Skip to main content

RNA-FISH to Analyze Allele-Specific Expression

  • Protocol
  • 888 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 181))

Abstract

One of the difficulties associated with the analysis of imprinted gene expression is the need to distinguish RNA synthesis occurring at the maternal vs the paternally inherited copy of the gene. Most of the techniques used to examine allele-specific expression exploit naturally occurring polymorphisms and measure steady-state levels of RNA isolated from a pool of cells. Hence, a restriction fragment length polymorphism (RFLP) an be exploited in a heterozygote, by a reverse transcriptase polymerase chain reaction (RT-PCR)-based procedure, to analyze maternal vs paternal gene expression. The human IGF2R gene was analyzed in this way. Smrzka et al. (1) were thus able to show that the IGF2R gene possesses a hemimethylated, intronic CpG island analogous to the mouse imprinting box. However, IGF2R mRNA was detected that possessed the RFLP from both the maternal and paternal alleles in all but one of the 70 lymphoblastoid samples. (The one monoallelic sample reactivated its paternal allele with continued cell culturing.) It was concluded that monoal-lelic expression of the human gene is a polymorphic trait occurring in a small minority of all tested samples (reviewed in refs. 2 ,3). Although this is a sound conclusion, the question remains: Is the human IGF2R gene imprinted?

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Smrzka, O., Faé, I., Stöger, R., Kurzbauer, R., Fischer, G. F., Henn, T., Wieth, A., and Barlow, P. P. (1995) Conservation of a maternal-specific methylation signal at the human IGF2R locus. Human Mol. Genet. 4, 1945–1952.

    Article  CAS  Google Scholar 

  2. Efstratiadis, A. (1994) Parental imprinting of autosomal mammalian genes. Curr. Op. Genet. Dev. 4, 265–28

    Article  PubMed  CAS  Google Scholar 

  3. Barlow, D. P. (1995) Gametic imprinting in mammals. Science 270, 1610–1

    Article  PubMed  CAS  Google Scholar 

  4. DeChiara, T. M., Robertson, E. J., and Efstratiadis, A. (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859.

    Article  PubMed  CAS  Google Scholar 

  5. Chess, A., Simon, I., Cedar, H., and Axel, R. (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823–834.

    Article  PubMed  CAS  Google Scholar 

  6. Hollander, G. A., Zuklys, S., Morel, C., Mizoguchi, E., Mobisson, K., Simpson, S., Terhorst, C., Wishart, W., Golan, D. E., Bhan, A. K., and Burakoff, S. J. (1998) Monoallelic expression of the interleukin-2 locus. Science 279, 2118–2121.

    Article  PubMed  CAS  Google Scholar 

  7. Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S., and Brockdorff, N. (1996) Requirement for XIST in X chromosome inactivation. Nature 379, 131–137.

    Article  PubMed  CAS  Google Scholar 

  8. Lerchner, W.and Barlow, D. P. (1997) Paternal repression of the imprinted mouse Igf2r locus occurs during implantation and is stable in all tissues of the post-implantation mouse embryo. Mech. Dev. 61, 141–149.

    Article  PubMed  CAS  Google Scholar 

  9. Clemson, C. M., McNeil, J. A., Willard, H. F., and Lawrence, J. B. (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 132, 259–275.

    Article  PubMed  CAS  Google Scholar 

  10. Sheardown, S. A., Duthie, S. M., Johnston, C. M., Newall, A. E., Formstone, E. J., Arkell, R. M., Nesterova, T. B., Alghisi, G. C., Rastan, S., and Brockdorff, N.(1997) Stabilization of Xist RNA mediates initiation of X chromosome inactivation. Cell 91, 99–107.

    Article  PubMed  CAS  Google Scholar 

  11. Johnston, C. M., Nesterova, T. B., Formstone, E. J., Newall, A. E. T., Duthie, S.M., Sheardown, S. A., and Brockdorff, N. (1998) Developmentally regulated Xist promoter switch mediates initiation of X inactivation. Cell 94, 809–817.

    Article  PubMed  CAS  Google Scholar 

  12. Panning, B., Dausman, J., and Jaenisch, R. (1997) X chromosome inactivation is mediated by Xist RNA stabilization. Cell 90, 907–916.

    Article  PubMed  CAS  Google Scholar 

  13. Wijgerde, M., Grosveld, F., and Fraser, P. (1995) Transcription complex stability and chromatin dynamics in vivo. Nature 377, 209–213.

    Article  PubMed  CAS  Google Scholar 

  14. Jolly, C., Robert-Nicoud, M., and Vourc’h, C. (1998) Contribution of growing RNA molecules to the nuclear transcripts foci observed by FISH. Exp. Cell Res. 238, 299–304.

    Article  PubMed  CAS  Google Scholar 

  15. Milot, E. M., Strouboulis, J., Trimborn, T., Wijgerde, M., de Boer, E., Langeveld, A., Tan-Un, K., Vergeer, W., Yannoutsos, N., Grosveld, F., and Fraser, P. (1996) Heterochromatin effects on the frequency and duration of LCR-mediated gene transcription. Cell 87, 105–114.

    Article  PubMed  CAS  Google Scholar 

  16. Dirks, R. W., van de Rijke, F. M., Fujishita, S., van der Ploeg, M., and Raap, A. K. (1993) Methodologies for specific intron and exon RNA localization in cultured cells by haptenised and fluorochromised probes. J. Cell Sci. 104, 1187–1197.

    PubMed  CAS  Google Scholar 

  17. Wutz, A., Smrzka, O. W., Schweifer, N., Schellander, K., Wagner, E. F., and Barlow, D. P. (1997) Imprinted expression of the it]Igf2r gene depends on an intronic CpG island. Nature 389, 745–749.

    Article  PubMed  CAS  Google Scholar 

  18. Moore, T., Constancia, M., Zubair, M., Bailleul, B., Feil, R., Sasaki, H., and Reik, W. (1997) Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2. Proc. Natl. Acad. Sci. USA94, 12509–12514.

    Article  PubMed  CAS  Google Scholar 

  19. Rougeulle, C., Cardoso, C., Fontés, M., Colleaux, L., and Lalande, M. (1998)An imprinted antisense RNA overlaps UBE3A and a second maternally expressed transcript. Nature Genet. 19, 15–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Braidotti, G. (2002). RNA-FISH to Analyze Allele-Specific Expression. In: Ward, A. (eds) Genomic Imprinting. Methods in Molecular Biology™, vol 181. Humana Press. https://doi.org/10.1385/1-59259-211-2:169

Download citation

  • DOI: https://doi.org/10.1385/1-59259-211-2:169

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-741-0

  • Online ISBN: 978-1-59259-211-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics