Skip to main content

In Vitro Neurotoxicology

Introduction to Concepts

  • Protocol
In Vitro Neurotoxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The history of neuroscience is punctuated by oracular disclosures from in vitro systems. In 1907, a pivotal tissue culture study by Harrison proved that Ramón y Cajal’s theory on the developmental origin of nerve fibers was correct. Cajal had proposed in 1890, based on microscopic analysis of static histologic tissue sections, that the immature neuronal cell body sends out an axon that elongates freely, bearing a motile growth cone at its tip. Competing theories held that free growth of neurites did not occur, but that the neurites formed from the fusion of elements produced by other cells or from the stretching of a protoplasmic bridge between central and peripheral cell bodies of a multinucleated cell (1). These theories could not be tested by the histologic methods of the time, because axonal growth by a living neuron could not be directly observed. Harrison (2) pioneered a culture system for long-term microscopic observation of neuronal differentiation in living tadpole neural tube tissue. His observation that neurites grow out from cell bodies has been hailed as “one of the most revolutionary results in experimental biology” (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramón y Cajal, S. (1991) Recollections of My Life (Craig, E. H. and Cano, J., transl.), The MIT Press, Cambridge, MA.

    Google Scholar 

  2. Harrison, R. G. (1907) Observations on the living developing nerve fiber. Anat. Rec. 1, 116–118.

    Google Scholar 

  3. Shephard, G. M. (1994) Neurobiology, 3rd ed. Oxford University Press. New York.

    Google Scholar 

  4. Levi-Montalcini, R., Meyer, H., and Hamburger, V. (1954) In vitro effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res. 14, 49–57.

    PubMed  CAS  Google Scholar 

  5. Cohen, S., Levi-Montalcini, R., and Hamburger V. (1954) A nerve growth-stimulating factor isolated from sarcomas 37 and 180. Proc. Natl. Acad. Sci. USA 40, 1014–1018.

    PubMed  CAS  Google Scholar 

  6. Levi-Montalcini, R. (1987) The nerve growth factor thirty-five years later. In Vitro Cell. Dev. Biol. 23, 227–238.

    PubMed  CAS  Google Scholar 

  7. Rakic, P. (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J. Comp. Neurol. 141, 283–312.

    PubMed  CAS  Google Scholar 

  8. Rakic, P. (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–83.

    PubMed  CAS  Google Scholar 

  9. Rakic, P. (1978) Neuronal migration and contact guidance in the primate telencephalon. Postgrad. Med. J. 54(Suppl. 1), 25–40.

    PubMed  Google Scholar 

  10. Edmondson, J. C. and Hatten, M. E. (1987) Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J. Neurosci. 7(6), 1928–1934.

    PubMed  CAS  Google Scholar 

  11. Hatten, M. E. (1993) The role of migration in central nervous system neuronal development. Curr. Opin. Neurobiol. 3, 38–44.

    PubMed  CAS  Google Scholar 

  12. Hatten, M. E. (1999) Central nervous system neuronal migration. Annu. Rev. Neurosci. 22, 511–539.

    PubMed  CAS  Google Scholar 

  13. Edmondson, J. C., Liem, R. K., Kuster, J. E., and Hatten, M. E. (1988) Astrotactin: a novel neuronal cell surface antigen that mediates neuron-astroglial interactions in cerebellar microcultures. J. Cell. Biol. 106, 505–517.

    PubMed  CAS  Google Scholar 

  14. Adams, N. C., Tomoda, T., Cooper, M., Dietz, G., and Hatten, M. E. (2002) Mice that lack astrotactin have slowed neuronal migration. Development 129(Suppl.), 965–972.

    PubMed  CAS  Google Scholar 

  15. Carmignoto, G. (2000) Reciprocal communication systems between astrocytes and neurones. Prog. Neurobiol. 62, 561–581.

    PubMed  CAS  Google Scholar 

  16. Bezzi, P. and Volterra, A. (2001) A neuron-glia signalling network in the active brain. Curr. Opin. Neurobiol. 11, 387–394.

    PubMed  CAS  Google Scholar 

  17. Araque, A., Carmignoto, G., and Haydon, P. G. (2001) Dynamic signaling between astrocytes and neurons. Annu. Rev. Physiol. 63, 795–813.

    PubMed  CAS  Google Scholar 

  18. National Research Council, Committee on Alternative Chemical Demilitarization Technologies (CACDT). (1993) Alternative Technologies for the Destruction of Chemical Agents and Munitions, Board on Army Science and Technology, Commission on Engineering and Technical Systems, National Academy of Sciences, Washington, DC.

    Google Scholar 

  19. Ecobichon, D. J. (1991) Toxic effects of pesticides, in Casarett and Doull’s Toxicology: The Basic Science of Poisons (Amdur, M.O., Doull, J., and Klaassen, C.D., eds.), Pergamon, New York, pp. 565–622.

    Google Scholar 

  20. Pope, A. M., Heavner, J. E, Guarnieri, J. A., and Knobloch, C.P. (1986) Trichlorfon-induced congenital cerebellar hypoplasia in neonatal pigs. J. Am. Vet. Med. Assoc. 189, 781–783.

    PubMed  CAS  Google Scholar 

  21. Berge, G. N., Fonnum, F., and Brodal, P. (1987) Neurotoxic effects of prenatal trichlorfon administration in pigs. Acta Vet. Scand. 28, 321–332.

    PubMed  CAS  Google Scholar 

  22. Czeizel, A. E., Elek, C., Gundy, S., et al. (1993) Environmental trichlorfon and cluster of congenital abnormalities. Lancet 341, 539–542.

    PubMed  CAS  Google Scholar 

  23. Chanda, S. M. and Pope, C. N. (1996) Neurochemical and neurobehavioral effects of repeated gestational exposure to chlorpyrifos in maternal and developing rats. Pharmacol. Biochem. Behav. 53, 771–776.

    PubMed  CAS  Google Scholar 

  24. Loewenherz, C., Fenske, R. A., Simcox, N. J., Bellamy, G., and Kalman, D. (1997) Biological monitoring of organophosphorus pesticide exposure among children of agricultural workers in central Washington State. Environ. Health Perspect. 105, 1344–1353.

    PubMed  CAS  Google Scholar 

  25. Hjelde, T., Mehl, A., Schanke, T. M., and Fonnum, F. (1998) Teratogenic effects of tricholorfon (Metrifonate) on the guinea-pig brain. Determination of the effective dose and the sensitive period. Neurochem. Int. 32, 469–477.

    PubMed  CAS  Google Scholar 

  26. ATSDR (2001) CERCLA List of Priority Hazardous Substances. ATSDR Information Center, Division of Toxicology, Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA.

    Google Scholar 

  27. Markowitz, M. (2000) Lead poisoning: a disease for the new millennium. Curr. Probl. Pediatr. 30, 62–70.

    PubMed  CAS  Google Scholar 

  28. Tong, S., von Schirnding, Y. E., and Prapamontol, T. (2000) Environmental lead exposure: a public health problem of global dimensions. Bull. World Health Organ. 78, 1068–1077.

    PubMed  CAS  Google Scholar 

  29. Duckett, S., Galle, P., and Kradin, R. (1977) The relationship between Parkinson syndrome and vascular siderosis: an electron microprobe study. Ann. Neurol. 2, 225–229

    PubMed  CAS  Google Scholar 

  30. Kuhn, W., Winkel, R., Woitalla, D., Meves, S., Przuntek, H., and Müller T. (1998) High prevalence of parkinsonism after occupational exposure to leadsulfate batteries. Neurology 50, 885–1886

    Google Scholar 

  31. Gorell, J. M., Rybicki, B. A., Johnson, C. C., and Peterson, E. L. (1999) Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology 18, 303–308.

    PubMed  CAS  Google Scholar 

  32. Gorell, J. M., Johnson, C. C., Rybicki, B. A., et al. (1999) Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology 20, 239–248.

    PubMed  CAS  Google Scholar 

  33. ATSDR (1999) Toxicological Profile for Mercury, Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Atlanta, GA.

    Google Scholar 

  34. Charleston, J. S., Body, R. L., Mottet, N. K., Vahter, M. E., and Burbacher T. M. (1995) Autometallographic determination of inorganic mercury distribution in the cortex of the calcarine sulcus of the monkey Macaca fascicularis following long-term subclinical exposure to methylmercury and mercuric chloride. Toxicol. Appl. Pharmacol. 132, 325–333.

    PubMed  CAS  Google Scholar 

  35. Miura, K. and Imura N. (1987) Mechanism of methylmercury cytotoxicity. Crit. Rev. Toxicol. 18(3), 161–168.

    PubMed  CAS  Google Scholar 

  36. Rodier, P. M., Aschner, M., and Sager, P. R. (1984) Mitotic arrest in the developing CNS after prenatal exposure to methyl mercury. Neurobehav. Toxicol. Teratol. 6, 379–385.

    PubMed  CAS  Google Scholar 

  37. Choi, B. H., Lapham, L. W., Amin-Zaki, L., and Saleem T. (1978) Abnormal neuronal migration, deranged cerebral cortical organization, and diffuse white matter astrocytosis of human fetal brain: a major effect of methylmercury poisoning in utero. J. Neuropathol. Exp. Neurol. 37, 719–733.

    PubMed  CAS  Google Scholar 

  38. Matsumoto, H., Koya, G., and Takeuchi, T. (1965) Fetal Minamata disease: a neuropathological study of two cases of intrauterine intoxication by a methylmercury compound. J. Neuropathol. Exp. Neurol. 24, 563–574.

    PubMed  CAS  Google Scholar 

  39. Myers, G. J., Marsh, D. O., Davidson, P. W., et al. (1995) Main neurodevelopmental study of Seychellois children following in utero exposure to methylmercury from a maternal fish diet: outcome at six months. Neurotoxicology 16, 653–664.

    PubMed  CAS  Google Scholar 

  40. Grandjean, P., Weihe, P., White, R. F., and Debes, F. (1998) Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environ. Res. 77, 165–172.

    PubMed  CAS  Google Scholar 

  41. Grandjean, P., White, R. F., Nielsen, A., Cleary, D., and de Olivereira Santos E. C. (1999) Methylmercury neurotoxicity in Amazonian children downstream from gold mining. Environ. Health Perspect. 107, 587–591.

    Google Scholar 

  42. Dolbec, J., Mergler, D., Sousa-Passos C. J., Sousa, de-M. S., and Lebel, J. (2000) Methylmercury exposure affects motor performance of a riverine population of the Tapajos river, Brazilian Amazon. Int. Arch. Occup. Environ. Health 73, 195–203.

    PubMed  CAS  Google Scholar 

  43. Clarkson, T. W. (2002) The three modern faces of mercury. Environ. Health Perspect. 110, 11–23.

    PubMed  CAS  Google Scholar 

  44. Pichichero, M. E., Cernichiari, E., Lopreiato, J., and Treanor, J. (2002) Mercury concentrations and metabolism in infants receiving vaccines containing thiomersal: a descriptive study. Lancet 360, 1737–1741.

    PubMed  CAS  Google Scholar 

  45. Safe, S. H. (1990) Polychlorinated biphenyls (PCBs) dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). CRC Crit. Rev. Toxicol. 21, 51–88.

    CAS  Google Scholar 

  46. Swanson, G. M., Ratcliffe, H. E., and Fischer, L. J. (1995) Human exposures to polychlorinated biphenyls (PCBs): a critical assessment of the evidence for adverse health effects. Regul. Toxicol. Pharmacol. 21, 136–150.

    PubMed  CAS  Google Scholar 

  47. Jacobson, J. L. and Jacobson, S. W. (1996) Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N. Engl. J. Med. 335, 783–789.

    PubMed  CAS  Google Scholar 

  48. Schantz, S. L., Ferguson, S. A., and Bowman, R. E. (1992) Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on behavior of monkeys in peer groups. Neurotox. Teratol. 14, 433–446.

    CAS  Google Scholar 

  49. Schantz, S. L., Moshtaghian, J., and Ness, D. K. (1995) Spatial learning deficits in adult rats exposed to ortho-substituted PCB congeners during gestation and lactation. Fundam. Appl. Toxicol. 26, 117–126.

    PubMed  CAS  Google Scholar 

  50. Hanneman, W. H., Legare, M. E., Barhoumi, R., Burghardt, R. C., Safe, S., and Tiffany-Castiglioni, E. (1996) Stimulation of calcium uptake in cultured rat hippocampal neurons by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicology 112(1), 19–28.

    PubMed  CAS  Google Scholar 

  51. Barhoumi, R., Mouneimne, Y., Phillips, T. D., Safe, S. H., and Burghardt, R. C. (1996) Alteration of oxytocin-induced calcium oscillations in clone 9 cells by toxin exposure. Fundam. Appl. Toxicol. 33(2), 220–228.

    PubMed  CAS  Google Scholar 

  52. Kodavanti, P. R. S. and Tilson, H. (2000). Neurochemical effects of environmental chemicals: in vitro and in vivo correlations on second messenger pathways. Ann. NY Acad. Sci. 919, 97–105.

    PubMed  CAS  Google Scholar 

  53. Legare, M. E., Hanneman, W. H., Barhoumi, R., Burghardt, R. C., and Tiffany-Castiglioni, E. (2000) 2,3,7,8-Tetrachlorodibenzo-p-dioxin alters hippoc-ampal astroglia-neuronal gap junctional communication. Neurotoxicology 21, 1109–1116.

    PubMed  CAS  Google Scholar 

  54. Hong, S. J., Grover, C. A., Safe, S. H., Tiffany-Castiglioni, E., and Frye, G. D. (1998) Halogenated aromatic hydrocarbons suppress CA1 field excitatory postsynaptic potentials in rat hippocampal slices. Toxicol. Appl. Pharmacol. 148, 7–13.

    PubMed  CAS  Google Scholar 

  55. Schantz, S. L. and Widholm, J. J. (2001) Cognitive effects of endocrine-disrupting chemicals in animals. Environ. Health Perspect. 109, 1197–1206.

    PubMed  CAS  Google Scholar 

  56. Clarren, S. K. and Smith, D. W. (1978) The fetal alcohol syndrome. N. Engl. J. Med. 298, 1063–1067.

    PubMed  CAS  Google Scholar 

  57. Miller, M. W. (1992) The effects of prenatal exposure to ethanol on cell proliferation and neuronal migration, in Development of the Central Nervous System: Effects of Alcohol and Opiates (Miller M., ed.), Alan R. Liss, New York, pp. 47–69.

    Google Scholar 

  58. Guerri, C., Sáez, R., Portolés, M., and Renau-Piqueras, J. (1993) Derangement of astrogliogenesis as a possible mechanism involved in alcohol-induced alterations of central nervous system development. Alcohol Alcohol. 2(Suppl.), 203–208.

    CAS  Google Scholar 

  59. Jones, K. L., Smith, D. W., Ulleland, C. N., and Streissguth, A. P. (1973) Pattern of malformation in offspring of chronic alcoholic mothers. Lancet 1, 1267–1271.

    PubMed  CAS  Google Scholar 

  60. Bo, W. J., Krueger, W. A., Rudeen, P. K., and Symmes, S. K. (1982) Ethanol-induced alterations in the morphology and function of the rat ovary. Anat. Rec. 202, 255–260.

    PubMed  CAS  Google Scholar 

  61. Dees, W. L. and Skelley, C. W. (1990) Effects of ethanol during the onset of female puberty. Neuroendocrinology 51, 64–69.

    PubMed  CAS  Google Scholar 

  62. Dees, W. L., Skelley, C. W., Hiney, J. K., and Johnston, C. A. (1990) Actions of ethanol on hypothalamic and pituitary hormones in prepubertal female rats. Alcohol 7, 21–25.

    PubMed  CAS  Google Scholar 

  63. Dees, W. L., Dissen, G. A., Hiney, J. K., Lara, F., and Ojeda, S. R. (2000) Alcohol ingestion inhibits the increased secretion of puberty-related hormones in the developing female rhesus monkey. Endocrinology 141, 1325–1331.

    PubMed  CAS  Google Scholar 

  64. Masters, C. L., Multhaup, G., Simms, G., Pottgiesser, J., Martins, R. N., and Beyreuther, K. (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 4, 2757–2763.

    PubMed  CAS  Google Scholar 

  65. Yankner, B. A., Dawes, L. R., Fisher, S., Villa-Komaroff, L., Oster-Granite, M. L., and Neve, R. L. (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245, 417–420.

    PubMed  CAS  Google Scholar 

  66. Behl, C. (1997) Amyloid beta-protein toxicity and oxidative stress in Alzheimer’s disease. Cell Tissue Res. 290, 471–480.

    PubMed  CAS  Google Scholar 

  67. Polymeropoulos, M. H., Lavedan, C., Leroy, E., et al. (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047.

    PubMed  CAS  Google Scholar 

  68. Spillantini, M. G. and Goedert, M. (2000) The alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Ann. NY Acad. Sci. 920, 16–27.

    PubMed  CAS  Google Scholar 

  69. Aschner, M., Allen, J. W., Kimelberg, H. K., LoPachin, R. M., and Streit, W. J. (1999) Glial cells in neurotoxicity development. Annu. Rev. Pharm. Toxicol. 39, 151–173.

    CAS  Google Scholar 

  70. Le, W-D., Rowe, D., Xie, W., Ortiz, I., He, Y., and Appel, S. H. (2001) Microglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinson’s Disease. J. Neurosci. 2, 8447–8455.

    Google Scholar 

  71. Chang, J. Y. and Liu, L-Z. (1999) Manganese potentiates nitric oxide production by microglia. Mol. Brain. Res. 68, 22–28.

    PubMed  CAS  Google Scholar 

  72. Gao, H.-M., Hong, J.-S., Zhang, W., and Liu, B. (2002) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J. Neurosci. 22, 782–790.

    PubMed  CAS  Google Scholar 

  73. Harry, G. J., Tyler, K., ďHellencourt, C. L., Tilson, H. A., and Maier, W. E. (2002) Morphological alterations and elevations in tumor necrosis factor-α, interleukin (IL)-1α, and IL-6 in mixed glia cultures following exposure to trimethyltin: modulation by proinflammatory cytokine recombinant proteins and neutralizing antibodies. Toxicol. Appl. Pharm. 180, 205–218.

    CAS  Google Scholar 

  74. Carlson, K., Jortner, B. S., and Ehrich, M. (2000) Organophosphus compound-induced apoptosis in SH-SY5Y human neuroblastoma cells. Toxicol. Appl. Pharmacol. 168, 102–113.

    PubMed  CAS  Google Scholar 

  75. Hong, M. S., Hong, S. J., Barhoumi, R., et al. (2003). Neurotoxicity induced in differentiated SK-N-SH-SY5Y human neuroblastoma cells by organophosphorus compounds. Toxicol. Appl. Pharmacol. 186, 110–118.

    PubMed  CAS  Google Scholar 

  76. Purkiss, J. R., Friis, L. M., Doward, S., and Quinn, C. P. (2001) Clostridium botulinum neurotoxins act with a wide range of potencies on SH-SY5Y human neuroblastoma cells. Neurotoxicology 22, 447–453.

    PubMed  CAS  Google Scholar 

  77. Li, W. F. and Casida, J. E. (1998) Organophosphorus neuropathy target esterase inhibitors selectively block outgrowth of neurite-like and cell processes in cultured cells. Toxicol. Lett. 98, 139–146.

    PubMed  CAS  Google Scholar 

  78. Das, K. D. and Barone, S. J. (1999). Neuronal differentiation in PC12 cells is inhibited by chlorpyrifos and its metabolites: Is acetylcholinesterase inhibition the site of action? Toxicol. Appl. Pharmacol. 160, 217–230.

    PubMed  CAS  Google Scholar 

  79. Zachor, D. A., Moore, J. F., Brezauzek, C. M., Theibert, A. B., and Percy, A. K. (2000) Cocaine inhibition of neuronal differentiation in NGF-induced PC12 cells is independent of ras signaling. Int. J. Dev. Neurosci. 18, 765–772.

    PubMed  CAS  Google Scholar 

  80. Crumpton, T. L., Atkins, D., Zawia, N., and Barone, S., Jr. (2001) Lead exposure in pheochromocytoma (PC12) cells alters neural differentiation and Sp1 DNA-binding. Neurotoxicology 22, 49–62.

    PubMed  CAS  Google Scholar 

  81. Parran, D. K., Mundy, W. R., and Barone, S., Jr. (2001) Effects of methylmercury and mercuric chloride on differentiation and cell viability in PC12 cells. Toxicol. Sci. 59, 278–290.

    PubMed  CAS  Google Scholar 

  82. Shafer, T. J., Meacham, C. A., and Barone, S. (2002). Effects of prolonged exposure to nanomolar concentrations of methylmercury on voltage-sensitive sodium and calcium currents in PC12 cells. Dev. Brain Res. 136, 151–164.

    CAS  Google Scholar 

  83. Son, J. H., Chun, H. S., Joh, T. H., Cho, S., Conti, B., and Lee, J.W., (1999) Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos. J. Neurosci. 19, 10–20.

    PubMed  CAS  Google Scholar 

  84. Chun, H. S., Lee, H., and Son, J. H. (2001). Manganese induces endoplasmic reticulum (ER) stress and activates multiple caspases in nigral dopaminergic neuronal cells, SN4741. Neurosci. Lett. 316, 5–8.

    PubMed  CAS  Google Scholar 

  85. Qian, Y, Harris, E. D., Zheng, Y., and Tiffany-Castiglioni, E. (2000) Lead (Pb) targets GRP78, a molecular chaperone, in C6 rat glioma cells. Toxicol. Appl. Pharmacol. 163, 260–266.

    PubMed  CAS  Google Scholar 

  86. Takanaga, H., Kunimoto, M., Adachi, T., Tohyama, C, and Aoki, Y. (2001) Inhibitory effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cAMP-induced differentiation of rat C6 glial cell line. J. Neurosci. Res. 64, 402–409.

    PubMed  CAS  Google Scholar 

  87. Guizzetti, M. and Costa, L. G. (2002) Effect of ethanol on protein kinase Cζ and p70S6 kinase activation by carbachol: a possible mechanism for ethanol-induced inhibition of glial cell proliferation. J. Neurochem. 82, 38–46.

    PubMed  CAS  Google Scholar 

  88. Mead, C. and Pentreath, V. M. (1998) Evaluation of toxicity indicators in rat primary astrocytes, C6 glioma and human 1321N1 astrocytoma cells: can gliotoxicity be distinguished from cytotoxicity? Arch. Toxicol. 72, 372–380.

    PubMed  CAS  Google Scholar 

  89. Inglefield, J. R., Mundy, W. R., and Shafer, T. J. (2001) inositol 1,4,5-trisphosphate receptor-sensitive Ca2+ release, store-operated Ca2+ entry, and camp responsive element binding protein phosphorylation in developing cortical cells following exposure to polychlorinated biphenyls. J. Pharmacol. Exp. Ther. 297, 762–773.

    PubMed  CAS  Google Scholar 

  90. Yang, J.-H. and Kodavanti, R. S. (2001) Possible molecular targets of halogenated aromatic hydrocarbons in neuronal cells. Biochem. Biophys. Res. Commun. 280, 1372–1377.

    PubMed  CAS  Google Scholar 

  91. Dyatlov, V. A., Dyatlov, O. M., Parsons, P. J., Lawrence, D. A., and Carpenter, D. O. (1998) Lipopolysaccharide and interleukin-6 enhance lead entry into cerebellar neurons: application of a new and sensitive flow cytometric technique to measure intracellular lead and calcium concentrations. Neurotoxicology 19, 293–302.

    PubMed  CAS  Google Scholar 

  92. Audesirk, T. and Cabell, L. (1999). Nanomolar concentrations of nicotine and cotinine alter the development of cultured hippocampal neurons via non-ace-tylcholine receptor-mediated mechanisms. Neurotoxicology 20, 639–646.

    PubMed  CAS  Google Scholar 

  93. Braga, M. F. M., Pereira, E. F. R., and Albuquerque, E. X. (1999) Nanomolar concentrations of lead inhibit glutamatergic and GABAergic transmission in hippocampal neurons. Brain Res. 826, 22–34.

    PubMed  CAS  Google Scholar 

  94. Heidemann, S. R., Lamoureux, P., and Atchison, W. D. (2001) Inhibition of axonal morphogenesis by nonlethal, submicromolar concentrations of methylmercury. Toxicol. Appl. Pharmacol. 174, 49–59.

    PubMed  CAS  Google Scholar 

  95. Bestervelt, L. L., Pitt, J. A., and Piper, W. N. (1998) Evidence for Ah receptor mediation of increased ACTH concentrations in primary cultures of rat anterior pituitary cells exposed to TCDD. Toxicol. Sci. 46, 294–299.

    PubMed  CAS  Google Scholar 

  96. Bouton, C. M. L. S., Hossain, M. A., Frelin, L. P., Laterra, J., and Pevsner, J. (2001) Microarray analysis of differential gene expression in lead-exposed astrocytes. Toxicol. Appl. Pharmacol. 176, 34–53.

    PubMed  CAS  Google Scholar 

  97. Yao, C. P., Allen, J. W., Conklin, D. R., and Aschner, M. (1999) Transfection and overexpression of metallothionein-I in neonatal rat primary astrocyte cultures and in astrocytoma cells increases their resistance to methylmercury-induced cytotoxicity. Brain Res. 818, 414–420.

    PubMed  CAS  Google Scholar 

  98. Yao, C. P., Allen, J. W., Mutkus, L. A., Xu, S. B., Tan, K. H., and Aschner, M. (2000) Foreign metallothionein-I (MT-I) expression by transient transfection in MT-I and-II null astrocytes confers increased protection against acute methylmercury cytotoxicity. Brain Res. 855, 32–38.

    PubMed  CAS  Google Scholar 

  99. Deng, W. and Poretz, R. D. (2002) Protein kinase C activation is required for the lead-induced inhibition of proliferation and differentiation of cultured oligodendroglial progenitor cells. Brain Res. 929, 87–95.

    PubMed  CAS  Google Scholar 

  100. Xu, J., Chen, S., Ahmed, S. H., et al. (2001) Amyloid-α peptides are cytotoxic to oligodendrocytes. J. Neurosci. 21, 1–5.

    Google Scholar 

  101. Tang, H. W., Yan, H. L., Hu, X. H., Liang, Y. X., and Shen, X. Y. (1996) Lead cytotoxicity in primary cultured rat astrocytes and Schwann cells. J. Appl. Toxicol. 16, 187–196

    PubMed  Google Scholar 

  102. Tomsig, J.L., and Suszkiw, J.B. (1995) Multisite interactions between Pb+2 and protein kinase C and its role in norepinephrine release from bovine adrenal chromaffin cells. J. Neurochem. 64, 2667–2773.

    PubMed  CAS  Google Scholar 

  103. Vijverberg, H. P. M., Zwart, R., Van Den Beukel, I., Oortgiesen, M., and Van Kleef, R. G. D. M. (1997) In vitro approaches to species and receptor diversity in cellular neurotoxicology. Toxicol. In Vitro 11, 491–498.

    PubMed  CAS  Google Scholar 

  104. Pantazis, N. J., Zaheer, A., Dai, D., Zaheer, S., Green, S. H., and Lim, R. (2000) Transfection of C6 glioma cells with glia maturation factor upregulates brain-derived neurotrophic factor and nerve growth factor: trophic effects and protection against ethanol toxicity in cerebellar granule cells. Brain Res. 865, 59–76.

    PubMed  CAS  Google Scholar 

  105. Lindahl, L. S., Bird, L., Legare, M. E., Mikeska, G, Bratton, G. R., and Tiffany-Castiglioni, E. (1999) Differential ability of astroglia and neuronal cells to accumulate lead: dependence on cell type and on degree of differentiation. Toxicol. Sci. 50, 236–243.

    PubMed  CAS  Google Scholar 

  106. Shanker, G, Allen, J. W., Mutkus, L. A., Aschner, M. (2001) Methylmercury inhibits cysteine uptake in cultured primary astrocytes, but not in neurons. Brain Res. 914, 159–165.

    PubMed  CAS  Google Scholar 

  107. Monnet-Tschudi, F., Zurich, M.-G., Schilter, B., Costa, L. G, and Honegger, P. (2000) Maturation-dependent effects of chlorpyrifos and parathion and their oxygen analogs on acetylcholinesterase and neuronal and glial markers in aggregating brain cell cultures. Toxicol. Appl. Pharmacol. 165, 175–183.

    PubMed  CAS  Google Scholar 

  108. Hirai, K., Yoshioka, H., Kihara, M., Hasegawa, K., Sawada, T., and Fushiki, S. (1999) Effects of ethanol on neuronal migration and neural cell adhesion molecules in the embryonic rat cerebral cortex: a tissue culture study. Dev. Brain Res. 118, 205–210.

    CAS  Google Scholar 

  109. He, L., Poblenz, A. T., Medrano, C. J., and Fox, D.A. (2000) Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. J. Biol. Chem. 275, 12,175–12,184.

    PubMed  CAS  Google Scholar 

  110. Kimelberg, H. K., Cai, Z., Schools, G., and Zhou, M. (2000) Acutely isolated astrocytes as models to probe astrocyte functions. Neurochem. Int. 36, 359–367.

    PubMed  CAS  Google Scholar 

  111. Vallés, S., Sancho-Tello, M., Miñana, R., Climent, E., Renau-Piqueras, J., and Guerri, C. (1996) Glial fibrillary acidic protein expression in rat brain and in radial glia culture is delayed by prenatal ethanol exposure. J. Neurochem. 67, 2425–2433.

    PubMed  Google Scholar 

  112. Chen, H-H., Ma, T., and Ho, I. K. (1999) Protein kinase C in rat brain is altered by developmental lead exposure. Neurochem. Res. 24, 415–421.

    PubMed  CAS  Google Scholar 

  113. Grover, C. A. and Frye, G. D. (1996) Ethanol effects on synaptic neurotrans-mission and tetanus-induced synaptic plasticity in hippocampal slices of chronic in vivo lead-exposed adult rats. Brain Res. 734, 61–71.

    PubMed  CAS  Google Scholar 

  114. Goldstein, G. W. (1988) Endothelial cell-astrocyte interactions: a cellular model of the blood-brain barrier. Ann. NY Acad. Sci. 529, 31–39.

    PubMed  CAS  Google Scholar 

  115. Sobue, K., Yamamoto, N., Yoneda, K., et al. (1999) Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci. Res. 35, 155–164.

    PubMed  CAS  Google Scholar 

  116. Wolburg, H., Neuhaus, J., Kniesel, U., et al. (1994) Modulation of tight junction structure in blood-brain barrier endothelial cells: effects of tissue culture, second messengers and cocultured astrocytes. J. Cell. Sci. 107, 1347–1357.

    PubMed  CAS  Google Scholar 

  117. Gumbleton, M. and Audus, K. L. (2001) Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J. Pharm. Sci. 90, 1681–1698.

    PubMed  CAS  Google Scholar 

  118. Tiffany-Castiglioni, E., Neck, K.F., and Caceci, T. (1986) Glial culture on artificial capillaries: electron microscopic comparison of C6 rat glioma cells and rat astroglia. J. Neurosci. Res. 16, 387–396.

    PubMed  CAS  Google Scholar 

  119. Stanness, K. A., Westrum, L. E., Fornaciari, E., et al. (1997) Morphological and functional characterization of an in vitro blood-brain barrier model. Brain Res. 771, 329–342.

    PubMed  CAS  Google Scholar 

  120. Guerri, C., Pascual, M., and Renau-Piqueras, J. (2001) Glia and fetal alcohol syndrome. Neurotoxicology 22, 593–599.

    PubMed  CAS  Google Scholar 

  121. Tofolin, P. J. and Fike, J. R. (2000) The radioresponse of the central nervous system: a dynamic process. Radiat. Res. 153, 357–370.

    Google Scholar 

  122. Tiffany-Castiglioni, E. (1993) Cell culture models for lead toxicity in neuronal and glial cells. Neurotoxicology 14(4), 513–536.

    PubMed  CAS  Google Scholar 

  123. Roper, S. N., Abraham, L. A., and Streit, W. J. (1997) Exposure to in utero irradiation produces disruption of radial glia in rats. Dev. Neurosci. 19, 521–528.

    PubMed  CAS  Google Scholar 

  124. Gressens, P. (2000) Mechanisms and disturbances of neuronal migration. Pediatr. Res. 48, 725–730.

    PubMed  CAS  Google Scholar 

  125. Freshney, R. I. (2000) Culture on Animal Cells: A Manual of Basic Technique, 4th ed., Wiley-Liss, New York.

    Google Scholar 

  126. Bissell, M. G., Eng, L.F., Herman, M. M., Bensch, K. G., and Miles, L. E. (1975) Quantitative increase of neuroglia-specific GFA protein in rat C-6 glioma cells in vitro. Nature 255, 633–634.

    PubMed  CAS  Google Scholar 

  127. Lee, K., Kentroti, S., Billie, H., Bruce, C., and Vernadakis, A. (1992) Comparative biochemical, morphological, and immunocytochemical studies between C-6 glial cells of early and late passages and advanced passages of glial cells derived from aged mouse cerebral hemispheres. Glia 6, 245–257.

    PubMed  CAS  Google Scholar 

  128. Biedler, J. L., Helson, L., and Spengler, B. A. (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 33, 2643–2652.

    PubMed  CAS  Google Scholar 

  129. Perez-Polo, J. R., Werrbach-Perez, K., and Tiffany-Castiglioni, E. (1979) A human clonal cell line model of differentiating neurons. Dev. Biol. 71, 341–355.

    PubMed  CAS  Google Scholar 

  130. Zurich, M. G., Honegger, P., Schilter, B., Costa, L. G., and Monnet-Tschudi, F. (2000) Use of aggregating brain cell cultures to study developmental effects of organophosphorus insecticides. Neurotoxicology 21, 599–606.

    PubMed  CAS  Google Scholar 

  131. Harry, G.J., Billingsley, M., Bruinink, A., et al. (1998) In vitro techniques for the assessment of neurotoxicity. Environ. Health Perspect. 106(Suppl.), 131–158.

    PubMed  CAS  Google Scholar 

  132. Gad, S.C. (2000) Neurotoxicology in vitro, in In Vitro Toxicology, 2nd ed., (Gad, C. G., ed.), Taylor and Francis, New York, pp. 188–221.

    Google Scholar 

  133. Barhoumi, R., Mouneimne, Y., Ramos, K. S., et al. (2000) Analysis of benzo[a]pyrene partitioning and cellular homeostasis in a rat liver cell line. Toxicol. Sci. 53, 264–270.

    PubMed  CAS  Google Scholar 

  134. Barhoumi, R., Mouneimne, Y., Awooda, I., Safe, S.H., Donnelly, K.C., and Burghardt, R.C. (2002) Characterization of calcium oscillations in normal and benzo[a]pyrene-treated Clone 9 cells. Toxicol. Sci. 68, 444–450.

    PubMed  CAS  Google Scholar 

  135. Chanda, S. M., Mortensen, S. R., Moser, V. C., and Padilla, S. (1997) Tissue-specific effects of chlorpyrifos on carboxylesterase and cholinesterase activity in adult rats: An in-vitro and in vivo comparison. Fund. Appl. Toxicol. 38, 148–157.

    CAS  Google Scholar 

  136. Carpenter, D. O., Hussain, R. J., Berger, D. F., Lombardo, J. P., and Park, H-Y. (2002) Electrophysiologic and behavioral effects of perinatal and acute exposure of rats to lead and polychlorinated biphenyls. Environ. Health Perspect. 110(Suppl.), 377–386.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Tiffany-Castiglioni, E. (2004). In Vitro Neurotoxicology. In: Tiffany-Castiglioni, E., Hollinger, M.A. (eds) In Vitro Neurotoxicology. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-651-7:1

Download citation

  • DOI: https://doi.org/10.1385/1-59259-651-7:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-047-2

  • Online ISBN: 978-1-59259-651-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics