Skip to main content

Chemokine Inhibition of HIV Infection

  • Protocol
  • 763 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 138))

Abstract

Human immunodeficiency virus (HIV) is a member of the retro virus family, classified under the lentivirus genus. Retroviruses are enveloped RNA viruses, which contain a core of capsid proteins, viral RNA, and enzymes. All infectious retroviral virions contain an enzyme, reverse transcriptase, which catalyzes the formation of a complementary DNA strand from an RNA template. A double-stranded DNA copy of the viral RNA genome (proviral DNA) may then be integrated into and replicated with the host cell genome.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dalgleish A. G., Beverley P. C., Clapham P. R., Crawford D. H., Greaves M. F., and Weiss R. A. (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312, 763–767.

    Article  PubMed  CAS  Google Scholar 

  2. Simmons G., Wilkinson D., Reeves J. D., Dittmar M. T., Beddows S., Weber J., et al. (1996) Primary, syncytium-inducing human immunodeficiency virus type 1 isolates are dual-tropic and most can use either Lestr or CCR5 as coreceptors for virus entry. J. Virol. 70, 8355–8360.

    PubMed  CAS  Google Scholar 

  3. Tersmette M., de Goede R. E., Al B. J., Winkel I. N., Gruters R. A., Cuypers H. T., et al. (1988) Differential syncytium-inducing capacity of human immunodeficiency virus isolates: frequent detection of syncytium-inducing isolates in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. J. Virol. 62, 2026–2032.

    PubMed  CAS  Google Scholar 

  4. Walker C. M., Moody D. J., Stites D. P., and Levy J. A. (1986) CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 234, 1563–1566.

    Article  PubMed  CAS  Google Scholar 

  5. Cocchi F., DeVico A. L., Garzino Demo A., Arya S. K., Gallo R. C., and Lusso P. (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815.

    Article  PubMed  CAS  Google Scholar 

  6. Feng Y., Broder C. C., Kennedy P. E., and Berger E. A. (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877.

    Article  PubMed  CAS  Google Scholar 

  7. Dragic T., Litwin V., Allaway G. P., Martin S. R., Huang Y., Nagashima K. A., et al. (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381, 667–673.

    Article  PubMed  CAS  Google Scholar 

  8. Deng H., Liu R., Ellmeier W., Choe S., Unutmaz D., Burkhart M., et al. (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666.

    Article  PubMed  CAS  Google Scholar 

  9. Alkhatib G., Combadiere C., Broder C. C., Feng Y., Kennedy P. E., Murphy P. M., and Berger E. A. (1996) CC CKR5: a RANTES, MIP-1alpha, MIP-1 beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272, 1955–1958.

    Article  PubMed  CAS  Google Scholar 

  10. Choe H., Farzan M., Sun Y., Sullivan N., Rollins B., Ponath P. D., et al. (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135–1148.

    Article  PubMed  CAS  Google Scholar 

  11. Doranz B. J., Rucker J., Yi Y., Smyth R. J., Samson M., Peiper S. C., et al. (1996) A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 85, 1149–1158.

    Article  PubMed  CAS  Google Scholar 

  12. Deng H. K., Unutmaz D., KewalRamani V. N., and Littman D. R. (1997) Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 388, 296–300.

    Article  PubMed  CAS  Google Scholar 

  13. Farzan M., Choe H., Martin K., Marcon L., Hofmann W., Karlsson G., et al. (1997) Two orphan seven-transmembrane segment receptors which are expressed in CD4-positive cells support simian immunodeficiency virus infection. J. Exp. Med. 186, 405–411.

    Article  PubMed  CAS  Google Scholar 

  14. Liao F., Alkhatib G., Peden K. W., Sharma G., Berger E. A., and Farber J. M. (1997) STRL33, A novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line-tropic HIV-1. J. Exp. Med. 185, 2015–2023.

    Article  PubMed  CAS  Google Scholar 

  15. Reeves J. D., McKnight A., Potempa S., Simmons G., Gray P. W., Power C. A., et al. (1997) CD4-independent infection by HIV-2 (ROD/B): use of the 7-transmembrane receptors CXCR-4, CCR-3, and V28 for entry. Virology 231, 130–134.

    Article  PubMed  CAS  Google Scholar 

  16. Loetscher M., Amara A., Oberlin E., Brass E., Legler D. F., Loetscher P., et al. (1997) TYMSTR, a putative chemokine receptor selectively expressed in activated T cells, exhibits HIV-1 coreceptor function. Curr. Biol. 7, 652–660.

    Article  PubMed  CAS  Google Scholar 

  17. Horuk R., Hesselgesser R., Zhou Y., Faulds D., Halks-Miller M., Harvey S., et al. (1998) The CC chemokine I-309 inhibits CCR8-dependent infection by diverse HIV-1 strains. J. Biol. Chem. 273, 386–391.

    Article  PubMed  CAS  Google Scholar 

  18. McKnight A., Wilkinson D., Simmons G., Talbot S., Picard L., Ahuja M., et al. (1997) Inhibition of human immunodeficiency virus fusion by a monoclonal antibody to a coreceptor (CXCR4) is both cell type and virus strain dependent. J. Virol. 71, 1692–1696.

    PubMed  CAS  Google Scholar 

  19. Connor R. I., Sheridan K. E., Ceradini D., Choe S., and Landau N. R. (1997) Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J. Exp. Med. 185, 621–628.

    Article  PubMed  CAS  Google Scholar 

  20. Rucker J., Edinger A. L., Sharron M., Lee B., Berson J. F., Yi Y., et al. (1997) Utilization of chemokine receptors, orphan receptors, and herpes virus-encoded receptors by diverse human and simian immunodeficiency viruses. J. Virol. 71, 8999–9007.

    PubMed  CAS  Google Scholar 

  21. Berger E. A., Doms R. W., Fenyo E.-M., Korber B. T. M., Littman D. R., Moore J. P., et al. (1998) A new classification for HIV-1. Nature 391, 240.

    Article  PubMed  CAS  Google Scholar 

  22. Detels R., Liu Z., Hennessey K., Kan J., Visscher B. R., Taylor J. M., et al. (1994) Resistance to HIV-1 infection. Multicenter AIDS Cohort Study. J. Acquir. Immune Defic. Syndr. 7, 1263–1269.

    PubMed  CAS  Google Scholar 

  23. Liu R., Paxton W. A., Choe S., Ceradini D., Martin S. R., Horuk R., et al. (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377.

    Article  PubMed  CAS  Google Scholar 

  24. Dean M., Carrington M., Winkler C., Huttley G. A., Smith M. W., Allikmets R., et al. (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273, 1856–1862.

    Article  PubMed  CAS  Google Scholar 

  25. Samson M., Libert F., Doranz B. J., Rucker J., Liesnard C., Farber C. M., et al. (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725.

    Article  PubMed  CAS  Google Scholar 

  26. Winkler C., Modi W., Smith M. W., Nelson G. W., Wu X., Carrington M., et al. (1998) Genetic Restriction of AIDS Pathogenesis by an SDF-1 Chemokine Gene Variant. Science 279, 389–393.

    Article  PubMed  CAS  Google Scholar 

  27. Simmons G., Clapham P. R., Picard L., Offord R. E., Rosenkilde M. M., Schwartz T. W., et al. (1997) Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276, 276–279.

    Article  PubMed  CAS  Google Scholar 

  28. Mack M., Luckow B., Nelson P. J., Cihak J., Simmons G., Clapham P. R., et al. (1998) Aminooxypentane-RANTES induces CCR5 internalization but inhibts recycling: A novel inhibitory mechanism of HIV infectivity. J. Exp. Med. 187, 1215–1224.

    Article  PubMed  CAS  Google Scholar 

  29. Connor R. I., Paxton W. A., Sheridan K. E., and Koup R. A. (1996) Macrophages and CD4+ T lymphocytes from two multiply exposed, uninfected individuals resist infection with primary non-syncytium-inducing isolates of human immunodeficiency virus type 1. J. Virol. 70, 8758–8764.

    PubMed  CAS  Google Scholar 

  30. Oravecz T., Pall M., Wang J., Roderiquez G., Ditto M., and Norcross M. A. (1997) Regulation of anti-HIV-1 activity of RANTES by heparan sulfate proteoglycans. J. Immunol. 159, 4587–4592.

    PubMed  CAS  Google Scholar 

  31. Doranz B. J., Grovit Ferbas K., Sharron M. P., Mao S. H., Goetz M. B., Daar E. S., et al. (1997) A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. J. Exp. Med. 186, 1395–1400.

    Article  PubMed  CAS  Google Scholar 

  32. Donzella G. A., Schols D., Lin S. W., Este J. A., Nagashima K. A., Maddon P. J., et al. (1998) AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat. Med. 4, 72–77.

    Article  PubMed  CAS  Google Scholar 

  33. Schols D., Este J. A., Henson G., and De Clercq E. (1997) Bicyclams, a class of potent anti-HIV agents, are targeted at the HIV coreceptor fusin/CXCR-4. Antiviral Res. 35, 147–156.

    Article  PubMed  CAS  Google Scholar 

  34. Murakami T., Nakajima T., Koyanagi Y., Tachibana K., Fujii N., Tamamura H., et al. (1997) A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J. Exp. Med. 186, 1389–1393.

    Article  PubMed  CAS  Google Scholar 

  35. Bleul C. C., Wu L., Hoxie J. A., Springer T. A., and Mackay C. R. (1997) The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc. Natl. Acad. Sci. USA 94, 1925–1930.

    Article  PubMed  CAS  Google Scholar 

  36. Sallusto F., Mackay C. R., and Lanzavecchia A. (1997) Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277, 2005–2007.

    Article  PubMed  CAS  Google Scholar 

  37. He J., Chen Y., Farzan M., Choe H., Ohagen A., Gartner S., et al. (1997) CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385, 645–649.

    Article  PubMed  CAS  Google Scholar 

  38. Kledal T. N., Rosenkilde M. M., Coulin F., Simmons G., Johnsen A. H., Alouani S., et al. (1997) A broad-spectrum chemokine antagonist encoded by Kaposi§ sarcoma-associated herpesvirus. Science 277, 1656–1659.

    Article  PubMed  CAS  Google Scholar 

  39. Boshoff C., Endo Y., Collins P. D., Takeuchi Y., Reeves J. D., Schweickart V. L., et al. (1997) Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science 278, 290–294.

    Article  PubMed  CAS  Google Scholar 

  40. Tersmette M., Koot M., De Goede R. E. Y., Kootstra N., and Schuitemaker H. (1995) Isolation and biological characterization of primary HIV-1 isolates, in HIV: A Practical Approach (Karn J., ed.), vol. 1, Oxford University Press Oxford, UK, pp. 47–61.

    Google Scholar 

  41. Pal R., Garzino Demo A., Markham P. D., Burns J., Brown M., Gallo R. C., and DeVico A. L. (1997) Inhibition of HIV-1 infection by the beta-chemokine MDC. Science 278, 695–698.

    Article  PubMed  CAS  Google Scholar 

  42. Kimpton J. and Emerman M. (1992) Detection of replication-competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated beta-galactosidase gene. J. Virol. 66, 2232–2239.

    PubMed  CAS  Google Scholar 

  43. Bron R., Klasse P. J., Wilkinson D., Clapham P. R., Pelchen Matthews A., Power C., et al. (1997) Promiscuous use of CC and CXC chemokine receptors in cell-to-cell fusion mediated by a human immunodeficiency virus type 2 envelope protein. J. Virol. 71, 8405–8415.

    PubMed  CAS  Google Scholar 

  44. Moore J. P., McKeating J. A., Weiss R. A., and Sattentau Q. J. (1990) Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 250, 1139–1142.

    Article  PubMed  CAS  Google Scholar 

  45. Collins M., Montaner L. J., Herbein G., and Gordon S. (1995) HIV infection of macrophages, in: HIV: A Practical Approach (Karn J., ed.), vol. 1, Oxford University Press Oxford, UK, pp. 63–76.

    Google Scholar 

  46. Hinkula J., Rosen J., Sundqvist V. A., Stigbrand T., and Wahren B. (1990) Epitope mapping of the HIV-1 gag region with monoclonal antibodies. Mol. Immunol. 27, 395–403.

    Article  PubMed  CAS  Google Scholar 

  47. McKnight A., Clapham P. R., and Schulz T. F. (1995) Detection of HIV entry into cells, in: HIV: A Practical Approach (Karn J., ed.), vol. 1, Oxford University Press Oxford, UK, pp. 129–141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Reeves, J.D., Simmons, G. (2000). Chemokine Inhibition of HIV Infection. In: Proudfoot, A.E.I., Wells, T.N.C., Power, C.A. (eds) Chemokine Protocols. Methods in Molecular Biology, vol 138. Humana Press. https://doi.org/10.1385/1-59259-058-6:209

Download citation

  • DOI: https://doi.org/10.1385/1-59259-058-6:209

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-722-9

  • Online ISBN: 978-1-59259-058-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics