Skip to main content

Cell-Type Specific Responses of the Nervous System to Lead

  • Protocol
In Vitro Neurotoxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 390 Accesses

Abstract

Cells that make up the nervous system interact in complex, dynamic structural and biochemical contexts to generate organ function. A neurotoxicant that alters the activities of a particular cell type also induces secondary changes in the interactions between this cell and other cells. All types of cell in the nervous system are potential primary or secondary targets for damage by neurotoxic substances. The purpose of this chapter is to examine the reported cell-specific effects of an archetypal environmental neurotoxicant, inorganic lead (Pb), on neurons and neuroglia. Pb is an archetype in the broad sense that, like several environmental neurotoxicants, it affects multiple cell types, employs multiple mechanisms of toxic action, produces sublethal functional impairment to cells at low doses, is widespread in the environment, and is metabolically nonessential. Pb was perhaps the earliest environmental contaminant to be recognized as a neurotoxicant and is the most thoroughly studied to date in vitro. Pb neurotoxicologists have charted their own courses, often guided by progress in neuroscience and cell biology and sometimes pointing out new directions for neurobiology. The approaches that Pb neurotoxicologists have taken or not taken, the roads, paths, and blind alleys, will be discussed in this chapter, in the hope that telling the story will facilitate in vitro studies with other neurotoxicants. This work will be limited to effects of Pb on neurons, astroglia, and myelinating glia (oligodendroglia and Schwann cells), as the effects of Pb on microglia are virtually unstudied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ATSDR (2001) CERCLA List of Priority Hazardous Substances, ATSDR Information Center, Division of Toxicology, Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA.

    Google Scholar 

  2. Banks, E. C., Ferretti, L. E., and Shucard, D. W. (1997) Effects of low level lead exposure on cognitive function in children: a review of behavioral, neuropsychological and biological evidence. Neurotoxicology 18, 237–282.

    PubMed  CAS  Google Scholar 

  3. Markowitz, M. (2000) Lead poisoning: a disease for the new millennium. Curr. Probl. Pediatr. 30, 62–70.

    PubMed  CAS  Google Scholar 

  4. Tong, S., von Schirnding, Y. E., and Prapamontol, T. (2000) Environmental lead exposure: a public health problem of global dimensions. Bull. World Health Organ. 78, 1068–1077.

    PubMed  CAS  Google Scholar 

  5. Needleman, H. L., Gunnoe, C., Leviton, A., et al. (1979) Deficits in psychologic and classroom performance of children with elevated dentine lead levels. N. Engl. J. Med. 300, 689–695.

    PubMed  CAS  Google Scholar 

  6. Stiles, K. M. and Bellinger, D. C. (1993) Neuropsychological correlates of low-level lead exposure in school-age children: a prospective study. Neurotoxicol. Teratol. 15, 27–35.

    PubMed  CAS  Google Scholar 

  7. Schwartz, J. (1994) Low-level lead exposure and children’s IQ: a meta-analysis and search for threshold. Environ. Res. 65, 42–6555.

    PubMed  CAS  Google Scholar 

  8. Needleman, H. L., Riess, J. A., Tobin, M. J., Biesecker, G. E., and Greenhouse, J.B. (1996) Bone lead levels and delinquent behavior. J. Am. Med. Assoc. 275, 363–369.

    CAS  Google Scholar 

  9. Centers for Disease Control and Prevention (1991) Preventing lead poisoning in young children: a statement by the Centers for Disease Control. US Department of Health and Human Services, Atlanta, GA.

    Google Scholar 

  10. United States Environmental Protection Agency (2000) America’s Children and the Environment: A First View of Available Measures, US EPA, Research Triangle Park, NC.

    Google Scholar 

  11. Duckett, S., Galle, P., and Kradin, R. (1977) The relationship between Parkinson syndrome and vascular siderosis: an electron microprobe study. Ann. Neurol. 2, 225–229.

    PubMed  CAS  Google Scholar 

  12. Gorell, J. M., Johnson, C. C., Rybicki, B. A., et al. (1999) Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 20, 239–248.

    PubMed  CAS  Google Scholar 

  13. Gorell, J. M., Rybicki, B. A., Johnson, C. C., and Peterson, E. L. (1999) Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology 18, 303–308.

    PubMed  CAS  Google Scholar 

  14. Kuhn, W., Winkel, R., Woitalla, D., Meves, S., Przuntek, H., and Müller T. (1998) High prevalence of parkinsonism after occupational exposure to leadsulfate batteries. Neurology 50, 885–1886.

    Google Scholar 

  15. Crofton, K. M., Taylor, D. H., Bull, R. J., Sivulka, D. J., and Lutkenhoff, S. D. (1980) Developmental delays in exploration and locomotor activity in male rats exposed to low level lead. Life Sci. 26, 823–831.

    PubMed  CAS  Google Scholar 

  16. Alfano, D. P. and Petit, T. L. (1982) Neonatal lead exposure alters the dendritic development of hippocampal dentate granule cells. Exp. Neurol. 75, 275–288.

    PubMed  CAS  Google Scholar 

  17. McCauley, P. T., Bull, R. J., Tonti, A. P., et al. (1982) The effect of prenatal and postnatal lead exposure on neonatal synaptogenesis in rat cerebral cortex. Toxicol. Environ. Health 10, 639–651.

    CAS  Google Scholar 

  18. Cookman, G. R., King, W., and Regan, C. M. (1987) Chronic low-level lead exposure impairs embryonic to adult conversion of the neural cell adhesion molecule. J. Neurochem. 49, 399–403.

    PubMed  CAS  Google Scholar 

  19. Reuhl, K. R., Rice, D. C, Gilbert, S. G., and Mallett, J. (1991) Effects of chronic developmental lead exposure on monkey neuroanatomy: visual system. Toxicol. Appl. Pharmacol. 99, 501–509.

    Google Scholar 

  20. Patrick, G. W. and Anderson, W. J. (1995) Dendritic alterations of cortical pyramidal neurons in postnatally lead-exposed kittens: a Golgi-Cox study. Dev. Neurosci. 17, 219–229.

    PubMed  CAS  Google Scholar 

  21. Kern, M. and Audesirk, G. (1995) Inorganic lead may inhibit neurite development in cultured rat hippocampal neurons through hyperphosphorylation. Toxicol. Appl. Pharmacol. 134, 111–123.

    PubMed  CAS  Google Scholar 

  22. Ishihara, K., Alkondon, M., Montes, J. G., and Albuquerque, E. X. (1995) Ontogenically related properties of NMDA receptors in rat hippocampal neurons and the age-specific sensitivity of developing neurons to lead. J. Pharm. Exp. Ther. 273, 1459–1470.

    CAS  Google Scholar 

  23. Cline, H. T., Witte, S., and Jones, K. W. (1996) Low lead levels stunt neuronal growth in a reversible manner. Proc. Natl. Acad. Sci. USA 93, 9915–9920.

    PubMed  CAS  Google Scholar 

  24. Gilbert, M. E., Mack, C. M., and Lasley, S. M. (1996) Chronic developmental lead exposure increases threshold for long-term potentiation in the rat dentate gyrus in vivo. Brain Res. 736, 118–124.

    PubMed  CAS  Google Scholar 

  25. Gilbert, M. E. and Mack, C. M. (1998) Chronic developmental lead exposure accelerates decay of long-term potentiation in rat dentate gyrus in vivo. Brain Res. 789, 139–149.

    PubMed  CAS  Google Scholar 

  26. Omelchenko, I. A., Nelson, C. S., Marino, J. L., and Allen, C. N. (1996) The sensitivity of NMDA receptors to lead inhibition is dependent on the receptor subunit composition. J. PET 278, 15–20.

    CAS  Google Scholar 

  27. Omelchenko, I. A., Nelson, C. S., and Allen, C. N. (1997) Lead inhibition of NMDA receptors containing NR2A, NR2C and NR2D subunits. J. PET 282, 1458–1464.

    CAS  Google Scholar 

  28. Wilson, M. A., Johnston, M. V., Goldstein, G. W., and Blue, M. E. (2000) Neonatal lead exposure impairs development of rodent barrel field cortex. Proc. Natl. Acad. Sci. USA 97, 5540–5545.

    PubMed  CAS  Google Scholar 

  29. Windebank, A. J. (1986) Specific inhibition of myelination by lead in vitro; comparison with arsenic, thallium, and mercury. Exp. Neurol. 94, 203–212.

    PubMed  CAS  Google Scholar 

  30. Tang, H.-W., Yan, H.-L., Hu, X.-H., Liang, Y.-X., and Shen, X.-Y. (1996) Lead cytotoxicity in primary cultured rat astrocytes and Schwann cells. J. Appl. Toxicol. 16, 187–196.

    PubMed  Google Scholar 

  31. Deng, W., McKinnon, R. D., and Poretz, R. D. (2001) Lead exposure delays the differentiation of oligodendroglial progenitors in vitro. Toxicol. Appl. Pharmacol. 174, 235–244.

    PubMed  CAS  Google Scholar 

  32. Tiffany-Castiglioni, E., Zmudzki, J., Wu, J.-N., and Bratton, G. R. (1987) Effects of lead treatment on intracellular Cu and Fe in cultured astroglia. Metab. Brain Dis. 2, 61–79.

    PubMed  CAS  Google Scholar 

  33. Engle, M. J. and Volpe, J. J. (1990) Glutamine synthetase activity of developing astrocytes is inhibited in vitro by very low concentrations of lead. Dev. Brain Res. 55, 283–287.

    CAS  Google Scholar 

  34. Sierra, E. M. and Tiffany-Castiglioni, E. (1991) Reduction of glutamine synthetase activity in astroglia exposed in culture to low levels of inorganic lead. Toxicology 65, 295–304.

    PubMed  CAS  Google Scholar 

  35. Dave, V., Vitarella, D., Aschner, J. L., Fletcher, P., Kimelberg, H. K., and Aschner, M. (1993) Lead increases inositol 1,4,5-trisphosphate levels but does not interfere with calcium transients in primary rat astrocytes. Brain Res. 618, 9–18.

    PubMed  CAS  Google Scholar 

  36. Kerper, L. E. and Hinkle, P. M. (1997) Cellular uptake of lead is activated by depletion of intracellular calcium stores. J. Biol. Chem. 272, 8346–8352.

    PubMed  CAS  Google Scholar 

  37. Legare, M. E., Barhoumi, R., Hebert, E., Bratton, G. R., Burghardt, R. C., and Tiffany-Castiglioni, E. (1998) Analysis of Pb2+ entry into cultured astroglia. Toxicol. Sci. 46, 90–100.

    PubMed  CAS  Google Scholar 

  38. Rowles, T. K., Womac, C., Bratton, G. R., and Tiffany-Castiglioni, E. (1989) Interaction of lead and zinc in cultured astroglia. Metab. Brain Dis. 4, 187–201.

    PubMed  CAS  Google Scholar 

  39. Qian, Y., Tiffany-Castiglioni, E., and Harris, E. D. (1995) Copper transport and kinetics in cultured C6 rat glioma cells. Am. J. Physiol. 269, C892–C898.

    PubMed  CAS  Google Scholar 

  40. Qian, Y., Mikeska, G., Harris, E. D., Bratton, G. R., and Tiffany-Castiglioni, E. (1999) Effect of lead exposure and accumulation on copper homeostasis in cultured C6 rat glioma cells. Toxicol. Appl. Pharmacol. 158, 41–49.

    PubMed  CAS  Google Scholar 

  41. Legare, M. E., Barhoumi, R., Burghardt, R. C., and Tiffany-Castiglioni, E. (1993) Low-level lead exposure in cultured astroglia: identification of cellular targets with vital fluorescent probes. Neurotoxicology 14, 267–272.

    PubMed  CAS  Google Scholar 

  42. Qian, Y., Harris, E. D., Zheng, Y., and Tiffany-Castiglioni, E. (2000) Lead targets GRP78, a molecular chaperone, in C6 rat glioma cells. Toxicol. Appl. Pharmacol. 163, 260–266.

    PubMed  CAS  Google Scholar 

  43. Qian, Y., Falahatpsheh, M. H., Zheng, Y., Ramos, K. S., and Tiffany-Castiglioni, E. (2001) Induction of 78 kD glucose-regulated protein (GRP 78) expression and redox-regulated transcription factor activity by lead and mercury in C6 rat glioma cells. Neurotox. Res. 3, 581–589.

    PubMed  CAS  Google Scholar 

  44. Qian, Y. and Tiffany-Castiglioni, E. (2003) Lead-induced endoplasmic reticulum (ER) stress responses in the nervous system. Neurochem. Res. 28, 153–162.

    PubMed  CAS  Google Scholar 

  45. Holtzman, D., de Vries, C., Nguyen, H., Olson, J., and Bensch, K. (1984) Maturation of resistance to lead encephalopathy: cellular and subcellular mechanisms. Neurotoxicology 5, 97–124.

    PubMed  CAS  Google Scholar 

  46. Holtzman, D., Olson, J., de Vries, C., and Bensch, K. (1987) Lead toxicity in primary cultured cerebral astrocytes and cerebellar granule neurons. Toxicol. Appl. Pharmacol. 89, 211–235.

    PubMed  CAS  Google Scholar 

  47. Tiffany-Castiglioni, E. (1993) Cell culture models for lead toxicity in neuronal and glial. Neurotoxicology 4, 513–536.

    Google Scholar 

  48. Tiffany-Castiglioni, E., Legare, M.E., Schneider, L. A., Hanneman, W. H., Zenger, E., and Hong, S. J. (1996) Astroglia and neurotoxicity, in The Role of Glia in Neurotoxicity (Aschner, M. and Kimelberg, H. K., eds.) CRC, Boca Raton, FL, pp. 175–200.

    Google Scholar 

  49. Yip, R. and Dallman, P. R. (1984) Developmental changes in erythrocyte protoporphyrin: the roles of iron deficiency and lead toxicity. J. Pediatr. 104, 710–730.

    PubMed  CAS  Google Scholar 

  50. Yip, R. (1990) Multiple interactions between childhood iron deficiency and lead poisoning: evidence that childhood lead poisoning is an adverse consequence of iron deficiency, in Recent Knowledge on Iron and Folate Deficiencies in the World (Hercberg, S., Galan, P., and Dupin, H., eds.), Colloque INSERM, Paris, pp. 523–532.

    Google Scholar 

  51. O’Flaherty, E. J. (1995) Physiologically based models for bone-seeking elements. V. Lead absorption and disposition in childhood. Toxicol. Appl. Pharmacol. 131, 297–308.

    Google Scholar 

  52. Scortegagna, M., Chikhale, E., and Hanbauer, I. (1998) Lead exposure increases oxidative stress in serum deprived E14 mesencephalic cultures. Role of metallothionein and glutathione. Restor. Neurol. Neurosci. 12, 95–101.

    PubMed  CAS  Google Scholar 

  53. Liu, M. Y., Hsieh, W. C., and Yang, B. C. (2000) In vitro aberrant gene expression as the indicator of lead-induced neurotoxicity in U-373MG cells. Toxicology 147, 59–64.

    PubMed  CAS  Google Scholar 

  54. Long, G. J., Rosen, J. F., and Schanne, F. A. X. (1994) Lead activation of protein kinase C from rat brain. J. Biol. Chem. 269, 834–837.

    PubMed  CAS  Google Scholar 

  55. Srivastava, D., Hurwitz, R. L., and Fox, D. A. (1995) Lead-and calcium-mediated inhibition of bovine rod cGMP phosphodiesterase: interactions with magnesium. Toxicol. Appl. Pharmacol. 134, 43–52.

    PubMed  CAS  Google Scholar 

  56. Tomsig, J. L. and Suszkiw, J. B. (1995) Multisite interactions between Pb+2 and protein kinase C and its role in norepinephrine release from bovine adrenal chromaffin cells. J. Neurochem. 64, 2667–2773.

    PubMed  CAS  Google Scholar 

  57. Westerink, R. H. S. and Vijverberg, H. P. M. (2002) Ca+2-independent vesicular catecholamine release in PC12 cells by nanomolar concentrations of Pb+2. J. Neurochem. 80, 861–873.

    PubMed  CAS  Google Scholar 

  58. Tomsig, J. L. and Suszkiw, J. B. (1990) Pb-induced secretion from bovine chromaffin cells: fura-2 as a probe for Pb2+. Am. J. Physiol. 259, C762–C768.

    PubMed  CAS  Google Scholar 

  59. Legare, M. E., Castiglioni, A. J., Jr., Rowles, T. K., Calvin, J. A., Snyder-Armstead, C., and Tiffany-Castiglioni, E. (1993) Morphological alterations of neurons and astrocytes in guinea pigs exposed to low levels of inorganic lead. NeuroToxicology 14(1), 77–80.

    PubMed  CAS  Google Scholar 

  60. Breen, K. and Regan, C. M. (1988) Developmental control of N-CAM sialylation state by Golgi sialyltransferase isoforms. Development 104, 147–154.

    PubMed  CAS  Google Scholar 

  61. Breen, K. and Regan, C. M. (1988) Lead stimulates Golgi sialyltransferase at times coincident with the embryonic to adult conversion of the neural cell adhesion molecule. Toxicology 49, 71–76.

    PubMed  CAS  Google Scholar 

  62. Regan, C. M. (1993) Neural cell adhesion molecules, neuronal development, and lead toxicity. Neurotoxicology 14, 69–74.

    PubMed  CAS  Google Scholar 

  63. Audesirk, T., Audesirk, G., Ferguson, C., and Shugarts, D. (1991) Effects of inorganic lead on the differentiation and growth of cultured hippocampal and neuroblastoma cells. Neurotoxicology 12, 529–538.

    PubMed  CAS  Google Scholar 

  64. Kern, M., Audesirk, T., and Audesirk, G. (1993) Effects of inorganic lead on the differentiation and growth of cortical neurons in culture. Neurotoxicology 14, 319–328.

    PubMed  CAS  Google Scholar 

  65. Williams, T. M., Ndifor, A. M., Neary, J. T., and Reams-Brown, R. R. (2000) Lead enhances NGF-induced neurite outgrowth in PC12 cells by potentiating ERK/MAPK activation. Neurotoxicology 21, 1081–1090.

    PubMed  CAS  Google Scholar 

  66. Crumpton, T., Atkins, D., Zawia, N., and Barone, S. (2001) Lead exposure in pheochromocytoma (PC12) cells alters neural differentiation and Sp1 DNAbinding. Neurotoxicology 22, 49–62.

    PubMed  CAS  Google Scholar 

  67. Tepass, U., Truong, K., Godt, D., Ikura, M., and Peifer, M. (2000) Cadherins in embryonic and neural morphogenesis. Nature Rev. 1, 91–100.

    CAS  Google Scholar 

  68. Dey, P. M., Burger, J., Gochfeld, M., and Reuhl, K. R. (2000) Developmental lead exposure disturbs expression of synaptic neural cell adhesion molecules in herring gull brains. Toxicology 146, 137–147.

    PubMed  CAS  Google Scholar 

  69. Prozialeck, W. C., Grunwald G. B., Dey, P. M., Reuhl, K. R., and Parrish, A. R. (2002) Cadherins and NCAM as potential targets in metal toxicity. Toxicol. Appl. Pharmacol. 182, 255–265.

    PubMed  CAS  Google Scholar 

  70. Zawia, N. H. and Harry, G. J. (1996) Developmental exposure to lead interferes with glial and neuronal differential gene expression in the rat cerebellum. Toxicol. Appl. Pharmacol. 138, 43–47.

    PubMed  CAS  Google Scholar 

  71. Zawia, N. H., Evers, L. B., and Harry, G. J. (1994) Developmental profiles of ornithine decarboxylase activity in the hippocampus, neocortex and cerebellum: modulation following lead exposure. Int. J. Dev. Neurosci. 12, 25–30.

    PubMed  CAS  Google Scholar 

  72. Zawia, N. H., Evers, L. B., Kodavanti, P. R., and Harry, G. J. (1994) Modulation of developmental cerebellar ornithine decarboxylase activity by lead-acetate. Neurotoxicology 15, 903–911.

    PubMed  CAS  Google Scholar 

  73. Murray, B. A., Hemperly, J. J., Prediger, E. A., Edelman, G. M., and Cunningham, B. A. (1986) Alternatively spliced mRNAs code for different polypeptide chains of the chicken neural cell adhesion molecule (N-CAM). J. Cell Biol. 102, 189–193.

    PubMed  CAS  Google Scholar 

  74. Jorgensen, O. S. (1995) Neural cell adhesion molecule (NCAM) as a quantitative marker in synaptic remodeling. Neurochem. Res. 20, 533–547.

    PubMed  CAS  Google Scholar 

  75. Noble, M., Albrechtsen, M., Moller, C., et al. (1985) Glial cells express NCAM/ D2-CAM-like polypeptides in vitro. Nature 316, 725–748.

    PubMed  CAS  Google Scholar 

  76. Moran, N. M. and Bock, E. (1988) Characterization of the kinetics of neural cell adhesion molecule homophilic binding. FEBS Lett. 242, 121–124.

    PubMed  CAS  Google Scholar 

  77. Edelman, G. M. and Chuong, C.-M. (1982) Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc. Natl. Acad. Sci. USA 79, 7036–7040.

    PubMed  CAS  Google Scholar 

  78. Ronn, L. C. B., Hartz, B. P., and Bock, E. (1998) The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system. Exp. Gerontol. 33, 853–864.

    PubMed  CAS  Google Scholar 

  79. Davey, F. D. and Breen, K. C. (1998) Stimulation of sialyltransferase by subchronic low-level lead exposure in the developing nervous system. A potential mechanism of teratogen action. Toxicol. Appl. Pharmacol. 151, 16–21.

    PubMed  CAS  Google Scholar 

  80. Riehl, R., Johnson, K., Bradley, R., et al. (1996) Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo. Neuron 17, 837–848.

    PubMed  CAS  Google Scholar 

  81. Inoue, A. and Sanes, J. R. (1997) Lamina-specific connectivity in the brain: regulation by N-cadherin, neurotrophins, and glycoconjugates. Science 276, 1428–1431.

    PubMed  CAS  Google Scholar 

  82. Tanaka, H., Shan, W., Phillips, G. R., et al. (2000) Molecular modification of N-cadherin in response to synaptic activity. Neuron 25, 93–107.

    PubMed  CAS  Google Scholar 

  83. Fannon, A. M. and Colman, D. R. (1996) A model for central synaptic junctional complex formation based on the differential adhesive specificities of the cadherins. Neuron 17, 423–434.

    PubMed  CAS  Google Scholar 

  84. Uchida, N., Honjo, Y., Johnson, K. R., Wheelock, M. J., and Takeichi, M. (1996) The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell Biol. 135, 767–779.

    PubMed  CAS  Google Scholar 

  85. Zhou, M., Tian, X., and Suszkiw, J. B. (2000) Developmental stage-dependent protective effect of NGF against lead cholinotoxicity in the rat septum. Brain Res. 866, 268–273.

    PubMed  CAS  Google Scholar 

  86. Reinhard, E., Nedivi, E., Wegner, J., Skene, J. H. P., and Westerfield, M. (1994) Neural selective activation and temporal regulation of a mammalian GAP-43 promotor in zebrafish. Development 120, 1767–1775.

    PubMed  CAS  Google Scholar 

  87. Bernstein, H.-G. and Muller, M. (1999) The cellular localization of the l-ornithine decarboxylase/polyamine sytemin normal and diseased central nervous system. Prog. Neurobiol. 57, 485–505.

    PubMed  CAS  Google Scholar 

  88. Klekner, A., Rohn, A. G., Schillinger, G., Schroder, R., Klug, N., and Ernestus, R. I. (2001) ODC mRNA as a prognostic factor for predicting recurrence in meningiomas. J. Neurooncol. 53, 67–75.

    PubMed  CAS  Google Scholar 

  89. Hilliard, A., Ramesh, A., and Zawia, N. H. (1999) Correlation between leadinduced changes in cerebral ornithine decarboxylase and protein kinase C activities during development and in cultured PC12 cells. Int. J. Dev. Neurosci. 17, 777–785.

    PubMed  CAS  Google Scholar 

  90. Toews, A. D., Krigman, M. R., Thomas, D. J., and Morell, P. (1980) Effect of inorganic lead exposure on myelination in the rat. Neurochem. Res. 5, 605–616.

    PubMed  CAS  Google Scholar 

  91. Toews, A. D., Blaker, W. D., Thomas, D. J., et al. (1983) Myelin deficit produced by early postnatal exposure to inorganic lead or triethyltin are persistent. J. Neurochem. 41, 816–822.

    PubMed  CAS  Google Scholar 

  92. Harry, G. J., Toews, A. D., Kirgman, M. R., and Morell, P. (1985) The effect of lead toxicity and milk deprivation on myelination in the rat. Toxicol. Appl. Pharmacol. 77, 458–464.

    PubMed  CAS  Google Scholar 

  93. Sundstr^m, R. and Karlsson, B. (1987) Myelin basic protein in brains of rats with low dose lead encephalopathy. Arch. Toxicol. 59, 341–345.

    Google Scholar 

  94. Seppalainen, A. M., Hernberg, S., Vesanto, R., and Kock, B. (1983) Early neurotoxic effects of occupational lead exposure: a prospective study. Neurotoxicology 4(2), 181–192.

    PubMed  CAS  Google Scholar 

  95. Araki, S., Sato, H., Yokoyama, K., and Murata, K. (2000) Subclinical neurophysiological effects of lead: a review on peripheral, central, and autonomic nervous system effects in lead workers. Am. J. Ind. Med. 37, 193–204.

    PubMed  CAS  Google Scholar 

  96. Harry, G. J., Billingsley, M., Bruinink, A., et al. (1998) In vitro techniques for the assessment of neurotoxicity. Environ. Health Perspect. 106(Suppl.), 131–158.

    PubMed  CAS  Google Scholar 

  97. Dabrowska-Bouta, B., Sulkowski, G., Bartosz, G., Walski, M., and Rafalowska, U. (1999) Chronic lead intoxication affects the myelin membrane status in the central nervous system of adult rats. J. Mol. Neurosci. 13, 127–139.

    PubMed  CAS  Google Scholar 

  98. Wu, J.-N. and Tiffany-Castiglioni, E. (1987) Reduction by lead of hydrocortisone-induced glycerol phosphate dehydrogenase activity in cultured rat oligodendroglia. In Vitro Dev. Cell. Biol. 23, 765–774.

    CAS  Google Scholar 

  99. Sierra, E. M., Rowles, T. K., Martin, J., Bratton, G. R., Womac, C., and Tiffany-Castiglioni, E. (1989) Low level lead neurotoxicity in a pregnant guinea pig model: Neuroglial enzyme activities and brain trace metal concentrations. Toxicology 59, 81–96.

    PubMed  CAS  Google Scholar 

  100. Gordon, M. N., Kumar, S., Espinosa de los Monteros, A., and de Vellis, J. (1992) Ontogeny of glycerol phosphate dehydrogenase-positive oligodendrocytes in rat brain. Impaired differentiation of oligodendrocytes in the myelin deficient mutant rat. Int. J. Devel. Neurosci. 10, 243–253.

    Google Scholar 

  101. Deng, W. and Poretz, R. D. (2002) Protein kinase C activation is required for the lead-induced inhibition of proliferation and differentiation of cultured oligodendroglial progenitor cells. Brain Res. 929, 87–95.

    PubMed  CAS  Google Scholar 

  102. Yim, S. H., Farrer, R. G., and Quarles, R. H. (1995) Expression of glycolipids and myelin-associated glycoprotein during the differentiation of oligodendrocytes: comparison of the CG-4 glial cell line to primary cultures. Dev. Neurosci. 17, 171–180.

    PubMed  CAS  Google Scholar 

  103. Deng, W. and Poretz, R. D. (2001) Lead exposure affects levels of galactolipid metabolic enzymes in the developing rat brain. Toxicol. Appl. Pharmacol. 172, 98–107.

    PubMed  CAS  Google Scholar 

  104. Deng, W. and Poretz, R. D. (2001) Lead alters the developmental profile of the galactolipid metabolic enzymes in cultured oligodendrocyte lineage cells. Neurotoxicology 22, 429–437.

    PubMed  CAS  Google Scholar 

  105. Poretz, R. D., Yang, A., Deng, W., and Manowitz, P. (2000) The interaction of lead exposure and arylsulfatase A genotype affects sulfatide catabolism in human fibroblasts. Neurotoxicology 21, 379–387.

    PubMed  CAS  Google Scholar 

  106. Chen, X. G. and Poretz, R. D. (2001) Lead causes human fibroblasts to missort arylsulfatase A. Toxicology 163, 107–114.

    PubMed  CAS  Google Scholar 

  107. S·nchez, I., Hassinger, L., Paskevich, P. A., Shine, H. D., and Nixon, R. A. (1996) Oligodendroglia regulate the regional expansion of axon caliber and local accumulation of neurofilaments during development independently of myelin formation. J. Neurosci. 16, 5095–5105.

    Google Scholar 

  108. Sortwell, C. E., Daley, B. F., Pitzer, M. R., McGuire, S. O., Sladek, J. R., and Collier, T. J. (2000) Oligodendrocyte-type 2 astrocyte-derived trophic factors increase survival of developing dopamine neurons through the inhibition of apoptotic cell death. J. Comp. Neurol. 426, 143–153.

    PubMed  CAS  Google Scholar 

  109. Kaplan, M. R., Meyer-Franke, A., Lambert, S., et al. (1997) Induction of sodium channel clustering by oligodendrocytes. Nature 386, 724–728.

    PubMed  CAS  Google Scholar 

  110. Taniike, M., Mohri, I., Eguchi, N., Beuckmann, C. T., Suzuki, K., and Urade, Y. (2002) Perineuronal oligodendrocytes protect against neuronal apoptosis through the production of lipocalin-type prostaglandin D synthase in a genetic demyelinating model. J. Neurosci. 22, 4885–4896.

    PubMed  CAS  Google Scholar 

  111. Zawia, N. H. and Harry, G. J. (1995) Exposure to lead-acetate modulates the developmental expression of myelin genes in the rat frontal lobe. Int. J. Dev. Neurosci. 13, 639–644.

    PubMed  CAS  Google Scholar 

  112. Popko, B., Pearl, D. K., Walker, D. M., et al. (2002) Molecular markers that identify human astrocytomas and oligodendrogliomas. J. Neuropathol. Exp. Neurol. 61, 329–338.

    PubMed  CAS  Google Scholar 

  113. Anttila A. Heikkila P. Nykyri E. et al. (1996) Risk of nervous system cancer among workers exposed to lead. J. Occup. Environ. Med. 38, 131–136.

    PubMed  CAS  Google Scholar 

  114. Cohen, R. D., Bowser, D. H., and Costa, M. (1996) Carcinogenicity and genotoxicity of lead, beryllium, and other metals, in Toxicology of Metals (Chang, L. W., Magos, L., and Suzuki, T., eds.), CRC/Lewis, Boca Raton, FL, pp. 253–284.

    Google Scholar 

  115. Johnson, F. M. (1998) The genetic effects of environmental lead. Mutat. Res. 410, 123–140.

    PubMed  CAS  Google Scholar 

  116. Gencic, S. and Hudson, L. D. (1990) conservative amino acid substitution in the myelin proteolipid protein of jimpymsd mice. J. Neurosci. 10, 117–124.

    PubMed  CAS  Google Scholar 

  117. Henson, J., Saffer, J., and Furneaux, H. (1992) The transcription factor Sp1 binds to the JC virus promoter and is selectively expressed in glial cells in human brain. Ann. Neurol. 32, 72–77.

    PubMed  CAS  Google Scholar 

  118. Kumar, A. P., Mar, P. K., Zhao, B., Montgomery, R. L., Kang, D. C., and Butler, A. P. (1995) Regulation of rat ornithine decarboxylase promoter activity by binding of transcription factor Sp1. J. Biol. Chem. 270, 4341–4348.

    PubMed  CAS  Google Scholar 

  119. Bai, G. and Kusiak, J. W. (1995) Functional analysis of the proximal 5′-flanking region of the N-methyl-d-aspartate receptor subunit gene, NMDAR1. J. Biol. Chem. 270, 7737–7744.

    PubMed  CAS  Google Scholar 

  120. Saffer, J. D., Jackson, S. P., and Annarella, M. B. (1991) Developmental expression of Sp1 in the mouse. Mol. Cell Biol. 11, 2189–2199.

    PubMed  CAS  Google Scholar 

  121. Zawia, N. H., Sharan, R., Brydie, M., Oyama, T., and Crumpton, T. (1998) Sp1 as a target site for metal-induced perturbations of transcriptional regulation of developmental brain gene expression. Dev. Brain Res. 107, 291–298.

    CAS  Google Scholar 

  122. Razmiafshari, M. and Zawia, N. H. (2000) Utilization of a synthetic peptide as a tool to study the interaction of heavy metals with the zinc finger domain of proteins critical for gene expression in the developing brain. Toxicol. Appl. Pharmacol. 166, 1–12.

    PubMed  CAS  Google Scholar 

  123. Razmiafshari, M., Kao, J., ďAvignon, A., and Zawia, N. H. (2001) NMR identification of heavy metal-binding sites in a synthetic zinc finger peptide: toxicological implications for the interactions of xenobiotic metals with zinc finger proteins. Toxicol. Appl. Pharmacol. 172, 1–10.

    PubMed  CAS  Google Scholar 

  124. Miskimins, R. and Miskimins, W. K. (2001) A role for an AP-1-like site in the expression of the myelin basic protein gene during differentiation. Int. J. Dev. Neurosci. 19, 85–91.

    PubMed  CAS  Google Scholar 

  125. Tiffany-Castiglioni, E., Sierra, E. M., Wu, J.-N., and Rowles, T. K. (1989) Lead toxicity in neuroglia. Neurotoxicology 10, 383–410.

    Google Scholar 

  126. Tiffany-Castiglioni, E., Legare, M. E., Schneider, L. A., et al. (1996) Heavy metal effects on glia, in Methods in Neurosciences, Volume 30 (Regino Perez-Polo, J., ed.) Academic, New York, pp. 135–165.

    Google Scholar 

  127. Tiffany-Castiglioni, E. and Qian, Y. (2001) Astroglia as metal depots: molecular mechanisms for metal accumulation, storage and release. Neurotoxicology 22, 577–592.

    CAS  Google Scholar 

  128. Lidsky, T. I. and Schneider, J. S. (2003) Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126, 5–19.

    PubMed  Google Scholar 

  129. Opanashuk, L. A. and Finkelstein, J. N. (1995) Induction of newly synthesized proteins in astroglial cells exposed to lead. Toxicol. Appl. Pharmacol. 131, 21–30.

    PubMed  CAS  Google Scholar 

  130. Opanashuk, L. A. and Finkelstein, J. N. (1995) Relationship of lead-induced proteins to stress response proteins in astroglial cells. J. Neurosci. Res. 42, 623–632.

    PubMed  CAS  Google Scholar 

  131. Selvin-Testa, A., Capani, F., Loidl, C. F., Lopez, E. M., and Pecci-Saavedra, J. (1997) Prenatal and postnatal lead exposure induces 70 kDa heat shock protein in young rat brain prior to changes in astrocyte cytoskeleton. Neurotoxicology 18, 805–817.

    PubMed  CAS  Google Scholar 

  132. Li, P. and Rossman, T. G. (2001) Genes upregulated in lead-resistant glioma cells reveal possible targets for lead-induced developmental neurotoxicity. Toxicol. Sci. 64, 90–99.

    PubMed  CAS  Google Scholar 

  133. Bradbury, M. W. B. and Deane, R. (1993) Permeability of the blood-brain barrier to lead. Neurotoxicology 14, 131–136.

    PubMed  CAS  Google Scholar 

  134. Lindahl, L., Bird, L., Legare, M. E., Mikeska, G., Bratton, G. R, and Tiffany-Castiglioni, E. (1999) Differential ability of astroglia and neuronal cells to accumulate lead: dependence on cell type and on degree of differentiation. Toxicol. Sci. 50, 236–243.

    PubMed  CAS  Google Scholar 

  135. Thomas, J. A., Dallenbeck, F. D., and Thomas, M. (1973) The distribution of radioactive lead [210Pb] in the cerebellum of developing rats. J. Pathol. 109, 45–50.

    PubMed  CAS  Google Scholar 

  136. Shirabe, T. and Hirano, A. (1977) X-ray microanalytical studies of lead-implanted rat brains. Acta Neuropathol. 40, 189–192.

    PubMed  CAS  Google Scholar 

  137. Zurich, M. G., Monnet-Tschudi, F., Bérode, M., and Honegger, P. (1998) Lead acetate toxicity in vitro: dependence on the cell composition of the cultures. Toxicol. In Vitro 12, 191–196.

    PubMed  CAS  Google Scholar 

  138. Vaguera-Orte, J., Cervos-Navarro, J., Martin-Giron, F., and Becerra-Ratia, J. (1981) Fine structure of the perivascular-limiting membrane, in Cerebral Microcirculation and Metabolism (Cervos-Navarro, J. and Fitschka, E., eds.), Raven, New York, pp. 129–138.

    Google Scholar 

  139. Young, J. K., Garvey, J. S., and Huang, P. C. (2000) Glial immunoreactivity for metallothionein in the rat brain. Glia 4, 602–620.

    Google Scholar 

  140. Penkowa, M., Nielsen, H., Hidalgo, J., Bernth, N., and Moos, T. (1999) Distribution of metallothionein I+II and vesicular zinc in the developing central nervous system: Correlative study in the rat. J. Comp. Neurol. 412, 303–318.

    PubMed  CAS  Google Scholar 

  141. Masters, B. A., Quaife, C. J., Erickson, J. C., et al. (1994) Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles. J. Neurosci. 14, 5844–5857.

    PubMed  CAS  Google Scholar 

  142. Erickson, J. C., Hollopeter, G., Thomas, S. A., Froelick, G. J., and Palmiter, R. D. (1997) Disruption of the metallothionein-III gene in mice: analysis of brain zinc, behavior, and neuron vulnerability to metals, aging, and seizures. J. Neurosci. 17, 1271–1281.

    PubMed  CAS  Google Scholar 

  143. Carrasco, J., Giralt, M., Molinero, A., Penkowa, M., Moos, T., and Hidalgo, J. (1999) Metallothionein (MT)-III: generation of polyclonal antibodies, comparison with MT-I+II in the freeze lesioned rat brain and in a bioassay with astrocytes, and analysis of Alzheimer’s disease brains. J. Neurotrauma 16, 1115–1129.

    PubMed  CAS  Google Scholar 

  144. Aschner, M., Conklin, D. R. Yao, C. P., Allen, J. W., and Tan, K. H. (1998) Induction of astrocyte metallothioneins (Mts) by zinc confers resistance against the acute cytotoxic effects of methylmercury on cell swelling, Na+ uptake, and K+ release. Brain Res. 813, 254–261.

    PubMed  CAS  Google Scholar 

  145. Kramer, K. K., Zoelle, J. T., and Klaassen, C. D. (1996) Induction of metallothionein mRNA and protein in primary murine neuron cultures. Toxicol. Appl. Pharmacol. 141, 1–7.

    PubMed  CAS  Google Scholar 

  146. Raps, S. P., Lai, J. C., Hertz, L., and Cooper, A. J. (1989) Glutathione is present in high concentrations in cultured astrocytes but not in cultured neurons. Brain Res. 493, 398–401.

    PubMed  CAS  Google Scholar 

  147. Slivka, A., Mytilineou, C., and Cohen, G. (1987) Histochemical evaluation of glutathione in brain. Brain Res. 409, 275–284.

    PubMed  CAS  Google Scholar 

  148. Philbert, M. A., Beiswanger, C. M., Waters, D. K., Reuhl, K. R., and Lowndes, H. E. (1991) Cellular and regional distribution of reduced glutathione in the nervous system of the rat: histochemical localization by mercury orange and o-phthaldialdhyde-induced histofluorescence. Toxicol. Appl. Pharmacol. 107, 215–227.

    PubMed  CAS  Google Scholar 

  149. Klomp, L., Farhangrazi, Z., Dugan, L., and Gitlin, J. (1996) Ceruloplasmin gene expression in the murine central nervous system. J. Clin. Invest. 98, 207–215.

    PubMed  CAS  Google Scholar 

  150. Patel, B. N. and David, S. (1997) A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. J. Biol. Chem. 272, 20,185–20,190.

    PubMed  CAS  Google Scholar 

  151. Kaler, S. G. and Schwartz, J. P. (1998) Expression of the menkes disease homolog in rodent neuroglial cells. Neurosci. Res. Commun. 23, 61–66.

    CAS  Google Scholar 

  152. Qian, Y., Tiffany-Castiglioni, E., and Harris, E. D. (1997) A Menkes P-type ATPase involved in copper homeostasis in the central nervous system of the rat. Mol. Brain. Res. 48, 60–66.

    PubMed  CAS  Google Scholar 

  153. Niklowitz, W. J. (1980) Toxicology of lead, in Advances in Neurotoxicology (Manso, L., Lory, N., Lacasse, Y., and Roche, L., eds.), Permagon, New York, pp. 27–43.

    Google Scholar 

  154. Rehman, S.-U. and Chandra, O. (1984) Regional interrelationships of zinc, copper, and lead in the brain following lead intoxication. Bull. Environ. Contam. Toxicol. 32, 157–165

    Google Scholar 

  155. Tiffany-Castiglioni, E., Garcia, D. M., Wu, J. N., Zmudzki, J., and Bratton, G. R. (1988) Effects of lead on viability and intracellular metal content of C6 rat glioma cells. J. Toxicol. Environ. Health 23, 267–279.

    PubMed  CAS  Google Scholar 

  156. Wedler, F. C. and Denman, R. B. (1984) Glutamine synthetase: the major Mn(II) enzyme in mammalian brain. Curr. Topics Cell. Regul. 24, 153–169.

    CAS  Google Scholar 

  157. Norenberg, M. D. and Martinez-Hernandez, A. (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161, 303–310.

    PubMed  CAS  Google Scholar 

  158. Kodama, H., Meguro, Y., Abe, T., et al. (1991) Genetic expression of Menkes disease in cultured astrocytes of the macular mouse. J. Inherit. Metab. Dis. 14, 896–901.

    PubMed  CAS  Google Scholar 

  159. Kodama, H. (1993) Recent developments in Menkes disease. J. Inherit. Metab. Dis. 16, 791–799.

    PubMed  CAS  Google Scholar 

  160. Hartmann, H. A. and Evenson, M. A. (1992) Deficiency of copper can cause neuronal degeneration. Med. Hypotheses 38, 75–85.

    PubMed  CAS  Google Scholar 

  161. Scortegagna, M. and Hanbauer, I. (2000) Increase AP-1 binding activity and nuclear REF-1 accumulation in lead-exposed primary cultures of astroglia. Neurochem. Res. 25, 861–866.

    PubMed  CAS  Google Scholar 

  162. Buchner, J. (1999). Hsp90 & Co.—a holding for folding. Trends Biochem. Sci. 24, 36–141.

    Google Scholar 

  163. Caplan, A. J. (1999). Hsp90’s secrets unfold: new insights from structural and functional studies. Cell Biol. 9, 262–268.

    CAS  Google Scholar 

  164. Lee, A. S. (1992) Mammalian stress response: induction of the glucose-regulated protein family. Curr. Opin. Cell Biol. 4, 267–273.

    PubMed  CAS  Google Scholar 

  165. Gething, M. J. (1997) Guidebook to Molecular Chaperones and Protein-Folding Catalysts. Oxford University Press, Oxford.

    Google Scholar 

  166. Chapman, R., Sidrauski, C., and Walter, P. (1998) Intracellular signaling from the endoplasmic reticulum to the nucleus. Annu. Rev. Cell. Dev. Biol. 14, 459–485.

    PubMed  CAS  Google Scholar 

  167. Kaufman, R. J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233.

    PubMed  CAS  Google Scholar 

  168. Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J., and Sambrook, J. (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462–464.

    PubMed  CAS  Google Scholar 

  169. Wooden, S. K., Li, L. J., Navarro, D., Qadri, I., Pereira, L., and Lee, A. S. (1991) Transactivation of the grp78 promoter by malfolded proteins, glycosylation block, and calcium ionophore is mediated through a proximal region containing a CCAAT motif which interacts with CTF/NF-I. Mol. Cell. Biol. 11, 5612–5623.

    PubMed  CAS  Google Scholar 

  170. Miyata, T., Kokame, K., Agarwala, K.L., and Kato, H. (1998) Analysis of gene expression in homocysteine-injured vascular endothelial cells: demonstration of GRP78/BiP expression, cloning and characterization of a novel reducing agent-tunicamycin regulated gene. Semin. Thromb. Hemost. 24, 285–291.

    PubMed  CAS  Google Scholar 

  171. Cao, X., Zhou, Y., and Lee, A. S. (1995) Requirement of tyrosine-and serine/threonine kinases in the transcriptional activation of the mammalian grp78/BiP promoter by thapsigargin. J. Biol. Chem. 270, 494–502.

    PubMed  CAS  Google Scholar 

  172. Tully, D. B., Collins, B. J., Overstreet, J. D., et al. (2000) Effects of arsenic, cadmium, chromium, and lead on gene expression regulated by a battery of 13 different promoters in recombinant HepG2 cells. Toxicol. Appl. Pharmacol. 168, 79–90.

    PubMed  CAS  Google Scholar 

  173. Fernandez, P. M., Tabbara, S. O., Jacobs, L. K., et al. (2000) Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res. Treat. 59, 15–26.

    PubMed  CAS  Google Scholar 

  174. Liu, H., Miller, E., van de Water, B., and Stevens, J. L. (1998) Endoplasmic reticulum stress proteins block oxidant-induced Ca2+ increases and cell death. J. Biol. Chem. 273, 12,858–12,862.

    PubMed  CAS  Google Scholar 

  175. Norenberg, M. (1996) Reactive astrocytosis, in The Role of Glia in Neurotoxicity (Aschner, M. and Kimelberg, H. K., eds.), CRC, Boca Raton, FL, pp. 93–107.

    Google Scholar 

  176. Stoltenburg-Didinger, I., Pünder, B., Peters, M., et al. (1996) Glial fibrillary acidic protein and RNA expression in adult rat hippocampus following lowlevel lead exposure during development. Histochem. Cell Biol. 105, 431–442.

    PubMed  CAS  Google Scholar 

  177. Harry, G. J., Schmitt, T. J., Gong, Z., Brown, H., Zawia, N., and Evans, H. L. (1996) Lead-induced alterations of glial fibrillary acidic protein (GFAP) in the developing rat brain. Toxicol. Appl. Pharmacol. 139, 84–93.

    PubMed  CAS  Google Scholar 

  178. Selvin-Testa, A., Loidl, C. F., Lopez, E. M., Capani, F., Lopez-Costa, J. J., and Pecci-Saavedra, J. (1995) Prolonged lead exposure modifies astrocyte cytoskeletal proteins in the rat brain. Neurotoxicology 16, 389–401.

    PubMed  CAS  Google Scholar 

  179. Struzyñska, L. Bubko, I., Walski, M., and Rafalwska, U. (2001) Astroglial reaction during the early phase of acute lead toxicity in the adult rat brain. Toxicology 165, 121–131.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Tiffany-Castiglioni, E., Qian, Y. (2004). Cell-Type Specific Responses of the Nervous System to Lead. In: Tiffany-Castiglioni, E., Hollinger, M.A. (eds) In Vitro Neurotoxicology. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-651-7:151

Download citation

  • DOI: https://doi.org/10.1385/1-59259-651-7:151

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-047-2

  • Online ISBN: 978-1-59259-651-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics