Skip to main content

The Use of Fluorescence Resonance Energy Transfer to Detect Conformational Changes in Protein Toxins

  • Protocol
  • 1392 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 145))

Abstract

When a fluorophore absorbs a photon, an electron is excited to a higher energy level. This excited state electron returns to its ground state by one of two competing processes. In radiative de-excitation, a brief relaxation time (about 10-12 s) is followed by the electron’s return to the ground state accompanied by the emission of a photon whose wavelength is longer than the one absorbed (1). Fluorescence emission competes with nonradiative processes that also allow the electron to return to the ground state. Because the competition between these processes is influenced by the fluorophore’s surroundings, the nature of the emitted light provides information on the microenvironment of the probe. Therefore, when a fluorophore is part of a macromolecular structure (such as a protein or protein-containing complex), its fluorescence emission provides information on those events occurring within the structure.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lakowicz J. R., ed. (1983) Principles of Fluorescence Spectroscopy, Plenum New York.

    Google Scholar 

  2. Calderwood S. B., Auclair F., Donohue-Rolfe A., Keusch G. T., and Mekalanos J. J. (1987) Nucleotide sequence of the shiga-like toxin genes of Escherichia coli. Proc. Natl. Acad. Sci. USA 84, 4364–4368.

    Article  PubMed  Google Scholar 

  3. Surewicz W. K., Surewicz K., Mantsch H. H., and Auclair F. (1989) Interaction of shigella toxin with globotriaosyl ceramide receptor-containing membranes: a fluorescence study. Biochem. Biophys. Res. Commun. 160, 126–132.

    Article  PubMed  CAS  Google Scholar 

  4. Spangler B. D. (1992) Structure and function of cholera toxin and the related E. coli heat-labile enterotoxin. M icrobiol. Rev. 56, 622–647.

    CAS  Google Scholar 

  5. Merritt E. A., Sarfaty S., van der Akker R., L’Hoir C., Martial J. A., and Hol W. G. J. (1994) Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Prot. Sci. 3, 166–175.

    Article  CAS  Google Scholar 

  6. DeWolf M. J. S., Fridkin M., Epstein M. M., and Kohn L. D. (1981) Structure-function studies of cholera toxin and its A protomers and B protomers. J. Biol. Chem. 256, 5481–5488.

    CAS  Google Scholar 

  7. DeWolf M. S. J., Van Dessel G. A. F., Lagrou A. R., Hilderson H. J. J., and Dierick W. S. H. (1987) pH-induced transitions in cholera toxin conformation. Biochemistry 26, 3799–3806.

    Article  CAS  Google Scholar 

  8. Picking W. L., Moon H., Wu H., and Picking W. D. (1995) Fluorescence analysis of the interaction between ganglioside GM1-containing phospholipid vesicles and the B subunit of cholera toxin. Biochim. Biophys. Acta 1247, 65–73.

    Article  PubMed  Google Scholar 

  9. McCann J. A., Mertz J. A., Czworkowski J., and Picking W. D. (1997) Conformational changes in cholera toxin B subunit-ganglioside GM1 complexes are elicited by environmental pH and evoke changes in membrane structure. Biochemistry 36, 9169–9178.

    Article  PubMed  CAS  Google Scholar 

  10. Wu P. and Brand L. (1994) Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1–13.

    Article  PubMed  CAS  Google Scholar 

  11. dos Remedios C. A. and Moens P. D. (1995) Fluorescence resonance energy transfer spectroscopy is a reliable “ruler’ for measuring structural changes in proteins: dispelling the problem of the unknown orientation factor. J. Struct. Biol. 115, 175–185.

    Article  PubMed  CAS  Google Scholar 

  12. Haas E., Katzir E.-K., and Steinberg I. Z. (1978) Effect of orientation of donor and acceptor on the probability of energy transfer involving electronic transitions of mixed polarization. Biochemistry 17, 5064–5070.

    Article  PubMed  CAS  Google Scholar 

  13. Dale R. E., Eisinger J., and Blumberg W. E. (1979) The orientational freedom of molecular probes: the orientation factor in intramolecular energy transfer. Biophys. J. 26, 161–194.

    Article  PubMed  CAS  Google Scholar 

  14. Sonnino S., Acquotti D., Riboni L., Giuliani A., Kirschner G., and Tettamanti G. (1986) New chemical trends in ganglioside research. Chem. Phys. Lipids 42, 3–26.

    Article  PubMed  CAS  Google Scholar 

  15. Laemmli U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  16. Stern D. and Volmer M. (1919) On the quenching-time of fluorescence. Phys. Zeitschr. 20, 183-188.

    Google Scholar 

  17. Csortos C., Matko J., Erdodi F., and Gergely P. (1990) Interaction of the catalytic subunits of protein phosphatase-1 and 2A with inhibitor-1 and 2: a fluorescent study with sulfhydryl-specific pyrene maleimide. Biochem. Biophys. Res. Commun. 169, 559–564.

    Article  PubMed  CAS  Google Scholar 

  18. Flitsch S. L. and Khorana H. G. (1989) Structural studies on transmembrane proteins. 1. Model study using bacteriorhodopsin mutants containing single cysteine residues. Biochemistry 28, 7800–7805.

    Article  PubMed  CAS  Google Scholar 

  19. Picking W. D., Kudlicki W., Kramer G., Hardesty B., Vandenheede J. R., Merlevede W., Park I., and DePaoli-Roach A. (1991) Fluorescence studies on the interaction of inhibitor-2 and okadaic acid with the catalytic subunit of type 1 phosphoprotein phosphatase. Biochemistry 30, 10,280–10,287.

    Article  PubMed  CAS  Google Scholar 

  20. Highsmith S. and Murphy A. J. (1984) Nd3*+ and Co2*+ binding to sarcoplasmic reticulum CaATPase: an estimation of the distance from the ATP binding site to the high-affinity calcium binding sites. J. Biol. Chem. 259, 14,651–14,656.

    PubMed  CAS  Google Scholar 

  21. Zhang R.-G., Westbrook M. L., Westbrook E. M., Scott D. L., Otwinowski Z., Maulik P. R., Reed R. A., and Shipley G. G. (1995) The 2.4к crystal structure of cholera toxin B subunit pentamer: choleragenoid. J. M ol. Biol. 251, 550–562.

    Article  CAS  Google Scholar 

  22. Dawson W. R. and Windsor M. W. (1968) Fluorescence yields of aromatic compounds. J. Phys. Chem. 72, 3251–3260.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Picking, W.D. (2000). The Use of Fluorescence Resonance Energy Transfer to Detect Conformational Changes in Protein Toxins. In: Holst, O. (eds) Bacterial Toxins: Methods and Protocols. Methods in Molecular Biology™, vol 145. Humana Press. https://doi.org/10.1385/1-59259-052-7:133

Download citation

  • DOI: https://doi.org/10.1385/1-59259-052-7:133

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-604-8

  • Online ISBN: 978-1-59259-052-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics