Skip to main content

Multiple and Combinatorial Peptide Synthesis

Chemical Development and Biological Applications

  • Protocol
Peptide Analysis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 36))

  • 1018 Accesses

Abstract

The rapid synthesis of peptides to support both exploratory peptide lead discovery and analog structure-activity studies has been the subject of intense research and technology development over the past few years (14). Two general approaches have been advanced that may be classified as follows: (1) multiple peptide synthesis (MPS) and (2) combinatorial peptide synthesis (CPS). The peptide chemistry aspect of such multiple or combinatorial approaches typically integrates experimental methodologies that have been well established to date for the preparation of single peptides by solid-phase techniques. However, there exist novel and, in some cases, proprietary chemistry methods and/or materials that are essential to each of these approaches (vide infra). A common objective of the multiple or combinatorial approaches is to expedite the process and quantitative scope of synthetic peptide production in a manner that interfaces well with biological testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Spiral binding cover Book
USD 169.99
Price excludes VAT (USA)
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pavia, M. R., Sawyer, T. K., and Moos, W. H. (1993) The generation of molecular diversity. Bioorg. Med. Chem. Lett. 3, 387–396.

    Article  CAS  Google Scholar 

  2. Pavia, M. R., Sawyer, T. K., and Moos, W. H. (eds.) (1993) Bioorg. Med. Chem. Lett. 3, Symposium-in-Print on “The Generation of Molecular Diversity.”

    Google Scholar 

  3. Moos, W. H., Green, G. D, and Pavia, M. R. (1993) Recent advances in the generation of molecular diversity. Ann. Rep. Med. Chem 28, 315–324.

    Article  CAS  Google Scholar 

  4. Dower, W. J. and Fodor, S. P. A. (1991) The search for molecular diversity (II): recombinant and synthetic randomized peptide libraries. Ann. Rep. Med. Chem. 26, 271–280.

    Article  CAS  Google Scholar 

  5. Jung, G. and Beck-Sickinger, A G (1992) Multiple peptide synthesis methods and their applications. Angew. Chem. Int. Ed. Engl. 31, 367–386.

    Article  Google Scholar 

  6. Houghten, R. A. (1993) Peptide libraries. criteria and trends. Trends Genetics 9, 235–239.

    Article  CAS  Google Scholar 

  7. Zuckermann, R. N (1993) The chemical synthesis of peptidomimetic libraries. Curr. Opm. Struct. Biol. 3, 580–584.

    Article  CAS  Google Scholar 

  8. Geysen, H. M., Meloen, R H., and Barteling, S. J. (1984) Use of a peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc. Natl. Acad. Sci USA 81, 3998–4002.

    Article  PubMed  CAS  Google Scholar 

  9. Maeji, N. J., Bray, A. M., Valerio, R. M., Seldom M. A., Wang, J.-X., and Geysen, H. M. (1991) Systematic screening for bioactive peptides. Pept. Res. 4, 142–146.

    PubMed  CAS  Google Scholar 

  10. Bray, A. M., Maeji, N. J., and Geysen, H. M. (1990) The simultaneous multiple production of solution phase peptides: assessment of the Geysen method of simultaneous peptide synthesis. Tet. Lett. 31, 5811–5814.

    Article  CAS  Google Scholar 

  11. Bray, A. M., Maeji, N. J., Valerio, R. M., Campbell, R. A., and Geysen, H. M. (1991) Direct cleavage of peptides from a solid support into aqueous buffer. Application in simultaneous multiple peptide synthesis. J. Org. Chem. 56, 6659–6666.

    Article  CAS  Google Scholar 

  12. Valerio, R. M., Benstead, M., Bray, A. M., Campbell, R. A., and Maeji, N. J. (1991) Synthesis of peptide analogues using the multipin peptide synthesis method. Analyt. Biochem. 197, 168–177.

    Article  PubMed  CAS  Google Scholar 

  13. Bray, A. M., Maeji, N. J., Jhingran, A. G., and Valerio, R. M. (1991) Gas phase cleavage of peptides from a solid support with ammonia vapor. Application in simultaneous multiple peptide synthesis. Tet. Lett. 32, 6163–6166

    Article  CAS  Google Scholar 

  14. Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82, 5131–5135.

    Article  PubMed  CAS  Google Scholar 

  15. Houghten, R. A., DeGraw, S. T., Bray, M. K., Hoffman, S. R., and Frizzell, N. D. (1986) Simultaneous multiple peptide synthesis: the rapid preparation of large numbers of discrete peptides for biological, immunological and methodological studies. BioTechniques 4, 522–528.

    Article  CAS  Google Scholar 

  16. Houghten, R. A., Bray, M. K., Degraw, S. T., and Kirby, J. (1986) Simplified procedure for carrying out simultaneous multiple hydrogen fluoride cleavages of protected peptide resins. Int. J. Pept. Prot. Res. 27, 675–680.

    Google Scholar 

  17. Beck-Sickinger, A. G., Dürr, H., and Jung, G. (1991) Semi-automated T-bag peptide synthesis using 9-fluorenylmethoxycarbonyl strategy and benzotriazo-l-yl-tetramethyluronium tetrafluoroborate activation Pept. Res. 4, 88–94.

    PubMed  CAS  Google Scholar 

  18. Houghten, R. A., Pinalla, C., Blondelle, S. E., Appel, J. R., Dooley, C.T., and Cuervo, J. H. (1991) Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354, 84–86.

    Article  PubMed  CAS  Google Scholar 

  19. Blondelle, S. E., Takahashi, E., and Houghten, R. A. (1993) Development of new antimicrobial peptides using synthetic peptide combinatorial libraries containing unnatural amino acids. 13th Am. Peptide Symp., Edmonton, Canada, Abst. P900.

    Google Scholar 

  20. Cuervo, J. H., Nguyen, D H., and Houghten, R. A. (1993) Novel thrombin inhibitors determined through the use of synthetic peptide combinatorial libraries. 13th Am. Peptide Symp., Edmonton, Canada, Abst. P901.

    Google Scholar 

  21. Dooley, C. T. and Houghten, R. A. (1993) New, potent N-acetylated L-and D-amino acid opioid peptides. 13th Am. Peptide Symp., Edmonton, Canada, Abst. P903.

    Google Scholar 

  22. Furka, Á., Sebestyén, F., Asgedom, M., and Dibó, G. (1988) Cornucopia of peptides by synthesis. Fourteenth Int. Cong. Biochem., vol. 5, Prague, Czechoslovakia, Abst. FR-013, p. 47.

    Google Scholar 

  23. Furka, Á., Sebestyén, F., Asgedom, M., and Dibó, G. (1988) More peptides by less labour. Tenth Int. Symp. Med. Chem., Budapest, Hungary, Abst P-168, p. 288.

    Google Scholar 

  24. Furka, Á., Sebestyén, F., Asgedom, M., and Dibó, G. (1991) General method for rapid synthesis of multi-component peptide mixtures. Int. J. Pept. Prof. Res. 37, 487–493.

    Article  CAS  Google Scholar 

  25. Sebestyén, F., Dibó, G., Kovács, A., and Furka, Á. (1993) Chemical synthesis of peptide libraries. Bioorg. Med. Chem. Lett. 3, 413–418.

    Article  Google Scholar 

  26. Tatemoto K., Mann M. J., and Shimizu, M. (1992) Synthesis of receptor antagonists of neuropeptide-Y. Proc. Natl. Acad. Sci. USA 89, 1174–1178.

    Article  PubMed  CAS  Google Scholar 

  27. Darlak, K, Romanovskis, P., and Spatola, A. F. (1993) Cyclic peptide libraries. Proceedings of the 13th Am Peptide Symp. (Hodges, R. and Smith, J., eds), Escom, B. V., Leiden, Netherlands, in press.

    Google Scholar 

  28. Lam, K. S., Salmon, S. E., Hersh, E. M., Hruby, V. J., Kazmierski, W. M., and Knapp, R. J. (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354, 82–84.

    Article  PubMed  CAS  Google Scholar 

  29. Lam, K. S., Hruby, V. J., Lebl, M., Knapp, R. J., Kazmierski, W. M., Hersh, E. M., and Salmon, S. E. (1993) The chemical synthesis of large random peptide libraries and their use for the discovery of ligands for macromolecular acceptors. Bioorg. Med. Chem. Lett. 3, 419–424.

    Article  CAS  Google Scholar 

  30. Owens, R. A., Gesellchen, P. D., Houchins, B. J., and DiMarchi, R. D. (1991) The rapid identification of HIV protease inhibitors through the synthesis and screening of defined peptide mixtures. Biochem. Biophys. Res. Commun. 181, 402–408.

    Article  PubMed  CAS  Google Scholar 

  31. Kerr, J. M., Banville, S. and Zuckermann, R. N. (1993) Identification of antibody mimotopes containing non-natural amino acids by recombinant and synthetic peptide library affinity selection methods. Bioorg. Med. Chem. Lett. 3, 463–468.

    Article  CAS  Google Scholar 

  32. Gutte, B. and Merrifield, R. B. (1971) The synthesis of ribonuclease A. J. Biol Chem. 246, 1922–1941.

    PubMed  CAS  Google Scholar 

  33. Sarantakis, D., Teichman, J., Lien, E. L., and Fenichel, R. L. (1976) A novel cyclic undecapeptide, WY-40, 770, with prolonged growth hormone release Inhibiting activity. Biochem. Biophys. Res. Commun. 73, 336–342.

    Article  PubMed  CAS  Google Scholar 

  34. Konig, W. and Geiger, R. (1970) Eine methode zur synthese von peptiden: Activierung der carbozygruppe mit dicyclohexylcarbodümed unter zusatz von l-hydroxy-benzotriazolen. Chem. Ber. 103, 788–798

    Article  PubMed  CAS  Google Scholar 

  35. Kaiser, E., Colescott, R. L., Bossinger, D., and Cook, P. I. (1970) Color test for detection of free terminal amino groups m the solid-phase synthesis of peptides Analyt. Biochem. 34, 595–598.

    Article  PubMed  CAS  Google Scholar 

  36. Volkmer-Engert, R., Höhne, W., Stigler, R., and Schneider-Mergener, J. (1993) Synthesis of homologous peptide-epitope mixtures on a single resin support and characterization of antibody binding by CE, HPPC, HPLC, and LD-TOF mass spectrometry. 13th Am. Peptide Symp., Edmonton, Canada, Abs. P42.

    Google Scholar 

  37. Andrews, P. C., Boyd, J., Loo, R. O., Zhao, R., Zhu, C Q., Grant, K., and Williams, S. (1993) Synthesis of uniform peptide libraries and methods for physico-chemical analysis. 7th Symp. Protein Sot., San Diego, CA, Abst. 363M.

    Google Scholar 

  38. Andrews P. C., Boyd, J., Loo, R. O., Zhao, R., Zhu, Q., Grant, K., and Williams, S. (1993) Synthesis of uniform peptide libraries and methods for physico-chemical analysis, in Techniques in Protein Chemistry, V (Crabbe, J., ed.), pp. 485–492.

    Google Scholar 

  39. Tjoeng, F. S., Towery, D. S., Bulock, J. W., Whipple, D. E., Fok, K. F., Willlams, M. H., Zupec, M. E., and Adams, S. P. (1990) Multiple peptide synthesis using a single support. Int. J. Pept. Prot. Res. 35, 141–146.

    Article  CAS  Google Scholar 

  40. Fodor, S. P. A., Read, J L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773.

    Article  PubMed  CAS  Google Scholar 

  41. Frank, R. and Dóring, R. (1988) Simultaneous multiple peptide synthesis under continuous flow conditions on cellulose paper discs as a segmental solid support. Tetrahedron 44, 603l–6040.

    Article  Google Scholar 

  42. Eichler, J., Beyermann, M, and Bienert, M. (1989) Application of cellulose paper as support material in simultaneous peptide synthesis. Collect Czech. Chem. Commun. 54, 1746–1752.

    Article  CAS  Google Scholar 

  43. Frank, R. (1993) Strategies and techniques in simultaneous solid phase synthesis based on the segmentation of membrane type supports. Bioorg. Med. Chem. Lett. 3, 425–430.

    Article  CAS  Google Scholar 

  44. Frank, R., Güler, S., Krause, S., and Lindenmaier, W. (1991) Facile and rapid “spot-synthesis” of large numbers of peptides on membrane sheets, in Peptides 1990 (Giralt, E. and Andreu, D., eds.), Escom, B. V., Leiden, Netherlands, pp. 151,152.

    Google Scholar 

  45. Eichler, J., Furkert, J., Bienert, M., Rohde, W., and Lebl, M. (1991) Multiple peptide synthesis on cotton carriers: elucidation and characterization of an antibody binding site of CRF, in Peptides 1990 (Giralt, E. and Andreu, D., eds.), Escom, B. V., Leiden, Netherlands, pp. 156,157.

    Google Scholar 

  46. Rinnovd, M., Jezek, J., Malon, P., and Lebl, M. (1993) Comparative multiple synthesis of fifty linear peptides: evaluation of cotton carrier vs. T bag-benzhydryl-amine resin. Pept Res. 6, 88–94.

    Google Scholar 

  47. Berg, R. H., Almdal, K., Pedersen, W., Holm, A., Tam, J. P., and Merrifield, R. B. (1990) A simple approach to rapid parallel synthesis of multiple peptide analogs, in Peptides· Chemistry, Structure and Biology (Rivier, J. E. and Marshall, G. R., eds.), Escom, B. V., Leiden, Netherlands, pp. 1036,1037.

    Google Scholar 

  48. Berg, R. H., Almdal, K., Pedersen, W., Holm, A., Tam, J P., and Merrifield, R. B (1989) Long-cham polystyrene-grafted polyethylene film matrix. a new support for solid-phase peptide synthesis. J. Am. Chem. Soc. 111, 8024–8026.

    Article  CAS  Google Scholar 

  49. Wolfe, H. R. and Wilk, R. R. (1989) The RaMPS® system: simplified peptide synthesis for life science researchers. Pept. Res. 2, 352–356.

    PubMed  CAS  Google Scholar 

  50. Schnorrenberg, G. and Gerhart, H. (1989) Fully automatic srmultaneous multiple peptide synthesis in micromolar scale—rapid synthesis of a series of peptides for screening in biological assays. Tetrahedron 45, 7759–7764.

    Article  CAS  Google Scholar 

  51. Schnorrenberg, G., Wiesmuller, K. H., Beck-Sickinger, A. G., Drechsel, H., and Jung, G. (1991) Rapid fully automatic SMPS for epitope mapping of influenza nucleoprotein, in Peptides 1990 (Giralt, E. and Andreu, D., eds.), Escom, B. V., Leaden, Netherlands, pp 202,203

    Google Scholar 

  52. Gausepohl, H., Boulin, C., Kraft, M., and Frank, R. W. (1992) Automated multiple peptide synthesis. Peptide Res. 5, 315–320.

    CAS  Google Scholar 

  53. Nokihara, K., Yamamoto, R., Hazama, M., Wakrzawa, O, and Nakamura, S. (1992) Design and applications of a novel simultaneous multiple peptide synthesizer, in Innovation and Perspectives in Solid Phase Synthesrs Peptides, Polypeptides and Oligonucleotides 1992 (Epton, R., ed.), Intercept, Andover, UK, pp. 445–448.

    Google Scholar 

  54. Groginsky, C. (1990) Independent simultaneous multiple peptide synthesis Am. Biotech. Lab. 8, 40–43.

    CAS  Google Scholar 

  55. Saneii, H. H., Shannon, J D, Miceli, R M., Fischer, H D., and Smith, C. W (1993) The peptide librarian. fully automated selection and synthesis of peptide libraries 13th Am Pepttde Symp., Edmonton, Canada, Abs P926

    Google Scholar 

  56. Hyde, C., Johnson, T., and Sheppard, R. (1993) A simple “no compromise” method for multiple peptide synthesis, in Peptides 1992 (Schneider, C.H., Eberle, A. N., eds), Escom, B. V., Leiden, Netherlands, pp 314,315.

    Google Scholar 

  57. Lebl, M., Stierandová, A., Eichler, J., Pátek, M., Pokorny, V., Jehnicka, J., Muddra, P., Zeneísek, K., and Kalousek, J. (1992) An automated multiple solid phase peptide synthesizer utilizing cotton as a carrier, in Innovation and Perspective Solid Phase Synthesis Peptides, Polypeptides and Oligonucleotides 1992 (Epton, R, ed.), Intercept Ltd, Andover, UK, pp. 25l–257

    Google Scholar 

  58. Krchnák, V. and Vágner, J. (1990) Color-monitored solid-phase multiple peptide synthesis under low-pressure continuous flow conditions Pept Res 3, 182–193.

    PubMed  Google Scholar 

  59. Zuckermann, R. N., Kerr, J. M., Siani, M. A., and Banville, S. (1992) Design, construction and application of a fully automated equimolar peptide mixture synthesizer. Int. J. Pept. Prot. Res. 40, 497–506.

    Article  CAS  Google Scholar 

  60. Zuckermann, R. N., Kerr, J. M., Siani, M. A., Banville, S. and Santi, D. (1992) Identification of highest-affinity ligands by affinity selection from equimolar peptide mixtures generated by robotic synthesis. Proc. Natl. Acad Sci USA 89, 4505–4509.

    Article  PubMed  CAS  Google Scholar 

  61. Neimark, J. and Briand, J.-P. (1993) Development of a fully automated multichannel peptide synthesizer with integrated TFA cleavage capability. Pept. Res. 6, 219–228.

    PubMed  CAS  Google Scholar 

  62. Pinilla, C., Appel, J. R., Blanc, P., and Houghten, R A. (1992) Rapid identification of ligands using positional scanning synthetic peptide combinatorial libraries. BioTechniques 13, 901–905.

    PubMed  CAS  Google Scholar 

  63. Parmley, S. F. and Smith, G. P. (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73, 305–318

    Article  PubMed  CAS  Google Scholar 

  64. Simon, R. J., Kania, R. S., Zuckermann, R. N., Huebner, V D., Jewell, D. A., Banville, S., Ng, S, Wang, L., Rosenberg, S., Marlowe, C.K., Spellmeyer, D., Tan, R., Frankel, A. D., Santi, D V., Cohen, F. E., and Bartlett, P. A. (1992) Peptoids: a modular approach to drug discovery. Proc. Nat1Acad. Sci. USA 89, 9367–9371

    Article  CAS  Google Scholar 

  65. Brenner, S. and Lerner, R. A. (1992) Encoded combinatorial chemistry Proc. Natl. Acad. Sci. USA 89, 5381–5383.

    Article  PubMed  CAS  Google Scholar 

  66. Kerr, J. M., Banville, S and Zuckermann, R. N. (1993) Encoded combinatorial peptide libraries containing non-natural amino acids. J Am. Chem Soc. 115, 2529–2531

    Article  CAS  Google Scholar 

  67. Nikolaiev, V., Stierandová, A., Krchnák, V., Seligmann, B., Lam, S., Salmon, S E, and Lebl, M (1993) Peptide-encoding for structure determination of non-sequenceable polymers within libraries synthesized and tested on solid-phase supports. Pept. Res. 6, 161–170.

    PubMed  CAS  Google Scholar 

  68. Geysen, H. M., Barteling, S. J., and Meloen, R. H. (1985) Small peptides induce antibodies with a sequence and structural requirement for binding antigen comparable to antibodies raised against the native protein. Proc. Natl. Acad. Sci USA 82, 178–182.

    Article  PubMed  CAS  Google Scholar 

  69. Geysen, M. H., Rodda, S. M., and Mason, T.J. (1984) A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol. Immunol. 23, 709–715.

    Article  Google Scholar 

  70. Berman, J., Green, M., Sugg, E., Anderegg, R., Millington, D S., Norwood, D L, McGeehan, J., and Wiseman, J. (1992) Rapid optimization of enzyme substrates using defined substrate mixtures. J. Chem. 267, 1434–1437

    CAS  Google Scholar 

  71. Ruggeri, Z. M., Houghten, R. A., Russell, S R, and Zimmerman, T S(1986) Inhibition of platelet function with synthetic peptides designed to be high affinity antagonists of fibrinogen binding to platelets. Proc. Nat1 Acad Sci USA 83, 5708–5712.

    Article  CAS  Google Scholar 

  72. Cuervo, J. H., Rodriguez, B, and Houghten, R. A. (1990) Synthesis and antimicrobial activity of magainin alanine substitution analogs, in Peptides: Chemistry, Structure and Biology (Rivier, J. E. and Marshall, G. R., eds.), Escom, B. V., Leiden, Netherlands, pp. 124–126.

    Google Scholar 

  73. Beck-Sickinger, A. G., Gaida, W., Schnorrenberg, G, Lang, R., and Jung, G (1990) Neuropeptlde Y: identification of the binding site. Inc. J Peptide Protein Res. 36, 522–530.

    Article  CAS  Google Scholar 

  74. Spellmeyer, D C, Brown, S., Stauber, G., Geysen, H. M., and Valerio, R. (1993) Endothelin receptor ligands. Replacement net approach to SAR determination of potent hexapeptides. Bioorg. Med. Chem. Lett. 3, 519–524.

    Article  CAS  Google Scholar 

  75. Wang, J., DiPasquale, A. J., Bray, A. M., Maiji, N J., and Geysen, H. M. (1993) Study of stereo-requirements of substance P binding to NK1 receptors using analogues with systematic D-amino acid replacements. Bioorg. Med. Chem. Lett. 3, 451–456.

    Article  Google Scholar 

  76. Rathjen, D. A. and Aston, R. (1993) Selective enhancement of tumour necrosis factor activity: mapping regions with monoclonal antibodies. Bioorg. Med. Chem. Lett. 3, 457–462.

    Article  CAS  Google Scholar 

  77. Mutch, D. A., Rodda, S. J., Benstead, M., Valerio, R. M., and Geysen, H. M. (1991) Effects of end groups on the stimulatory capacity of minimal length T cell determinant peptides, Pept. Res. 4, 132–137.

    PubMed  CAS  Google Scholar 

  78. Songyang, Z., Shoelson, S. E., Chaudhuri, M., Guh, G., Pawson, T., Haser, W G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R. J., Neel, B. G., Birge, R., Fajardo, J. E., Chou, M. M., Hanafusa, H., Schaffhausen, B., and Cantley, L. (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Andrews, P.C., Leonard, D.M., Cody, W.L., Sawyer, T.K. (1994). Multiple and Combinatorial Peptide Synthesis. In: Dunn, B.M., Pennington, M.W. (eds) Peptide Analysis Protocols. Methods in Molecular Biology, vol 36. Humana Press. https://doi.org/10.1385/0-89603-274-4:305

Download citation

  • DOI: https://doi.org/10.1385/0-89603-274-4:305

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-274-3

  • Online ISBN: 978-1-59259-523-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics