rat cerebellar granule cells: the involvement of the N-methyl-d-aspartate receptor and reactive oxygen species. Toxicol. Appl. Pharmacol. 179, 137–144.

    Article  PubMed  CAS  Google Scholar 

  18. Layer, P. G. (1991) Cholinesterases during development of the avian nervous system. Cell Mol. Neurobiol. 11, 7–33.

    Article  PubMed  CAS  Google Scholar 

  19. Layer, P. G., Weikert, T., and Alber, R. (1993) Cholinesterases regulate neurite growth of chick nerve cells in vitro by means of a non-enzymatic mechanism. Cell Tissue Res. 273, 219–226.

    Article  PubMed  CAS  Google Scholar 

  20. Bywood, P. T. and Johnson, S. M. (2000) Dendrite loss is a characteristic early indicator of toxin-induced neurodegeneration in rat midbrain slices. Exp. Neurol. 161, 306–316.

    Article  PubMed  CAS  Google Scholar 

  21. Lotto, R. B. and Price, D. J. (1996) Effects of subcortical structures on the growth of cortical neurites in vitro. NeuroReport 7, 1185–1188.

    Article  PubMed  CAS  Google Scholar 

  22. Bilsland, J., Rigby, M., Young, L., and Harper, S. (1999) A rapid method for semi-quantitative analysis of neurite outgrowth from chick DRG explants using image analysis. J. Neurosci. Methods 92, 75–85.

    Article  PubMed  CAS  Google Scholar 

  23. Audesirk, G. and Audesirk, T. (1998) Neurite development, in Handbook of Developmental Neurotoxicology (Slikker, W. J. and Chang, L. W., eds.), Academic, San Diego, pp. 61–86.

    Chapter  Google Scholar 

  24. Cory-Slechta, D. A. (1995) Relationships between lead-induced learning impairments and changes in dopaminerigic, cholinerigic, and glutamatergic neurotransmitter system functions. Annu. Rev. Pharmacol. Toxicol. 35, 391–415.

    Article  PubMed  CAS  Google Scholar 

  25. Lasley, S. M. and Lane, J. D. (1988). Diminished regulation of mesolimbic dopaminergic activity in rat after chronic inorganic lead exposure. Toxicol. Appl. Pharmacol. 95, 474–483.

    Article  PubMed  CAS  Google Scholar 

  26. Lasley, S. M., Greenland, R. D., Minnema, D. J., and Michaelson, I. A. (1984) Influence of chronic inorganic lead exposure on regional dopamine and 5-HT turnover in rat brain. Neurochem. Res. 9, 1675–1688.

    Article  PubMed  CAS  Google Scholar 

  27. Moreira, E. G., Vassilieff, V. S., Vassilieff, I., et al. (2002) Developmental lead exposure: neurochemical and neuroanatomical effects in the rat. Toxicologist 66, 125.

    Google Scholar 

  28. Parran, D. K., Barone, S., Jr., and Mundy, W. R. (2003) Methylmercury inhibits NGF-induced TrkA autophosphorylation and neurite outgrowth in PC12 cells. Dev. Brain Res. 141(1–2), 71–81.

    Article  CAS  Google Scholar 

  29. Graff, R. D., Falconer, M. M., Brown, D. L., and Reuhl, K. R. (1997) Altered sensitivity of posttranslationally modified microtubules to methylmercury in differentiating embryonal carcinoma-derived neurons. Toxicol. Appl. Pharmacol. 144, 215–224.

    Article  PubMed  CAS  Google Scholar 

  30. Lagunowich, L. A., Bhambhani, S., Graff, R. D., and Reuhl, K. (1991) Cell adhesion molecules in the cerebellum: Targets of methylmercury toxicity? Soc. Neurosci. 17, 515.

    Google Scholar 

  31. Dey, P. M., Gochfeld, M., and Reuhl, K. R. (1999) Developmental methylmercury administration alters cerebellar PSA-NCAM expression and Golgi sialyltransferase activity. Brain Res. 845, 139–151.

    Article  PubMed  CAS  Google Scholar 

  32. Barone, S. J., Haykal-Coates, N., Parran, D. K., and Tilson, H. A. (1998) Gestational exposure to methylmercury alters the developmental pattern of trk-like immunoreactivity in the rat brain and results in cortical dysmorphology. Dev. Brain Res. 109, 13–31.

    Article  CAS  Google Scholar 

  33. Honegger, P. (1985) Biochemical differentiation in serum-free aggregating brain cell cultures, in Cell Culture in the Neurosciences (Bottenstein, J. E. and Sato, G., eds.), Plenum, New York, pp. 223–243.

    Google Scholar 

  34. Guroff, G. (1985) PC12 cells as a model of neuronal differentiation, in Cell Culture in the Neurosciences (Bottenstein, J. and Sato, G., eds.), Plenum, New York, pp. 245–272.

    Google Scholar 

  35. O’Callaghan, J. P. (1988) Neurotypic and gliotypic proteins as biochemical markers of neurotoxicity. Neurotoxicol. Teratol. 10, 445–452.

    Article  Google Scholar 

  36. O’Callaghan, J. P. and Miller, D. B. (1989) Assessment of chemically-induced alterations in brain development using assays of neuron-and glia-localized proteins. Neurotoxicology 10, 393–406.

    Google Scholar 

  37. Reinhardt, C. A. (1993) Neurodevelopmental toxicity in vitro: primary cell culture models for screening and risk assessment. Reprod. Toxicol. 7(Suppl. 1), 165–170.

    Article  PubMed  CAS  Google Scholar 

  38. Abdulla, E. M. and Campbell, I. C. (1993) l-BMAA and kainate-induced modulation of neurofilament concentrations as a measure of neurite outgrowth: implications for an in vitro test of neurotoxicity. Toxicol. In Vitro 7, 341–344.

    Article  PubMed  CAS  Google Scholar 

  39. Garrels, J. I. and Schubert, D. (1979) Modulation of protein synthesis by nerve growth factor. J. Biol. Chem. 254, 7978–7985.

    PubMed  CAS  Google Scholar 

  40. McGuire, J. C., Greene, L. A., and Furano, A. V. (1978) NGF stimulates incorporation of fucose or glucosamine into an external glycoprotein in cultured rat PC12 pheochromocytoma cells. Cell 15, 357–365.

    Article  PubMed  CAS  Google Scholar 

  41. McGuire, J. C. and Greene, L. A. (1980) Stimulation by nerve growth factor of specific protein synthesis in rat PC12 pheochromocytoma cells. Neuroscience 5, 179–189.

    Article  PubMed  CAS  Google Scholar 

  42. Goslin, K. and Banker, G. (1989) Experimental observations on the development of polarity by hippocampal neurons in culture. J. Cell Biol. 108, 1507–1516.

    Article  PubMed  CAS  Google Scholar 

  43. Greene, L. A. and Rein, G. (1977) Synthesis, storage and release of acetylcho-line by a noradrenergic pheochromocytoma cell line. Nature 268, 349–351.

    Article  PubMed  CAS  Google Scholar 

  44. Edgar, D. H. and Thoenen, H. (1978) Selective enzyme induction in a nerve growth factor-responsive pheochromocytoma cell line (PC 12). Brain Res. 154, 186–190.

    Article  PubMed  CAS  Google Scholar 

  45. Lucas, C. A., Czlonkowska, A., and Kreutzberg, G. W. (1980) Regulation of acetylcholinesterase by nerve growth factor in the pheochromocytoma PC12 cell line. Neurosci. Lett. 18, 333–337.

    Article  PubMed  CAS  Google Scholar 

  46. Rieger, F., Shelanski, M. L., and Greene, L. A. (1980) The effects of nerve growth factor on acetylcholinesterase and its multiple forms in cultures of rat PC12 pheochromocytoma cells: increased total specific activity and appearance of the 16 S molecular form. Dev. Biol. 76, 238–243.

    Article  PubMed  CAS  Google Scholar 

  47. Greene, L. A. and Rukenstein, A. (1981) Regulation of acetylcholinesterase activity by nerve growth factor. Role of transcription and dissociation from effects on proliferation and neurite outgrowth. J. Biol. Chem. 256, 6363–6367.

    PubMed  CAS  Google Scholar 

  48. Hatanaka, H. (1981) Nerve growth factor-mediated stimulation of tyrosine hydroxylase activity in a clonal rat pheochromocytoma cell line. Brain Res. 222, 225–233.

    Article  PubMed  CAS  Google Scholar 

  49. Layer, P. G. and Willbold, E. (1995) Novel functions of cholinesterases in development, physiology and disease. Prog. Histochem. Cytochem. 29, 1–94.

    PubMed  CAS  Google Scholar 

  50. Bigbee, J. W., Sharma, K. V., Gupta, J. J., and Dupree, J. L. (1999) Morphogenic role for acetylcholinesterase in axonal outgrowth during neural development. Environ. Health Perspect. 107(Suppl. 1), 81–87.

    Article  PubMed  CAS  Google Scholar 

  51. Caceres, A., Banker, G., Steward, O., Binder, L., and Payne, M. (1984) MAP2 is localized to the dendrites of hippocampal neurons which develop in culture. Brain Res. 315, 314–318.

    PubMed  CAS  Google Scholar 

  52. Dupree, J. L. and Bigbee, J. W. (1994) Retardation of neuritic outgrowth and cytoskeletal changes accompany acetylcholinesterase inhibitor treatment in cultured rat dorsal root ganglion neurons. J. Neurosci. Res. 39, 567–575.

    Article  PubMed  CAS  Google Scholar 

  53. Sharma, K. V. and Bigbee, J. W. (1998) Acetylcholinesterase antibody treatment results in neurite detachment and reduced outgrowth from cultured neurons: further evidence for a cell adhesive role for neuronal acetylcholinesterase. J. Neurosci. Res. 53, 454–464.

    Article  PubMed  CAS  Google Scholar 

  54. Dichter, M. A., Tischler, A. S., and Greene, L. A. (1977) Nerve growth factor-induced increase in electrical excitability and acetylcholine sensitivity of a rat pheochromocytoma cell line. Nature 268, 501–504.

    Article  PubMed  CAS  Google Scholar 

  55. Ifune, C. K. and Steinbach, J. H. (1990) Regulation of sodium currents and acetylcholine responses in PC12 cells. Brain Res. 506, 243–248.

    Article  PubMed  CAS  Google Scholar 

  56. Boyd, N. D. (1987) Two distinct kinetic phases of desensitization of acetylcholine receptors of clonal rat PC12 cells. J. Physiol. 389, 45–67.

    PubMed  CAS  Google Scholar 

  57. Whiting, P. J., Schoepfer, R., Swanson, L. W., Simmons, D. M., and Lindstrom, J. M. (1987) Functional acetylcholine receptor in PC12 cells reacts with a monoclonal antibody to brain nicotinic receptors. Nature 327, 515–518.

    Article  PubMed  CAS  Google Scholar 

  58. Jumblatt, J. E. and Tischler, A. S. (1982) Regulation of muscarinic ligand binding sites by nerve growth factor in PC12 phaeochromocytoma cells. Nature 297, 152–154.

    Article  PubMed  CAS  Google Scholar 

  59. Cross, A. J., Johnson, J. A., Frith, C., and Taylor, G. R. (1984) Muscarinic cholinergic receptors in a rat pheochromocytoma cell line. Biochem. Biophys. Res. Commun. 119, 163–167.

    Article  PubMed  CAS  Google Scholar 

  60. Viana, G. B., Davis, L. H., and Kauffman, F. C. (1988) Effects of organophosphates and nerve growth factor on muscarinic receptor binding number in rat pheochromocytoma PC12 cells. Toxicol. Appl. Pharmacol. 93, 257–266.

    Article  PubMed  CAS  Google Scholar 

  61. McDonald, J. W., Johnston, M. V., and Young, A. B. (1990) Differential ontogenic development of three receptors comprising the NMDA receptor/channel complex in the rat hippocampus. Exp. Neurol. 110, 237–247.

    Article  PubMed  CAS  Google Scholar 

  62. Ishii, T., Moriyoshi, K., Sugihara, H., et al. (1993) Molecular characterization of the family of the N-methyl-d-aspartate receptor subunits. J. Biol. Chem. 268, 2836–2843.

    PubMed  CAS  Google Scholar 

  63. Monyer, H., Sprengel, R., Schoepfer, R., et al. (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217–1221.

    Article  PubMed  CAS  Google Scholar 

  64. Williams, K., Russell, S. L., Shen, Y. M., and Molinoff, P. B. (1993) Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron 10, 267–278.

    Article  PubMed  CAS  Google Scholar 

  65. Zhong, J., Russell, S. L., Pritchett, D. B., Molinoff, P. B., and Williams, K. (1994) Expression of mRNAs encoding subunits of the N-methyl-D-aspartate receptor in cultured cortical neurons. Mol. Pharmacol. 45, 846–853.

    PubMed  CAS  Google Scholar 

  66. Mizuta, I., Katayama, M., Watanabe, M., Mishina, M., and Ishii, K. (1998) Developmental expression of NMDA receptor subunits and the emergence of glutamate neurotoxicity in primary cultures of murine cerebral cortical neurons. Cell. Mol. Life Sci. 54, 721–725.

    Article  PubMed  CAS  Google Scholar 

  67. Cheng, C., Fass, D. M., and Reynolds, I. J. (1999) Emergence of excitotoxicity in cultured forebrain neurons coincides with larger glutamate-stimulated [Ca(2+)](i) increases and NMDA receptor mRNA levels. Brain Res. 849, 97–108.

    Article  PubMed  CAS  Google Scholar 

  68. Rudy, B., Kirschenbaum, B., Rukenstein, A., and Greene, L. A. (1987) Nerve growth factor increases the number of functional Na channels and induces TTX-resistant Na channels in PC12 pheochromocytoma cells. J. Neurosci. 7, 1613–1625.

    PubMed  CAS  Google Scholar 

  69. Nowycky, M. C., Fox, A. P., and Tsien, R. W. (1985) Three types of neuronal calcium channels with different calcium agonist sensitivity. Nature 316, 440–443.

    Article  PubMed  CAS  Google Scholar 

  70. Tsien, R. W., Lipscombe, D., Madison, D. V., Bley, K. R., and Fox, A. P. (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 11, 431–438.

    Article  PubMed  CAS  Google Scholar 

  71. Takahashi, T. and Momiyama, A. (1993) Different types of calcium channels mediate central synaptic transmission. Nature 366, 156–158.

    Article  PubMed  CAS  Google Scholar 

  72. Wheeler, D. B., Randall, A., and Tsien, R. W. (1994) Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264, 107–111.

    Article  PubMed  CAS  Google Scholar 

  73. Shafer, T. J. and Atchison, W. D. (1991) Methylmercury blocks N-and L-type Ca++ channels in nerve growth factor-differentiated pheochromocytoma (PC12) cells. J. Pharmacol. Exp. Ther. 258, 149–157.

    PubMed  CAS  Google Scholar 

  74. Streit, J. and Lux, H. D. (1987) Voltage dependent calcium currents in PC12 growth cones and cells during NGF-induced cell growth. Pflugers Arch. 408, 634–641.

    Article  PubMed  CAS  Google Scholar 

  75. Plummer, M. R., Logothetis, D. E., and Hess, P. (1989) Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron 2, 1453–1463.

    Article  PubMed  CAS  Google Scholar 

  76. Usowicz, M. M., Porzig, H., Becker, C., and Reuter, H. (1990) Differential expression by nerve growth factor of two types of Ca2+ channels in rat pheochromocytoma cell lines. J. Physiol. 426, 95–116.

    PubMed  CAS  Google Scholar 

  77. Furukawa, K., Onodera, H., Kogure, K., and Akaike, N. (1993) Time-dependent expression of Na and Ca channels in PC12 cells by nerve growth factor and cAMP. Neurosci. Res. 16, 143–147.

    Article  PubMed  CAS  Google Scholar 

  78. Lewis, D. L., De Aizpurua, H. J., and Rausch, D. M. (1993) Enhanced expression of Ca2+ channels by nerve growth factor and the v-src oncogene in rat pheochromocytoma cells. J. Physiol. 465, 325–342.

    PubMed  CAS  Google Scholar 

  79. Bouron, A., Becker, C., and Porzig, H. (1999) Functional expression of voltagegated Na+ and Ca2+ channels during neuronal differentiation of PC12 cells with nerve growth factor or forskolin. Naunyn Schmiedebergs Arch. Pharmacol. 359, 370–377.

    Article  PubMed  CAS  Google Scholar 

  80. Shafer, T. J., Meacham, C. A., and Barone, S. (2002) Effects of prolonged exposure to nanomolar concentrations of methylmercury on voltage-sensitive sodium and calcium currents in PC12 cells. Dev. Brain Res. 136, 151–164.

    Article  CAS  Google Scholar 

  81. Porter, N. M., Thibault, O., Thibault, V., Chen, K. C., and Landfield, P. W. (1997) Calcium channel density and hippocampal cell death with age in long-term culture. J. Neurosci. 17, 5629–5639.

    PubMed  CAS  Google Scholar 

  82. Blalock, E. M., Porter, N. M., and Landfield, P. W. (1999) Decreased G-protein-mediated regulation and shift in calcium channel types with age in hippocampal cultures. J. Neurosci. 19, 8674–8684.

    PubMed  CAS  Google Scholar 

  83. Abdulla, E. M., Calaminici, M., and Campbell, I. C. (1995) Comparison of neurite outgrowth with neurofilament protein subunit levels in neuroblastoma cells following mercuric oxide exposure. Clin. Exp. Pharmacol. Physiol. 22, 362–363.

    Article  PubMed  CAS  Google Scholar 

  84. Clarkson, T. W., Sager, P. R., and Syversen, T. L. (1986) The Cytoskeleton. A Target for Toxic Agents, Plenum, New York.

    Google Scholar 

  85. Nunez, J. (1986) Differential expression of microtubule components during brain development. Dev. Neurosci. 8, 125–141.

    Article  PubMed  CAS  Google Scholar 

  86. Matus, A., Bernhardt, R., Bodmer, R., and Alaimo, D. (1986) Microtubule-associated protein 2 and tubulin are differently distributed in the dendrites of developing neurons. Neuroscience 17, 371–389.

    Article  PubMed  CAS  Google Scholar 

  87. Kobayashi, N. and Mundel, P. (1998) A role of microtubules during the formation of cell processes in neuronal and non-neuronal cells. Cell Tissue Res. 291, 163–174.

    Article  PubMed  CAS  Google Scholar 

  88. Brugg, B. and Matus, A. (1988) PC12 cells express juvenile microtubule-associated proteins during nerve growth factor-induced neurite outgrowth. J. Cell Biol. 107, 643–650.

    Article  PubMed  CAS  Google Scholar 

  89. Greene, L. A., Liem, R. K., and Shelanski, M. L. (1983) Regulation of a high molecular weight microtubule-associated protein in PC12 cells by nerve growth factor. J. Cell Biol. 96, 76–83.

    Article  PubMed  CAS  Google Scholar 

  90. Caceres, A., Banker, G. A., and Binder, L. (1986) Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture. J. Neurosci. 6, 714–722.

    PubMed  CAS  Google Scholar 

  91. Fletcher, T. L., De Camilli, P., and Banker, G. (1994) Synaptogenesis in hippocampal cultures: evidence indicating that axons and dendrites become competent to form synapses at different stages of neuronal development. J. Neurosci. 14, 6695–6706.

    PubMed  CAS  Google Scholar 

  92. Guo, X., Chandrasekaran, V., Lein, P., Kaplan, P. L., and Higgins, D. (1999) Leukemia inhibitory factor and ciliary neurotrophic factor cause dendritic retraction in cultured rat sympathetic neurons. J. Neurosci. 19, 2113–2121.

    PubMed  CAS  Google Scholar 

  93. Sager, P. R. and Matheson, D. W. (1988) Mechanisms of neurotoxicity related to selective disruption of microtubules and intermediate filaments. Toxicology 49, 479–492.

    Article  PubMed  CAS  Google Scholar 

  94. Hunter, A. M. and Brown, D. L. (2000) Effects of microtubule-associated protein (MAP) expression on methylmercury-induced microtubule disassembly. Toxicol. Appl. Pharmacol. 166, 203–213.

    Article  PubMed  CAS  Google Scholar 

  95. Rosso, S. B., Caceres, A. O., de Duffard, A. M., Duffard, R. O., and Quiroga, S. (2000) 2,4-Dichlorophenoxyacetic acid disrupts the cytoskeleton and disorganizes the Golgi apparatus of cultured neurons. Toxicol. Sci. 56, 133–140.

    Article  PubMed  CAS  Google Scholar 

  96. Choudhary, S., Joshi, K., and Gill, K. D. (2001) Possible role of enhanced microtubule phosphorylation in dichlorvos induced delayed neurotoxicity in rat. Brain Res. 897, 60–70.

    Article  PubMed  CAS  Google Scholar 

  97. Paglini, G., Peris, L., Mascotti, F., Quiroga, S., and Caceres, A. (2000) Tau protein function in axonal formation. Neurochem. Res. 25, 37–42.

    Article  PubMed  CAS  Google Scholar 

  98. Dotti, C. G., Banker, G. A., and Binder, L. I. (1987) The expression and distribution of the microtubule-associated proteins tau and microtubule-associated protein 2 in hippocampal neurons in the rat in situ and in cell culture. Neuroscience 23, 121–130.

    Article  PubMed  CAS  Google Scholar 

  99. Litman, P., Barg, J., Rindzoonski, L., and Ginzburg, I. (1993) Subcellular localization of tau mRNA in differentiating neuronal cell culture: implications for neuronal polarity. Neuron 10, 627–638.

    Article  PubMed  CAS  Google Scholar 

  100. Rasouly, D., Rahamim, E., Ringel, I., et al. (1994) Neurites induced by staurosporine in PC12 cells are resistant to colchicine and express high levels of tau proteins. Mol. Pharmacol. 45, 29–35.

    PubMed  CAS  Google Scholar 

  101. Smith, C. J., Anderton, B. H., Davis, D. R., and Gallo, J. M. (1995) Tau isoform expression and phosphorylation state during differentiation of cultured neuronal cells. FEBS Lett. 375, 243–248.

    Article  PubMed  CAS  Google Scholar 

  102. Benowitz, L. I. and Routtenberg, A. (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci. 20, 84–91.

    Article  PubMed  CAS  Google Scholar 

  103. Perrone-Bizzozero, N. I., Finklestein, S. P., and Benowitz, L. I. (1986) Synthesis of a growth-associated protein by embryonic rat cerebrocortical neurons in vitro. J. Neurosci. 6, 3721–3730.

    PubMed  CAS  Google Scholar 

  104. Meiri, K. F., Willard, M., and Johnson, M. I. (1988) Distribution and phosphorylation of the growth-associated protein GAP-43 in regenerating sympathetic neurons in culture. J. Neurosci. 8, 2571–2581.

    PubMed  CAS  Google Scholar 

  105. Costello, B., Meymandi, A., and Freeman, J. A. (1990) Factors influencing GAP-43 gene expression in PC12 pheochromocytoma cells. J. Neurosci. 10, 1398–1406.

    PubMed  CAS  Google Scholar 

  106. Dani, J. W., Armstrong, D. M., and Benowitz, L. I. (1991) Mapping the development of the rat brain by GAP-43 immunocytochemistry. Neuroscience 40, 277–287.

    Article  PubMed  CAS  Google Scholar 

  107. McGuire, C. B., Snipes, G. J., and Norden, J. J. (1988) Light-microscopic immunolocalization of the growth-and plasticity-associated protein GAP-43 in the developing rat brain. Brain Res. 469, 277–291.

    PubMed  CAS  Google Scholar 

  108. Goslin, K., Schreyer, D. J., Skene, J. H., and Banker, G. (1990) Changes in the distribution of GAP-43 during the development of neuronal polarity. J. Neurosci. 10, 588–602.

    PubMed  CAS  Google Scholar 

  109. Jap Tjoen, S. E., Schmidt-Michels, M. H., Spruijt, B. M., Oestreicher, A. B., Schotman, P., and Gispen, W. H. (1991) Quantitation of the growth-associated protein B-50/GAP-43 and neurite outgrowth in PC12 cells. J. Neurosci. Res. 29, 149–154.

    Google Scholar 

  110. Jap Tjoen, S. E., Schmidt-Michels, M., Oestreicher, A. B., Schotman, P., and Gispen, W. H. (1992) Dexamethasone-induced effects on B-50/GAP-43 expression and neurite outgrowth in PC12 cells. J. Mol. Neurosci. 3, 189–195.

    Google Scholar 

  111. Das, K. P., Freudenrich, T. M., and Mundy, W. R. (2001) Evaluation of protein markers for neuronal differentiation in PC12 cells. Toxicologist 61, 373.

    Google Scholar 

  112. Przyborski, S. A. and Cambray-Deakin, M. A. (1994) Developmental changes in GAP-43 expression in primary cultures of rat cerebellar granule cells. Mol. Brain Res. 25, 273–285.

    Article  PubMed  CAS  Google Scholar 

  113. Thiel, G. (1993) Synapsin I, synapsin II, and synaptophysin: marker proteins of synaptic vesicles. Brain Pathol. 3, 87–95.

    Article  PubMed  CAS  Google Scholar 

  114. Knaus, P., Betz, H., and Rehm, H. (1986) Expression of synaptophysin during postnatal development of the mouse brain. J. Neurochem. 47, 1302–1304.

    Article  PubMed  CAS  Google Scholar 

  115. Romano, C., Nichols, R. A., Greengard, P., and Greene, L. A. (1987) Synapsin I in PC12 cells. I. Characterization of the phosphoprotein and effect of chronic NGF treatment. J. Neurosci. 7, 1294–1299.

    PubMed  CAS  Google Scholar 

  116. Ferreira, A., Kao, H. T., Feng, J., Rapoport, M., and Greengard, P. (2000) Synapsin III: developmental expression, subcellular localization, and role in axon formation. J. Neurosci. 20, 3736–3744.

    PubMed  CAS  Google Scholar 

  117. Ehrhart-Bornstein, M., Treiman, M., Hansen, G. H., Schousboe, A., Thorn, N. A., and Frandsen, A. (1991) Parallel expression of synaptophysin and evoked neurotransmitter release during development of cultured neurons. Int. J. Dev. Neurosci. 9, 463–471.

    Article  PubMed  CAS  Google Scholar 

  118. George, J. M. (2002) The synucleins. Genome Biol. 3, REVIEWS3002.

    Google Scholar 

  119. Withers, G. S., George, J. M., Banker, G. A., and Clayton, D. F. (1997) Delayed localization of synelfin (synuclein, NACP) to presynaptic terminals in cultured rat hippocampal neurons. Dev. Brain Res. 99, 87–94.

    Article  CAS  Google Scholar 

  120. George, J. M., Jin, H., Woods, W. S., and Clayton, D. F. (1995) Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15, 361–372.

    Article  PubMed  CAS  Google Scholar 

  121. Maroteaux, L. and Scheller, R. H. (1991) The rat brain synucleins; family of proteins transiently associated with neuronal membrane. Mol. Brain Res. 11, 335–343.

    Article  PubMed  CAS  Google Scholar 

  122. Shibayama-Imazu, T., Okahashi, I., Omata, K., et al. (1993) Cell and tissue distribution and developmental change of neuron specific 14 kDa protein (phosphoneuroprotein 14). Brain Res. 622, 17–25.

    Article  PubMed  CAS  Google Scholar 

  123. Hsu, L. J., Mallory, M., Xia, Y., et al. (1998) Expression pattern of synucleins (non-Abeta component of Alzheimer’s disease amyloid precursor protein/alpha-synuclein) during murine brain development. J. Neurochem. 71, 338–344.

    Article  PubMed  CAS  Google Scholar 

  124. Stefanis, L., Kholodilov, N., Rideout, H. J., Burke, R. E., and Greene, L. A. (2001) Synuclein-1 is selectively up-regulated in response to nerve growth factor treatment in PC12 cells. J. Neurochem. 76, 1165–1176.

    Article  PubMed  CAS  Google Scholar 

  125. Pollerberg, G. E., Burridge, K., Krebs, K. E., Goodman, S. R., and Schachner, M. (1987) The 180-kD component of the neural cell adhesion molecule N-CAM is involved in a cell-cell contacts and cytoskeleton-membrane interactions. Cell Tissue Res. 250, 227–236.

    Article  PubMed  CAS  Google Scholar 

  126. Edelman, G. M. (1986) Cell adhesion molecules in the regulation of animal form and tissue pattern. Annu. Rev. Cell Biol. 2, 81–116.

    Article  PubMed  CAS  Google Scholar 

  127. Brackenbury, R., Sorkin, B. C., and Cunningham, B. A. (1987) Molecular features of cell adhesion molecules involved in neural development. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 65, 155–167.

    PubMed  CAS  Google Scholar 

  128. Cookman, G. R., King, W., and Regan, C. M. (1987) Chronic low-level lead exposure impairs embryonic to adult conversion of the neural cell adhesion molecule. J. Neurochem. 49, 399–403.

    Article  PubMed  CAS  Google Scholar 

  129. Regan, C. M. (1993) Neural cell adhesion molecules, neuronal development and lead toxicity. Neurotoxicology 14, 69–74.

    PubMed  CAS  Google Scholar 

  130. Reuhl, K. R., Rice, D. C., Gilbert, S. G., and Mallett, J. (1989) Effects of chronic developmental lead exposure on monkey neuroanatomy: visual system. Toxicol. Appl. Pharmacol. 99, 501–509.

    Article  PubMed  CAS  Google Scholar 

  131. Pyle, S. J. and Reuhl, K. R. (1997) Cytoskeletal elements in neurotoxicity, in Nervous System and Behavioral Toxicology (Lowndes, H. E. and Reuhl, K. R., eds.), Elsevier, New York, Vol. II, pp. 79–97.

    Google Scholar 

  132. Zurmohle, U. M., Herms, J., Schlingensiepen, R., Schlingensiepen, K. H., and Brysch, W. (1994) Changes of synapsin I messenger RNA expression during rat brain development. Exp. Brain Res. 99, 17–24.

    Article  PubMed  CAS  Google Scholar 

  133. Tcherepanov, A. A. and Sokolov, B. P. (1997) Age-related abnormalities in expression of mRNAs encoding synapsin 1A, synapsin 1B, and synaptophysin in the temporal cortex of schizophrenics. J. Neurosci. Res. 49, 639–644.

    Article  PubMed  CAS  Google Scholar 

  134. Curtis, R., Green, D., Lindsay, R. M., and Wilkin, G. P. (1993) Up-regulation of GAP-43 and growth of axons in rat spinal cord after compression injury. J. Neurocytol. 22, 51–64.

    Article  PubMed  CAS  Google Scholar 

  135. Schmitt, T. J., Zawia, N., and Harry, G. J. (1996) GAP-43 mRNA expression in the developing rat brain: alterations following lead-acetate exposure. Neurotoxicology 17, 407–414.

    PubMed  CAS  Google Scholar 

  136. Zawia, N. H. and Harry, G. J. (1996) Developmental exposure to lead interferes with glial and neuronal differential gene expression in the rat cerebellum. Toxicol. Appl. Pharmacol. 138, 43–47.

    Article  PubMed  CAS  Google Scholar 

  137. Ginzburg, I., Scherson, T., Giveon, D., Behar, L., and Littauer, U. Z. (1982) Modulation of mRNA for microtubule-associated proteins during brain development. Proc. Natl. Acad. Sci. USA 79, 4892–4896.

    Article  PubMed  CAS  Google Scholar 

  138. Thomas, P. S. (1980) Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. USA 77, 5201–5205.

    Article  PubMed  CAS  Google Scholar 

  139. Berk, A. J. and Sharp, P. A. (1977) Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12, 721–732.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Barone, S., Kodavanti, P.R.S., Mundy, W.R. (2004). Effects of Toxicants on Neural Differentiation. In: Tiffany-Castiglioni, E., Hollinger, M.A. (eds) In Vitro Neurotoxicology. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-651-7:187

Download citation

  • DOI: https://doi.org/10.1385/1-59259-651-7:187

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-047-2

  • Online ISBN: 978-1-59259-651-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics