Skip to main content

Applications of Tissue Microdissection in Molecular Pathology

Principles and Guidelines

  • Protocol
Tumor Marker Protocols

Abstract

The study of human disease processes is an evolving field that is closely Intertwined with the development of technology. The advent of the polymerase cham reaction (PCR) allows investigators new opportunities for genetic analysis of pathological processes DNA and RNA analysis of small numbers of cells is now possible, allowing for study of specific defined cell populations or lesions. For example, application of tissue microdrssection and PCR technology to human tumor samples represents a powerful method to study genetic alterations in cancer cells as they exist in vivo. The study of human tumor samples is complex, and can in fact be hampered by the exquisite sensitivity of PCR. A typical histologic field of cancer contains inflammatory, stromal, premalignant, and normal epithehal cells in addition to invasive tumor cells. PCR amplification of DNA or RNA from these “contaminating cells” interferes with accurate determination of tumor-specific genetic changes. Tissue microdissection provides a method to procure specific cell types from a human tumor sample, e.g., a pure population of tumor cells can be analyzed without interference from neighboring nontumor cells. Additionally, investrgators can recover select subpopulations of cells such as premalignant lesions that cannot be studied in bulk tissue specimens. Our laboratory and others have developed and applied various microdissection approaches to human tissue samples. The focus of the current chapter is to review a detailed protocol of the technique which our laboratory has employed. Specific applications of the technique applied to basic research studies as well as applied surgical pathology studies are described. The chapter finishes with a section on a new laser capture microdissection system developed at the National Cancer Institute (NCI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fearon E, Hamilton S R, and Vogelstein B. (1987) Clonal analysis of human colorectal tumors. Science 238, 193–197.

    Article  PubMed  CAS  Google Scholar 

  2. Radford D., Fair K, Thompson A M, Ritter J. H, Holt M, Steinbrueck T, Wallace M, Wells S A., and Donnis-Keller H. R. (1993) Allelic loss on chromosome 17 in ductal carcinoma in situ of the breast. Cancer Res 53, 2947–2949

    PubMed  CAS  Google Scholar 

  3. Shibata D., Hawes D, Li Z-H, Hernandez A, Spruck C H, and Nichols P. W (1992) Specific genetic analysis of microscopic tissue after selective ultraviolet radiation, fractionation and polymerase chain reaction Am J. Pathol 141, 539–543

    PubMed  CAS  Google Scholar 

  4. Emmert-Buck M., Roth M J, Zhuang Z, Campo E, Rozhin J, Sloane B F, Liotta L. A, and Stetler-Stevenson W. G (1994) Increased gelatinase A and cathepsin B activity in invasive tumor regions of human colon cancer samples Am J Pathol 145, 1285–1290.

    PubMed  CAS  Google Scholar 

  5. Zhuang Z, Berttheau P, Emmert-Buck M R, Liotta L A, Gnarra J, Lmehan W M, and Lubensky I A (1995) A microdissection technique for archival DNA analysis of specific cell populations in lesions less than one millimeter in size Am J Pathol 146, 620–625

    PubMed  CAS  Google Scholar 

  6. Noguchi S, Motomura K, Inaji H., Imaoka S, and Koyama H (1994) Clonal analysis of predominantly intraductal carcinoma and precancerous lesions of the breast by means of polymerase chain reactron. Cancer Res 54, 1849–1853

    PubMed  CAS  Google Scholar 

  7. Park T.-W, Felix J. C, and Wright T. C (1995) X Chromosome mactivation and microsatellite instability in early and advanced bilateral ovarian carcmomas Cancer Res 55, 4793–4796

    PubMed  CAS  Google Scholar 

  8. Vocke C, Pozzatti R O., Bostwick D. G., Florence C. D., Jennings S B, Strup S. E, Duray P. H., Liotta L A, Emmert-Buck M. R., and Linehan W. M (1996) Analysis of 99 microdissected prostate carcinomas reveals high frequency of allelic loss on chromosome 8p 12–21. Cancer Res 56, 241l–2416

    Google Scholar 

  9. Bova G, Carter B. S, Bussemakers J G, Emi M, Fujiwara Y, Kyprianou N., Jacobs S C, Robinson J. C., Epstein J I., Walsh P. C, and Isaacs W. B. (1993) Homozygous deletion and frequent loss of chromosome 8p22 loci in human prostate cancer Cancer Res. 53, 3869–3873

    PubMed  CAS  Google Scholar 

  10. Cunningham C, Dunlop M G., Wyllie A. H, and Bird C C. (1992) Deletion mapping in colorectal cancer of a putative tumor suppressor gene in 8922-21.3 Oncogene 8, 1391–1396

    Google Scholar 

  11. Devilee P., van Vhet M, van Sloun P, Dijkshoorn N K, Hermans J, Pearson P. L., and Cornehsse C. J (1991) Allelotype of human breast carcinoma· a second major site for loss of heterozygosity is on chromosome 6q Oncogene 6, 1705–1711

    PubMed  CAS  Google Scholar 

  12. Emi M., Fujiwara Y, Nakajima T., Tsuchiya F., Tsuda H, Hirohashi S, Maeda Y., Tsurute K., Miyaki M, and Nakamura Y (1992) Frequent loss of heterozygosity for loci on chromosome 8p in hepatocellular carcinoma, colorectal cancer, and lung cancer Cancer Res 52, 5368–5372

    PubMed  CAS  Google Scholar 

  13. Fujiwara Y., Emi M., Ohata H, Kato Y, Nakajima T., Mori T., and Nakamura Y. (1993) Evidence for the presence of two tumor suppressor genes on chromosome 8p for colorectal carcinoma. Cancer Res 53, 1172–1174

    PubMed  CAS  Google Scholar 

  14. MacGrogan D, Levy A, Bostwick D G, Wagner M, Wells D., and Bookstein R. (1994) Loss of chromosome arm 8p loci in prostate cancer mapping by quantitative allelic imbalance Genes Chromosomes Cancer 10, 15l–159

    Article  Google Scholar 

  15. Trapman J, Sleddens H F. B M., van der Welden M. M., Dinjens W. N. M., Konig J. J, Schroder F. H, Faber P W, and Bosman F. T. (1994) Loss of heterozygosity of chromosome 8 microsatellite loci implicates a candidate tumor suppressor gene between the loci D8S87 and D8S133 in human prostate cancer Cancer Res. 54, 606l–6064

    Google Scholar 

  16. Emmert-Buck M., Vocke C D, Pozzatti R O, Duray P H, Jennings S B, Florence C D., Zhuang Z, Bostwick D. G, Liotta L. A, and Linehan W M (1995) Allelic loss on chromosome 8p 12–21 in microdissected prostatic intraepithelial neoplasia (PIN) Cancer Res 55, 2959–2962

    PubMed  CAS  Google Scholar 

  17. Bostwick D and Brawer M. K (1987) Prostatic intra-epithelial neoplasia and early invasion in prostate cancer Cancer 59, 788–794.

    Article  PubMed  CAS  Google Scholar 

  18. Chuaqui R., Englert C R., Strup S, Vocke C. D., Zhuang Z, Duray P H, Bostwick D G, Linehan W M, Liotta L A, and Emmert-Buck M. R. (1997) PB39. identification of a novel gene upregulated in clinically aggressive human prostate cancer. Urology 50, 302–307

    Article  PubMed  CAS  Google Scholar 

  19. Liang P., Averboukh L., Keyomarsi K, Sager R, and Pardee A. B (1992) Differential display and cloning of messenger RNAs from human breast cancer versus mammary epithelial cells Cancer Res 52, 6966–6968

    PubMed  CAS  Google Scholar 

  20. Mok S, Wong K K, Chan R K W, Lau C. C., Tsao S. W, Knapp R C., and Berkovitz R. S (1994) Molecular cloning of differentially expressed genes in human epithelial ovarian cancer. Gynecol Oncol. 52, 247–252

    Article  PubMed  CAS  Google Scholar 

  21. Kocher O., Cheresh P, Brown L. F., and Lee S. W. (1995) Identification of a novel gene, selectively up-regulated in human carcinomas, using the differential display technique Clin Cancer Res 1, 1209–1215

    PubMed  CAS  Google Scholar 

  22. Stone B. and Wharton W (1994) Targeted RNA fingerprinting· the cloning of differentially-expressed cDNA fragments enriched for members of the zinc finger gene family Nucleic Acids Res 22, 2612–2618.

    Article  PubMed  CAS  Google Scholar 

  23. Watson M and Fleming T P (1994) Isolation of differentially expressed tags from human breast cancer. Cancer Res 54, 4598–4602

    PubMed  CAS  Google Scholar 

  24. Knzman D, Chuaqui R F, Meltzer P. S., Trent J M, Duray P. H., Linehan W M, Liotta L. A, and Emmert-Buck M. R. (1996) Construction of a representative cDNA library from prostatic intraepithelial neoplasia Cancer Res 56(23), 5380–5383

    Google Scholar 

  25. Okayama H and Berg P (1982) High-efficiency cloning of full-length cDNA Mol Cell Biol 2, 16l–170

    Google Scholar 

  26. Gubler U and Hoffman B J (1983) A simple and very efficient method for generating cDNA libraries Gene 25, 263–269

    Article  PubMed  CAS  Google Scholar 

  27. Zhuang Z, Merino M. J, Chuaqui R, Liotta L A., and Emmett-Buck M R. (1995) Identical allelic loss on chromosome 1 lq13 in microdissected in situ and invasive human breast cancer Cancer Res 55, 467–471

    PubMed  CAS  Google Scholar 

  28. Page D., DuPont W D, Rogers L W, and Rados M S. (1985) Atypical hyperplastic lesions of the female breast A long term follow up study Cancer 55, 2698–2708

    Article  PubMed  CAS  Google Scholar 

  29. Page D and DuPont W D (1990) Anatomical markers of human premalignancy and risk of breast cancer Cancer 66, 1326–1335

    Article  PubMed  CAS  Google Scholar 

  30. Chuaqui R, Zhuang Z., Emmert-Buck M.R., Liotta L A, and Merino M J. (1997) Analysis of loss of heterozygosity (LOH) on chromosome 1l q 13 in atypical ductal hyperplasia and in situ carcinoma of the breast. Am J Pathol 150(l), 297–303.

    PubMed  CAS  Google Scholar 

  31. Chuaqui R., Vargas M. P, Castiglioni T, Eisner B, Zhuang Z, Emmert-Buck M R., and Merino M. J. (1996) Detection of heterozygosity loss in microdissected fine needle aspiration specimens of breast carcinoma. Acta Cytologica 40, 642–648

    Article  PubMed  CAS  Google Scholar 

  32. Lubensky I., Gnarra J, Bertheau P, Warther M, Linehan W M., and Zhuang Z (1997) Allelic deletions of the VHL gene detected in multiple microscopic clear cell renal lesions in von Hippel-Lindau disease patients Am J Pathol 149(6), 2089–2094.

    Google Scholar 

  33. Zhuang Z, Emmert-Buck M. R, Roth M J, Gnarra J, Linehan W. M, Liotta L A, and Lubensky I A (1996) Von Hippel-Lmdau disease gene deletion detected in microdissected sporadic human colon carcinoma specimens Hum Pathol 27, 152–156.

    Article  PubMed  CAS  Google Scholar 

  34. Lubensky I., Debelenko L V, Zhuang Z., Emmert-Buck M R, Dong Q, Chandrasekharappa S, Guru S, Mamckam P, Olufemi E-S, Marx S J, Spiegel A. M, Collins F. S, and Liotta L. A (1996) Tissue specific patterns of 1 lq13 LOH in multiple parathyroid, pancreatic, and duodenal tumors from individual MEN1 patients. Cancer Res 56(22), 5272–5278

    PubMed  CAS  Google Scholar 

  35. Debelenko L. V., Emmert-Buck M R., Zhuang Z, Epshteyn E, Moskaluk C, Jensen R T, Liotta L A., and Lubensky I. A (1997) The MEN1 gene locus is involved in the pathogenesis of gastric ECL-cell carcinolds in MENl-ZES patients Gastroenterology 113, 773–781

    Article  PubMed  CAS  Google Scholar 

  36. Zhuang Z, Vortmeyer A O., Mark E J., Odze R, Emmert-Buck M R, Merino M J, Moon H, Lrotta L A, and Duray P H (1996) Barrett’s esophagus: metaplastic cells with loss of heterozygosity at the APC gene locus are clonal precursors to invasive adenocarcinoma. Cancer Res 56, 196l–1964

    Google Scholar 

  37. Wiltshue R, Duray P H, Bntner M L, Visakorpi T, Meltzer P. S, Tuthill R J, Liotta L A, and Trent J M (1995) Direct visualization of the clonal progression of primary cutaneous melanoma application of tissue microdissection and comparative genomic hybridization Cancer Res 55, 3954–3957

    Google Scholar 

  38. Emmert-Buck M. R., Chuaqui R., Zhuang Z, Nogales F, Liotta L. A., and Merino M J. (1997) Molecular analysis of concomitant uterine and ovarian endometrioid tumors. Int J Gynecol Pathol 16(2), 143–148

    Article  PubMed  CAS  Google Scholar 

  39. Chang Y, Cesarman E, Pessin M S, Lee F, Culpepper J, Knowles D M, and Moore P. S (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma Science 266(5192), 1865–1869

    Article  PubMed  CAS  Google Scholar 

  40. Nowak R. (1995) Entering the postgenome era Science 270, 368–371

    Article  PubMed  CAS  Google Scholar 

  41. Abbott A (1996) DNA chips intensify the sequence search Nature 379, 392

    Article  PubMed  CAS  Google Scholar 

  42. Schena M., Shalon D, Davis R. W, and Brown P. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray Science 270, 467–469

    Article  PubMed  CAS  Google Scholar 

  43. Velculescu V, Zhang L., Vogelstem B, and Kinzler K (1995) Serial analysis of gene expression Science 270, 484–487

    Article  PubMed  CAS  Google Scholar 

  44. Emmett-Buck M R, Bonner R. F, Smith P D, Chuaqui R, Goldstein S R, Zhuang Z, Weiss R. A., and Liotta L. A (1996) Laser capture microdissection (LCM), Science 274, 998–1001

    Article  Google Scholar 

  45. Bonner R F, Emmert-Buck M R, Cole K. A., Pohida T, Chuaqui R. F., Goldstein S R., and Liotta L A Laser capture microdissection: molecular analysis of tissue Science, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Humana Press Inc, Totowa, NJ

About this protocol

Cite this protocol

Emmert-Buck, M.R. et al. (1998). Applications of Tissue Microdissection in Molecular Pathology. In: Hanausek, M., Walaszek, Z. (eds) Tumor Marker Protocols. Methods in Molecular Medicine™, vol 14. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-380-5:269

Download citation

  • DOI: https://doi.org/10.1385/0-89603-380-5:269

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-380-1

  • Online ISBN: 978-1-59259-598-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics