Skip to main content

Bicistronic GFP Expression Vectors as a Tool to Study Ion Channels in Transiently Transfected Cultured Cells

  • Protocol
Ion Channel Localization

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 569 Accesses

Abstract

The availability of ion-channel cDNAs has greatly increased our insight in the structure, function, pharmacology, and regulation of ion channels at the molecular level. Much of this knowledge has been obtained by expressing wild-type or mutant ion channels in a heterologous host system, thereby facilitating functional approaches and analyses, which are not possible, when the native channel is studied in its in situ context (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whiting, P. J., Wafford, K. A., Pribilla, I., and Petri, T. (1995) Channel cloning, mutagenesis and expression, in Ion channels. A Practical Approach (Ashley, R. H., ed.), IRL Press, Oxford, pp. 133–169.

    Google Scholar 

  2. Nilius, B., Eggermont, J., Voets, T., Buyse, G., Manolopoulos, V., and Droogmans, G. (1997) Properties of volume-regulated anion channels in mammalian cells. Prog. Biophys. Molec. Biol. 68, 69–119.

    Article  CAS  Google Scholar 

  3. Weber, W. M. (1999) endogenous ion channels in oocytes of Xenopus laevis: recent developments. J. Membrane Biol. 170, 1–12.

    Article  CAS  Google Scholar 

  4. Pasyk, E. A., Morin, X. K., Zeman, P., Garami, E., Galley, K., Huan, L. J., Wang, Y., and Bear, C. E. (1998) A conserved region of the R domain of cystic fibrosis transmembrane conductance regulator is important in processing and function. J. Biol. Chem. 273, 31759–31764.

    Article  PubMed  CAS  Google Scholar 

  5. Smit, L. S., Strong, T. V., Wilkinson, D. J., Macek, M. J., Mansoura, M. K., Wood, D. L., et al. (1995) Missense mutation (G480C) in the CFTR gene associated with protein mislocalization but normal chloride channel activity. Hum. Molec. Genet. 4, 269–273.

    Article  PubMed  CAS  Google Scholar 

  6. Madeja, M., Musshoff, U., and Speckmann, E. J. (1997) Follicular tissues reduce drug effects on ion channels in oocytes of Xenopus laevis. Eur. J. Neurosci. 9, 599–604.

    Article  PubMed  CAS  Google Scholar 

  7. Krafte, D. S., Davison, K., Dugrenier, N., Estep, K., Josef, K., Barchi, R. L., et al. (1994) Pharmacological modulation of human cardiac Na+ channels. Eur. J. Pharmacol. 266, 245–254.

    Article  PubMed  CAS  Google Scholar 

  8. Stefani, E. and Bezanilla, F. (1998) Cut-open oocyte voltage-clamp technique. Methods Enzymol. 293, 300–318.

    Article  PubMed  CAS  Google Scholar 

  9. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C.(1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.

    Article  PubMed  CAS  Google Scholar 

  10. Heim, R., Prasher, D. C., and Tsien, R. Y. (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12,501–12,504.

    Article  PubMed  CAS  Google Scholar 

  11. Tsien, R. W. (1998) Key clockwork component cloned. Nature 391, 839,840.

    Article  PubMed  CAS  Google Scholar 

  12. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., and Nishimune, Y. (1997) Green mice as a source of ubiquitous green cells. FEBS Lett. 407, 313–319.

    Article  PubMed  CAS  Google Scholar 

  13. Tsien, R. Y. (1998) The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.

    Article  PubMed  CAS  Google Scholar 

  14. Heim, R., Cubitt, A. B., and Tsien, R. Y. (1995) Improved green fluorescence. Nature 373, 664,665.

    Article  Google Scholar 

  15. Cormack, B. P., Valvidia, R. H., and Falkow, S. (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38.

    Article  PubMed  CAS  Google Scholar 

  16. Marshall, J., Molloy, R., Moss, G. W. J., Howe, J. R., and Hughes, T. E. (1995) The jellyfish green fluorescent protein: a new tool for studying ion channel expression and function. Neuron 14, 211–215.

    Article  PubMed  CAS  Google Scholar 

  17. Levitan, E. S. (1999) Tagging potassium ion channels with green fluorescent protein to study mobility and interactions with other proteins. Methods Enzymol. 294, 47–58.

    Article  PubMed  CAS  Google Scholar 

  18. Lopatin, A. N., Makhina, E. N., and Nichols, C. G. (1998) Novel tools for localizing ion channels in living cells. Trends Pharmacol. Sci. 19, 395–398.

    Article  PubMed  CAS  Google Scholar 

  19. Gray, N. K. and Wickens, M. (1998) Control of translation initiation in animals. Annu. Rev. Cell Dev. Biol. 14, 399–458.

    Article  PubMed  CAS  Google Scholar 

  20. Jackson, R. J. and Kaminski, A.(1995) Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1, 985–1000.

    PubMed  CAS  Google Scholar 

  21. Stewart, S. R. and Semler, B. L.(1997) RNA determinants of picornavirus cap-independent translation initiation. Sem. Virol. 8, 242–255.

    Article  CAS  Google Scholar 

  22. Pestova, T. V., Shatsky, I. N., and Hellen, C. U. (1996) Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol. Cell. Biol. 16, 6870–6878.

    PubMed  CAS  Google Scholar 

  23. Roberts, L. O., Seamons, R. A., and Belsham, G. J. (1998) Recognition of picornavirus internal ribosome entry sites within cells; influence of cellular and viral proteins. RNA 4, 520–529.

    Article  PubMed  CAS  Google Scholar 

  24. Jang, S. K., Davies, M. V., Kaufman, R. J., and Wimmer, E. (1989) Initiation of protein synthesis by internal entry of ribosomes into the 5− nontranslated region of encephalomyocarditis virus RNA in vivo. J. Virol. 63, 1651–1660.

    PubMed  CAS  Google Scholar 

  25. Ghattas, I. R., Sanes, J. R., and Majors, J. E. (1991) The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol. Cell. Biol. 11, 5848–5859.

    PubMed  CAS  Google Scholar 

  26. Kim, D. G., Kang, H. M., Jang, S. K., and Shin, H. S. (1992) Construction of a bifunctional mRNA in the mouse by using the internal ribosomal entry site of the encephalomyocarditis virus. Mol. Cell. Biol. 12, 3636–3643.

    PubMed  CAS  Google Scholar 

  27. Borman, A. M., Bailly, J. L., Girard, M., and Kean, K. M. (1995) Picornavirus internal ribosome entry segments: comparison of translation efficiency and the requirements for optimal internal initiation of translation in vitro. Nucleic Acids Res. 23, 3656–3663.

    Article  PubMed  CAS  Google Scholar 

  28. Trouet, D., Nilius, B., Voets, T., Droogmans, G., and Eggermont, J.(1997) Use of a bicistronic GFP-expression vector to characterise ion channels after transfection in mammalian cells. Pflügers Arch. Eur. J. Physiol. 434, 632–638.

    Article  CAS  Google Scholar 

  29. Blair, L. A. C., Bence, K. K., and Marshall, J. (1999) Jellyfish green fluorescent protein: a tool for studying ion channels and second messenger sgnaling in neurons. Methods Enzymol. 302, 213–225.

    Article  PubMed  CAS  Google Scholar 

  30. Warnat, J., Philipp, S., Zimmer, S., Flockerzi, V., and Cavalie, A. (1999) Phenotype of a recombinant store-operated channel: highly selective permeation of Ca2+. J. Physiol. (Lond.) 518, 631–638.

    Article  CAS  Google Scholar 

  31. Kamouchi, M., Philipp, S., Flockerzi, V., Wissenbach, U., Mamin, A., Raeymaekers, L., et al. (1999) Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J. Physiol. (Lond.) 518, 345–358.

    Article  CAS  Google Scholar 

  32. Kamouchi, M., Trouet, D., DeGreef, C., Droogmans, G., Eggermont, J., and Nilius, B. (1997) Functional effects of expression of hslo Ca2+ activated K+ channels in cultured macrovascular endothelial cells. Cell Calcium 22(6), 497–506.

    Article  PubMed  CAS  Google Scholar 

  33. Vennekens, R., Kamouchi, M., Wissenbach, U., Phillip, S., Eggermont, J., Droogmans, G., et al. (1999) Functional expression of Trp1 and Trp4 in vascular endothelium. Pflügers Arch. Eur. J. Physiol. 437, R42.

    Google Scholar 

  34. Vennekens, R., Trouet, D., Vankeerberghen, A., Voets, T., Cuppens, H., Eggermont, J., et al. (1999) Inhibition of volume-regulated anion channels by expression of the cystic fibrosis transmembrane conductance regulator. J. Physiol. (Lond.) 515, 75–85.

    Article  CAS  Google Scholar 

  35. Fang, Y., Huang, C.-C., Kain, S. R., and Li, X. (1999) Use of coexpressed enhanced green fluorescent protein as a marker for identifying transfected cells. Methods Enzymol. 302, 207–212.

    Article  PubMed  CAS  Google Scholar 

  36. Gossen, M., Freundlieb, S., Bender, G., Müller, G., Hillen, W., and Bujard, H. (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769.

    Article  PubMed  CAS  Google Scholar 

  37. Baron, U., Freundlieb, S., Gossen, M., and Bujard, H. (1995) Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res. 23, 3605–3606.

    Article  PubMed  CAS  Google Scholar 

  38. Voets, T., Droogmans, G., and Nilius, B. (1996) Membrane currents and the resting membrane potential in cultured bovine pulmonary artery endothelial cells. J. Physiol. (Lond.) 497, 95–107.

    CAS  Google Scholar 

  39. Trouet, D., Nilius, B., Jacobs, A., Remacle, C., Droogmans, G., and Eggermont, J. (1999) Caveolin-1 modulates the activity of the volume-regulated chloride channel. J. Physiol. (Lond.) 520, 113–119.

    Article  CAS  Google Scholar 

  40. Smith, G. M., Berry, R. L., Yang, J., and Tanelian, D. (1997) Electrophysiological analysis of dorsal root ganglion neurons pre-and post-coexpression of green fluorescent protein and functional 5-HT3 receptor. J. Neurophysiol. 77, 3115–3121.

    PubMed  CAS  Google Scholar 

  41. Buyse, G., Trouet, D., Voets, T., Missiaen, L., Droogmans, G., Nilius, B., and Eggermont, J. (1998) Evidence for the intracellular location of chloride chan nel (ClC)-type proteins: co-localization of CIC-6a and CIC-6c with the sarco/ endoplasmic-reticulum Ca2+ pump SERCA2b. Biochem. J. 330, 1015–1021.

    PubMed  CAS  Google Scholar 

  42. Wei, L., Vankeerberghen, A., Cuppens, H., Droogmans, G., Cassiman, J.-J., and Nilius, B. (1999) Phosphorylation site independent single R-domain mutations affect CFTR channel activity. FEBS Lett. 439, 121–126.

    Article  Google Scholar 

  43. Voets, T., Droogmans, G., Raskin, G., Eggermont, J., and Nilius, B. (1999) Reduced intracellular ionic strength as the initial trigger for activation of endothelial volume-regulated anion channels. Proc. Natl. Acad. Sci. USA 96, 5298–5303.

    Article  PubMed  CAS  Google Scholar 

  44. Van Driessche, W., De Smet, P., and Raskin, G. (1993) An automatic monitoring system for epithelial cell height. Pflügers Arch. Eur. J. Physiol. 425, 164–171.

    Article  CAS  Google Scholar 

  45. Gurtu, V., Yan, G., and Zhang, G. (1996) IRES bicistronic expression vectors for efficient creation of stable mammalian cell lines. Biochem. Biophys. Res. Commun. 229, 295–298.

    Article  PubMed  CAS  Google Scholar 

  46. Rees, S., Coote, J., Stables, J., Goodson, S., Harris, S., and Lee, M. G. (1996) Bicistronic vector for the creation of stable mammalian cell lines that predisposes all antibiotic-resistant cells to express recombinant protein. BioTechniques 20, 102–110.

    PubMed  CAS  Google Scholar 

  47. Hobbs, S., Jitrapakdee, S., and Wallace, J. C. (1998) Development of a bicistronic vector driven by the human polypeptide chain elongation factor 1alpha promoter for creation of stable mammalian cell lines that express very high levels of recombinant proteins. Biochem. Biophys. Res. Commun. 252, 368–372.

    Article  PubMed  CAS  Google Scholar 

  48. Metz, M. Z., Pichler, A., Kuchler, K., and Kane, S. E. (1998) Construction and characterization of single-transcript tricistronic retroviral vectors using two internal ribosome entry sites. Somatic Cell Mol. Genet. 24, 53–69.

    Article  CAS  Google Scholar 

  49. Lybarger, L., Dempsey, D., Franek, K. J., and Chervenak, R. (1996) Rapid generation and flow cytometric analysis of stable GFP-expressing cells. Cytometry 25, 211–220.

    Article  PubMed  CAS  Google Scholar 

  50. Walker, D. and De Waard, M. (1998) Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function. Trends Neurosci. 21, 148–154.

    Article  PubMed  CAS  Google Scholar 

  51. Unwin, N. (1993) Neurotransmitter action: opening of ligand-gated ion channels. Cell 72, 31–41.

    Article  PubMed  Google Scholar 

  52. Fyfe, G. K., Quinn, A., and Canessa, C. M. (1998) Structure and function of the Mec-ENaC family of ion channels. Sem. Nephrol. 18, 138–151.

    CAS  Google Scholar 

  53. Lorenz, L., Pusch, M., and Jentsch, T. J. (1996) Heteromultimeric CLC chloride channels with novel properties. Proc. Natl. Acad. Sci. USA 93, 13,362–13,366.

    Article  PubMed  CAS  Google Scholar 

  54. Kawashima, E., Estoppey, D., Virginio, C., Fahmi, D., Rees, S., Surprenant, A., and North, R. A. (1998) A novel and efficient method for the stable expression of heteromeric ion channels in mammalian cells. Recept. Channels 5, 53–60.

    PubMed  CAS  Google Scholar 

  55. Stauber, R. H., Horie, K., Carney, P., Hudson, E. A., Tarasova, N. I., Gaitanaris, G. A., and Pavlakis, G. N. (1998) Development and applications of enhanced green fluorescent protein mutants. BioTechniques 24, 462–466, 468-471.

    PubMed  CAS  Google Scholar 

  56. Yang, T. T., Sinai, P., Green, G., Kitts, P. A., Chen, Y. T., Lybarger, L., et al. (1998) Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein. J. Biol. Chem. 273, 8212–8216.

    Article  PubMed  CAS  Google Scholar 

  57. Shieh, B. H. and Zhu, M. Y. (1996) Regulation of the TRP Ca2+ channel by INAD in Drosophila photoreceptors. Neuron 16, 991–998.

    Article  PubMed  CAS  Google Scholar 

  58. Short, D. B., Trotter, K. W., Reczek, D., Kreda, S. M., Bretscher, A., Boucher, R. C., et al. (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J. Biol. Chem. 273, 19,797–19,801.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Eggermont, J., Trouet, D., Buyse, G., Vennekens, R., Droogmans, G., Nilius, B. (2001). Bicistronic GFP Expression Vectors as a Tool to Study Ion Channels in Transiently Transfected Cultured Cells. In: Lopatin, A.N., Nichols, C.G. (eds) Ion Channel Localization. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-118-3:167

Download citation

  • DOI: https://doi.org/10.1385/1-59259-118-3:167

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-833-2

  • Online ISBN: 978-1-59259-118-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics