Skip to main content

Azatides as Peptidomimetics: Solution and Liquid Phase Syntheses

  • Protocol
Peptidomimetics Protocols

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 23))

Abstract

Peptidomimetics have become immensely important for both organic and medicinal chemists (1). The alteration of peptides to peptidomimetics has included peptide side chain manipulations, amino acid extensions (2), deletions (3), substitutions (1a,b), and most recently backbone modifications (4). It is this latter development that has been exploited for the synthesis of biomimetic polymeric structures. Such progress has been fueled by the suggestion that peptidomimetics may provide novel scaffolds for the generation of macromolecules with new properties of both biological and chemical interest (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spatola, A. F. (1983) Peptide backbone modifications: a structure-activity analysis of peptides containing amide bond surrogates, in Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins (Weinstein, B., ed.), Marcel Dekker, New York, pp. 267ā€“357.

    Google ScholarĀ 

  2. Sherman, D. B. and Spatola, A. F. (1990) Compatibility of thioamides with reverse turn features: synthesis and conformatioinal analysis of two model cyclic pseudopeptides containing thioamides as backbone modifications. J. Am.Chem. Soc. 112, 433ā€“41.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Hirschmann, R. (1990) Medicinal chemistry in the golden age of biology: lessons from steroid and peptide research. Angew. Chem. Int. Ed. Engl. 29, 1278ā€“1301.

    Google ScholarĀ 

  4. Gante, J. (1994) Peptidomimetics-tailored enzyme-inhibitors. Angew. Chem. Int. Ed. Engl. 33, 1699ā€“1720.

    ArticleĀ  Google ScholarĀ 

  5. Freidinger, R. M., Veber, D. F., Perlow, D. S., Brooks, J. R., and Saperstein, R. (1980) Bioactive conformation of luteinizing hormone-releasing hormone: evidence from a conformationally constrained analog. Science 210, 656ā€“658.

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Stachowiak, K., Khosla, M. C, Plucinska, K., Khairallah, P. A., and Bumpus, F. M. (1979) Synthesis of angiotensin II analogues by incorporating Ī²-homoisoleucine residues. J. Med. Chem. 22, 1128ā€“1132.

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Sarantakis, D., McKinley, W., and Jaunakais, I. (1976) Structure activity studies on somatostatin. Clin. Endocrinol. 5, 275Sā€“276S.

    ArticleĀ  Google ScholarĀ 

  8. Hagihara, M, Anthony, N. J., Stout, T. J., Clardy, J., and Schreiber, S. J. (1992) Vinylogous polypeptides: an alternative peptide backbone. J. Am. Chem. Soc. 114, 6568ā€“6570.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Simon, R. J., Kania, R. S., Zuckerman, R. N., Huebner, V. D., Jewell, D. A., Banville, S., Ng, S., Wang, L., Rosenberg, S., Marlowe, C. K., Spellmeyer, D. C, Tan, R., Frankel, A. D., Santi, D. V., Cohen, F. E., and Bartlett, P. A. (1992) Peptoids: a modular approach to drug discovery. Proc. Natl. Acad. Sci. USA 89, 9367ā€“9371.

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Smith, A. B., III, Keenan, T. P., Holcomb, R. C., Sprengeler, P. A., Guzman, M. C., Wood, J. L., Carroll, P. J., and Hirschmann, R. (1992) Design, synthesis, and crystal structure of a pyrrolinone-based peptidomimetic possesing the conformation of a Ī²-strand: potential application to the design of novel inhibitors of proteolytic enzymes. J. Am. Chem. Soc. 114, 10,672ā€“10,674.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Cho, C. Y., Moran, E. J., Cherry, S. R., Stephans, J. C., Fodor, S. P. A., Adams, C. L., Sundaaram, A., Jacobs, J. W., and Schultz, P. G. (1993) An unnatural biopolymer. Science 261, 1303ā€“1305.

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Liskamp, R. M. J. (1994) Opportunities for new chemical libraries: unnatural biopolymers and diversomers. Angew. Chem. Int. Ed. Engl. 33, 633ā€“636.

    ArticleĀ  Google ScholarĀ 

  13. Burgess, K., Linthicum, D. S., and Shin, H. (1995) Solid-phase syntheses of unnatural biopolymers containing repeating urea units. Angew. Chem. Int. Ed. Engl. 34, 907ā€“909.

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Han, H. and Janda, K. D. (1996) Azatides: solution and liquid phase syntheses of a new peptidomimetic. J. Am. Chem. Soc. 119, 2539ā€“2544.

    ArticleĀ  Google ScholarĀ 

  15. Dutta, A. S., and Morley, J. S. (1975) Polypeptides. Part XIII. Preparation of Ī±-aza-aminoacid (cabazic acid) derivatives and intermediates for the preparation of Ī±-aza-peptides. J. Chem. Soc. Perkin Trans. 1, 1712.

    ArticleĀ  Google ScholarĀ 

  16. Biel, J. H., Drukker, A. E., Mitchell, T. F., Sprengeler, E. P., Nuhfer, P. A., Conway, A. C, and Horita, A. (1959) Central stimulants. Chemistry and structure-activity relationships of aralkyl hydrazines. J. Am. Chem. Soc. 81, 2805ā€“2813.

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Efimov, V. A., Kalinkina, A. L., and Chakhmakhcheva, O. G. (1993) Dipentafluorophenyl carbonate-a reagent for the synthesis of oligonucleotides and their conjugates. Nucleic Acids Res. 21, 5337ā€“5344.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Magrath, J. and Abeles, R. H. (1992) Cysteine protease inhibition by azapeptide esters. J. Med. Chem. 35, 4279ā€“4283.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Still, W.C., Kahn, M., and Mitra, A. (1978) Rapid chromatographic technique for preparative separation with modern resolution. J. Org. Chem. 43, 2923ā€“2925.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Geckeler, K. E. (1995) Soluble polymer supports for liquid-phase synthesis, in Advances in Polymer Science, vol. 121 (Abe, A., et al., ed.), Springer-Verlag, Berlin, p. 31.

    Google ScholarĀ 

  21. Han, H., Wolfe, M. M., Brenner, S., and Janda, K. D. (1995) Liquid-phase combinatorial synthesis. Proc. Natl. Acad. Sci. USA 92, 6419ā€“6423.

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Meo, T., Gansch, C, Inan, R., Hollt, V., Weber, E., Herz, A., and Riethmuller, G. (1983) Monoclonal antibody to the message sequence Tyr-Gly-Gly-Phe of opioid peptides exhibits the specificity requirements of mammalian opioid receptors. Proc. Natl. Acad. Sci. USA 80, 4084ā€“4089.

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Kaiser, E., Colescott, R. L., Bossinger, C. D., and Cook, P. I. (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal. Biochem. 34, 595ā€“598.

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Hunt D. F., Yates III, J. R., Shabanowitz, J., Winston, S., and Hauser, C. R. (1986) Protein sequencing by tandem mass spectrmetry. Proc. Natl. Acad. Sci. USA 83, 6233ā€“6237.

    ArticleĀ  CASĀ  Google ScholarĀ 

  25. Garner, B., Nakanishi, H., and Kahn, M. (1993) Conformational constrained nonpeptide Ī²-turn mimetics of enkephalin. Tetrahedron 49, 3433ā€“3448.

    ArticleĀ  Google ScholarĀ 

  26. Lowe, G. H. and Bart, S. K. (1978) Energy conformation study of met-enkephalin and its D-Ala analogue and their resemblance to rigid opiates. Proc. Natl. Acad. Sci. USA 75, 7ā€“11.

    ArticleĀ  Google ScholarĀ 

  27. Manavalan, P. and Momany, F. A. (1981) Conformational energy calculations on enkephalins and enkephalin analogs. Classification of conformations to different configurational types. Int. J. Pept. Protein Res. 18, 256ā€“275.

    ArticleĀ  CASĀ  Google ScholarĀ 

  28. Smith, G. D., and Griffin, J. F. (1978) Conformation of [Leua] Enkephalin from X-ray diffraction: features important for recognition at opiate receptor. Science 199, 1214ā€“1216.

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Ishida, T., Kenmotsu, M., Mino, Y., Inoue, M., Fujiwara, T., Tomita, K., Kimura, T., and Sakakibara, S. (1984) X-ray diffraction studies of enkephalins. Biochem. J. 218, 677ā€“689.

    CASĀ  Google ScholarĀ 

  30. Olivato, P. R. and Guerrero, S. A. (1983) Conformational studies of Ī±-substituted carbonyl compounds. Part 1. Conformation and electronic interaction in hetero-substituted acetones by infrared and ultraviolet spectroscopy. J. Chem. Soc, Perkin Trans. II, 1053ā€“1058.

    Google ScholarĀ 

  31. Graybill, T. L., Ross, J. T., Gauvin, B. R., Gregory, J. S., Harris, A. L., Ator, M. A., Rinker, J. M., and Dolle, R. E. (1992) Structure-activity relationships of the pyridazinone series of 5-lipoxygenase inhibitors. Bioorganic Med. Chem. Lett. 2, 1357ā€“1360.

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1999 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Han, H., Yoon, J., Janda, K.D. (1999). Azatides as Peptidomimetics: Solution and Liquid Phase Syntheses . In: Kazmierski, W.M. (eds) Peptidomimetics Protocols. Methods in Molecular Medicineā„¢, vol 23. Humana Press. https://doi.org/10.1385/0-89603-517-4:87

Download citation

  • DOI: https://doi.org/10.1385/0-89603-517-4:87

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-517-1

  • Online ISBN: 978-1-59259-605-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics