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Abstract

This review is concerned with the motion of a point scalar charge, a point electric charge,
and a point mass in a specified background spacetime. In each of the three cases the particle
produces a field that behaves as outgoing radiation in the wave zone, and therefore removes
energy from the particle. In the near zone the field acts on the particle and gives rise to a
self-force that prevents the particle from moving on a geodesic of the background spacetime.
The self-force contains both conservative and dissipative terms, and the latter are responsible
for the radiation reaction. The work done by the self-force matches the energy radiated away
by the particle.

The field’s action on the particle is difficult to calculate because of its singular nature: the
field diverges at the position of the particle. But it is possible to isolate the field’s singular
part and show that it exerts no force on the particle — its only effect is to contribute to the
particle’s inertia. What remains after subtraction is a regular field that is fully responsible
for the self-force. Because this field satisfies a homogeneous wave equation, it can be thought
of as a free field that interacts with the particle; it is this interaction that gives rise to the
self-force.

The mathematical tools required to derive the equations of motion of a point scalar charge,
a point electric charge, and a point mass in a specified background spacetime are developed here
from scratch. The review begins with a discussion of the basic theory of bitensors (Part I).
It then applies the theory to the construction of convenient coordinate systems to chart a
neighbourhood of the particle’s word line (Part II). It continues with a thorough discussion
of Green’s functions in curved spacetime (Part IIT). The review presents a detailed derivation
of each of the three equations of motion (Part IV). Because the notion of a point mass is
problematic in general relativity, the review concludes (Part V) with an alternative derivation
of the equations of motion that applies to a small body of arbitrary internal structure.

This review is licensed under a Creative Commons
Attribution-Non-Commercial-NoDerivs 3.0 Germany License. @@@@
BY ND NC

http://creativecommons.org/licenses/by-nc-nd/3.0/de/


http://www.livingreviews.org/lrr-2011-7
http://www.physics.uoguelph.ca/
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Imprint / Terms of Use

Living Reviews in Relativity is a peer reviewed open access journal published by the Max Planck
Institute for Gravitational Physics, Am Miihlenberg 1, 14476 Potsdam, Germany. ISSN 1433-8351.

This review is licensed under a Creative Commons Attribution-Non-Commercial-NoDerivs 3.0
Germany License: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Because a Living Reviews article can evolve over time, we recommend to cite the article as follows:

Eric Poisson, Adam Pound and Ian Vega,
“The Motion of Point Particles in Curved Spacetime”,
Living Rev. Relativity, 14, (2011), 7. [Online Article]: cited [<date>],
http://www .livingreviews.org/Irr-2011-7

The date given as <date> then uniquely identifies the version of the article you are referring to.



http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Article Revisions

Living Reviews supports two ways of keeping its articles up-to-date:

Fast-track revision A fast-track revision provides the author with the opportunity to add short
notices of current research results, trends and developments, or important publications to
the article. A fast-track revision is refereed by the responsible subject editor. If an article
has undergone a fast-track revision, a summary of changes will be listed here.

Major update A major update will include substantial changes and additions and is subject to
full external refereeing. It is published with a new publication number.

For detailed documentation of an article’s evolution, please refer to the history document of the
article’s online version at http://www.livingreviews.org/lrr-2011-7.
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The Motion of Point Particles in Curved Spacetime 9

1 Introduction and summary

1.1 Invitation

The motion of a point electric charge in flat spacetime was the subject of active investigation since
the early work of Lorentz, Abrahams, Poincaré, and Dirac [56], until Gralla, Harte, and Wald
produced a definitive derivation of the equations motion [82] with all the rigour that one should
demand, without recourse to postulates and renormalization procedures. (The field’s early history
is well related in Ref. [154].) In 1960 DeWitt and Brehme [54] generalized Dirac’s result to curved
spacetimes, and their calculation was corrected by Hobbs [95] several years later. In 1997 the
motion of a point mass in a curved background spacetime was investigated by Mino, Sasaki, and
Tanaka [130], who derived an expression for the particle’s acceleration (which is not zero unless the
particle is a test mass); the same equations of motion were later obtained by Quinn and Wald [150]
using an axiomatic approach. The case of a point scalar charge was finally considered by Quinn
in 2000 [149], and this led to the realization that the mass of a scalar particle is not necessarily a
constant of the motion.

This article reviews the achievements described in the preceding paragraph; it is concerned with
the motion of a point scalar charge ¢, a point electric charge e, and a point mass m in a specified
background spacetime with metric g,g. These particles carry with them fields that behave as
outgoing radiation in the wave zone. The radiation removes energy and angular momentum from
the particle, which then undergoes a radiation reaction — its world line cannot be simply a geodesic
of the background spacetime. The particle’s motion is affected by the near-zone field which acts
directly on the particle and produces a self-force. In curved spacetime the self-force contains a
radiation-reaction component that is directly associated with dissipative effects, but it contains
also a conservative component that is not associated with energy or angular-momentum transport.
The self-force is proportional to ¢2 in the case of a scalar charge, proportional to e? in the case of
an electric charge, and proportional to m? in the case of a point mass.

In this review we derive the equations that govern the motion of a point particle in a curved
background spacetime. The presentation is entirely self-contained, and all relevant materials are
developed ab initio. The reader, however, is assumed to have a solid grasp of differential geometry
and a deep understanding of general relativity. The reader is also assumed to have unlimited
stamina, for the road to the equations of motion is a long one. One must first assimilate the basic
theory of bitensors (Part I), then apply the theory to construct convenient coordinate systems to
chart a neighbourhood of the particle’s world line (Part IT). One must next formulate a theory of
Green'’s functions in curved spacetimes (Part I1I), and finally calculate the scalar, electromagnetic,
and gravitational fields near the world line and figure out how they should act on the particle
(Part TV). A dedicated reader, correctly skeptical that sense can be made of a point mass in
general relativity, will also want to work through the last portion of the review (Part V), which
provides a derivation of the equations of motion for a small, but physically extended, body; this
reader will be reassured to find that the extended body follows the same motion as the point mass.
The review is very long, but the satisfaction derived, we hope, will be commensurate.

In this introductory section we set the stage and present an impressionistic survey of what the
review contains. This should help the reader get oriented and acquainted with some of the ideas
and some of the notation. Enjoy!

1.2 Radiation reaction in flat spacetime

Let us first consider the relatively simple and well-understood case of a point electric charge e
moving in flat spacetime [154, 101, 171]. The charge produces an electromagnetic vector potential
A that satisfies the wave equation

OA® = —47j® (1.1)

Living Reviews in Relativity
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together with the Lorenz gauge condition 9,A% = 0. (On page 294, Jackson [101] explains why
the term “Lorenz gauge” is preferable to “Lorentz gauge”.) The vector j* is the charge’s current
density, which is formally written in terms of a four-dimensional Dirac functional supported on
the charge’s world line: the density is zero everywhere, except at the particle’s position where it is
infinite. For concreteness we will imagine that the particle moves around a centre (perhaps another
charge, which is taken to be fixed) and that it emits outgoing radiation. We expect that the charge
will undergo a radiation reaction and that it will spiral down toward the centre. This effect must
be accounted for by the equations of motion, and these must therefore include the action of the
charge’s own field, which is the only available agent that could be responsible for the radiation
reaction. We seek to determine this self-force acting on the particle.

An immediate difficulty presents itself: the vector potential, and also the electromagnetic field
tensor, diverge on the particle’s world line, because the field of a point charge is necessarily infinite
at the charge’s position. This behaviour makes it most difficult to decide how the field is supposed
to act on the particle.

Difficult but not impossible. To find a way around this problem we note first that the situation
considered here, in which the radiation is propagating outward and the charge is spiraling inward,
breaks the time-reversal invariance of Maxwell’s theory. A specific time direction was adopted
when, among all possible solutions to the wave equation, we chose A%, the retarded solution,
as the physically relevant solution. Choosing instead the advanced solution A%, would produce
a time-reversed picture in which the radiation is propagating inward and the charge is spiraling
outward. Alternatively, choosing the linear superposition

adv

1
48 = 5 (A5 + A%,) (1.2)

would restore time-reversal invariance: outgoing and incoming radiation would be present in equal
amounts, there would be no net loss nor gain of energy by the system, and the charge would
undergo no radiation reaction. In Eq. (1.2) the subscript ‘S’ stands for ‘symmetric’, as the vector
potential depends symmetrically upon future and past.

Our second key observation is that while the potential of Eq. (1.2) does not exert a force on
the charged particle, it is just as singular as the retarded potential in the vicinity of the world
line. This follows from the fact that A%, A%, , and Ag all satisfy Eq. (1.1), whose source term is
infinite on the world line. So while the wave-zone behaviours of these solutions are very different
(with the retarded solution describing outgoing waves, the advanced solution describing incoming
waves, and the symmetric solution describing standing waves), the three vector potentials share
the same singular behaviour near the world line — all three electromagnetic fields are dominated
by the particle’s Coulomb field and the different asymptotic conditions make no difference close to
the particle. This observation gives us an alternative interpretation for the subscript ‘S’: it stands
for ‘singular’ as well as ‘symmetric’.

Because A§ is just as singular as Af;, removing it from the retarded solution gives rise to a
potential that is well behaved in a neighbourhood of the world line. And because A§ is known not
to affect the motion of the charged particle, this new potential must be entirely responsible for the
radiation reaction. We therefore introduce the new potential

1
AR = Afy — A = S (A% — Aav) (1.3)

S — 2 ret ~— “‘adv
and postulate that it, and it alone, exerts a force on the particle. The subscript ‘R’ stands for
‘regular’, because A is nonsingular on the world line. This property can be directly inferred from
the fact that the regular potential satisfies the homogeneous version of Eq. (1.1), OAg = 0; there
is no singular source to produce a singular behaviour on the world line. Since Ag satisfies the
homogeneous wave equation, it can be thought of as a free radiation field, and the subscript ‘R’
could also stand for ‘radiative’.

Living Reviews in Relativity
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The self-action of the charge’s own field is now clarified: a singular potential A§ can be removed
from the retarded potential and shown not to affect the motion of the particle. What remains is
a well-behaved potential AR that must be solely responsible for the radiation reaction. From the
regular potential we form an electromagnetic field tensor F (lf‘ﬂ = GQAE — 95 AR and we take the
particle’s equations of motion to be

ma, = [+ GFE”Vu”, (1.4)

where u* = dz* /dr is the charge’s four-velocity [2#(7) gives the description of the world line and 7
is proper time], a# = dut /dr its acceleration, m its (renormalized) mass, and f’., an external force
also acting on the particle. Calculation of the regular field yields the more concrete expression
2¢2 dft.

b+ 305+ ute) =2 (1.5)
in which the second term is the self-force that is responsible for the radiation reaction. We observe
that the self-force is proportional to €2, it is orthogonal to the four-velocity, and it depends on
the rate of change of the external force. This is the result that was first derived by Dirac [56].
(Dirac’s original expression actually involved the rate of change of the acceleration vector on the
right-hand side. The resulting equation gives rise to the well-known problem of runaway solutions.
To avoid such unphysical behaviour we have submitted Dirac’s equation to a reduction-of-order
procedure whereby da” /dr is replaced with m~1dfY, /dr. This procedure is explained and justified,
for example, in Refs. [112, 70], and further discussed in Section 24 below.)

To establish that the singular field exerts no force on the particle requires a careful analysis
that is presented in the bulk of the paper. What really happens is that, because the particle is
a monopole source for the electromagnetic field, the singular field is locally isotropic around the
particle; it therefore exerts no force, but contributes to the particle’s inertia and renormalizes its
mass. In fact, one could do without a decomposition of the field into singular and regular solutions,
and instead construct the force by using the retarded field and averaging it over a small sphere
around the particle, as was done by Quinn and Wald [150]. In the body of this review we will use
both methods and emphasize the equivalence of the results. We will, however, give some emphasis
to the decomposition because it provides a compelling physical interpretation of the self-force as
an interaction with a free electromagnetic field.

mat =

1.3 Green’s functions in flat spacetime

To see how Eq. (1.5) can eventually be generalized to curved spacetimes, we introduce a new layer
of mathematical formalism and show that the decomposition of the retarded potential into singular
and regular pieces can be performed at the level of the Green’s functions associated with Eq. (1.1).
The retarded solution to the wave equation can be expressed as

@) = [ G lai” (@) av" (16)

in terms of the retarded Green’s function G %, (z,2') = 0g,0(t — t' — |z — @’|)/|x — @’|. Here
x = (t,x) is an arbitrary field point, 2/ = (¥, ') is a source point, and dV’ := d*z’; tensors at
x are identified with unprimed indices, while primed indices refer to tensors at z’. Similarly, the
advanced solution can be expressed as

o (@) = / G % (e, 2)j% (o) V", (L.7)

in terms of the advanced Green’s function G %, (z, 2") = 6§,6(t—t'+|x—2'|) /|z—z'|. The retarded
Green’s function is zero whenever z lies outside of the future light cone of 2/, and G %, (v, ') is

Living Reviews in Relativity
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infinite at these points. On the other hand, the advanced Green’s function is zero whenever z lies
outside of the past light cone of z’, and G % (z,2') is infinite at these points. The retarded and
advanced Green’s functions satisfy the reciprocity relation

G (e x) = GEy(x,a'); (1.8)

this states that the retarded Green’s function becomes the advanced Green’s function (and vice
versa) when z and o’ are interchanged.

From the retarded and advanced Green’s functions we can define a singular Green’s function
by

1
Gl (z, ") = 3 G (z,2') + G5 (x,x')] (1.9)
and a regular two-point function by
(o7 « «@ 1 « (03
Gy (v.a') = GGy (w,2) = Gy (@,a) = 5 [GW (,2') — G2, (x,x’)]. (1.10)

By virtue of Eq. (1.8) the singular Green’s function is symmetric in its indices and arguments:
G%,a(x',x) = Giﬁ/(a@,x’). The regular two-point function, on the other hand, is antisymmetric.
The potential

AS(z) = / Gy (,2')5% (a!) V" (1.11)

satisfies the wave equation of Eq. (1.1) and is singular on the world line, while

AL () = / Gty (2,277 (') AV (1.12)

satisfies the homogeneous equation [JA® = 0 and is well behaved on the world line.

Equation (1.6) implies that the retarded potential at x is generated by a single event in space-
time: the intersection of the world line and z’s past light cone (see Figure 1). We shall call this the
retarded point associated with x and denote it z(u); u is the retarded time, the value of the proper-
time parameter at the retarded point. Similarly we find that the advanced potential of Eq. (1.7)
is generated by the intersection of the world line and the future light cone of the field point . We
shall call this the advanced point associated with x and denote it z(v); v is the advanced time, the
value of the proper-time parameter at the advanced point.

1.4 Green’s functions in curved spacetime

In a curved spacetime with metric g,3 the wave equation for the vector potential becomes
OA* — R% AP = —4mj®, (1.13)

where 0 = ¢g*f VoV 3 is the covariant wave operator and R,g is the spacetime’s Ricci tensor; the
Lorenz gauge conditions becomes V,A* = 0, and V,, denotes covariant differentiation. Retarded
and advanced Green’s functions can be defined for this equation, and solutions to Eq. (1.13) take
the same form as in Eqs. (1.6) and (1.7), except that dV’ now stands for \/—g(z') d*a’.

The causal structure of the Green’s functions is richer in curved spacetime: While in flat
spacetime the retarded Green’s function has support only on the future light cone of x’, in curved
spacetime its support extends inside the light cone as well; G %, (z,2) is therefore nonzero when
x € IT(2'), which denotes the chronological future of z’. This property reflects the fact that
in curved spacetime, electromagnetic waves propagate not just at the speed of light, but at all
speeds smaller than or equal to the speed of light; the delay is caused by an interaction between the
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Z(v)
X X
z(u)
Y Y
retarded advanced

Figure 1: In flat spacetime, the retarded potential at z depends on the particle’s state of motion at
the retarded point z(u) on the world line; the advanced potential depends on the state of motion at the
advanced point z(v).

radiation and the spacetime curvature. A direct implication of this property is that the retarded
potential at x is now generated by the point charge during its entire history prior to the retarded
time wu associated with z: the potential depends on the particle’s state of motion for all times 7 < u
(see Figure 2).

Similar statements can be made about the advanced Green’s function and the advanced solution
to the wave equation. While in flat spacetime the advanced Green’s function has support only
on the past light cone of z/, in curved spacetime its support extends inside the light cone, and
G % (v, ") is nonzero when x € I~ (2'), which denotes the chronological past of z’. This implies
that the advanced potential at = is generated by the point charge during its entire future history
following the advanced time v associated with x: the potential depends on the particle’s state of
motion for all times 7 > v.

The physically relevant solution to Eq. (1.13) is obviously the retarded potential A%, (z), and
as in flat spacetime, this diverges on the world line. The cause of this singular behaviour is still
the pointlike nature of the source, and the presence of spacetime curvature does not change the
fact that the potential diverges at the position of the particle. Once more this behaviour makes it
difficult to figure out how the retarded field is supposed to act on the particle and determine its
motion. As in flat spacetime we shall attempt to decompose the retarded solution into a singular

part that exerts no force, and a regular part that produces the entire self-force.

To decompose the retarded Green’s function into singular and regular parts is not a straight-
forward task in curved spacetime. The flat-spacetime definition for the singular Green’s function,
Eq. (1.9), cannot be adopted without modification: While the combination half-retarded plus half-
advanced Green’s functions does have the property of being symmetric, and while the resulting
vector potential would be a solution to Eq. (1.13), this candidate for the singular Green’s function
would produce a self-force with an unacceptable dependence on the particle’s future history. For
suppose that we made this choice. Then the regular two-point function would be given by the
combination half-retarded minus half-advanced Green’s functions, just as in flat spacetime. The
resulting potential would satisfy the homogeneous wave equation, and it would be regular on the
world line, but it would also depend on the particle’s entire history, both past (through the retarded
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Z(v)
X X
z(u)
\ Y
retarded advanced

Figure 2: In curved spacetime, the retarded potential at x depends on the particle’s history before the
retarded time u; the advanced potential depends on the particle’s history after the advanced time v.

Green’s function) and future (through the advanced Green’s function). More precisely stated, we
would find that the regular potential at  depends on the particle’s state of motion at all times 7
outside the interval u < 7 < v; in the limit where x approaches the world line, this interval shrinks
to nothing, and we would find that the regular potential is generated by the complete history of
the particle. A self-force constructed from this potential would be highly noncausal, and we are
compelled to reject these definitions for the singular and regular Green’s functions.

The proper definitions were identified by Detweiler and Whiting [53], who proposed the following
generalization to Eq. (1.9):

G (w,2") = 5 |G G (v, 2") + G % (x,2") — H (w,2")|. (1.14)

N |

The two-point function H?, (z,z") is introduced specifically to cure the pathology described in the
preceding paragraph. It is symmetric in its indices and arguments, so that Gi 5 (z,z") will be also
(since the retarded and advanced Green’s functions are still linked by a reciprocity relation); and
it is a solution to the homogeneous wave equation, OH%, (x,z") — R% (2)H 3 (z,2") = 0, so that
the singular, retarded, and advanced Green’s functions will all satisfy the same wave equation.
Furthermore, and this is its key property, the two-point function is defined to agree with the
advanced Green’s function when z is in the chronological past of z’: H%, (z,2') = G % (v, 2")
when x € I~ (2'). This ensures that G¢%, (z,2’) vanishes when z is in the chronological past of z’.
In fact, reciprocity implies that H<%, (x,2") will also agree with the retarded Green’s function when
z is in the chronological future of z’, and it follows that the symmetric Green’s function vanishes
also when z is in the chronological future of 2.

The potential Ag(x) constructed from the singular Green’s function can now be seen to depend
on the particle’s state of motion at times 7 restricted to the interval u < 7 < v (see Figure 3).
Because this potential satisfies Eq. (1.13), it is just as singular as the retarded potential in the
vicinity of the world line. And because the singular Green’s function is symmetric in its arguments,
the singular potential can be shown to exert no force on the charged particle. (This requires a
lengthy analysis that will be presented in the bulk of the paper.)
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Z(v)
X X
Z(u)
U i
singular regular

Figure 3: In curved spacetime, the singular potential at x depends on the particle’s history during the
interval u < 7 < v; for the regular potential the relevant interval is —oco < 7 < w.

The Detweiler—Whiting [53] definition for the regular two-point function is then

Grp(z,2") = G % (z,2") — G (x,2") = % Gz, 2') — G % (x,2") + HY, (x,x’)] (1.15)
The potential A (x) constructed from this depends on the particle’s state of motion at all times
T prior to the advanced time v: 7 < v. Because this potential satisfies the homogeneous wave
equation, it is well behaved on the world line and its action on the point charge is well defined.
And because the singular potential AZ(z) can be shown to exert no force on the particle, we
conclude that A (x) alone is responsible for the self-force.

From the regular potential we form an electromagnetic field tensor Fig = Vo AR — Vg AR and
the curved-spacetime generalization to Eq. (1.4) is

ma, = [+ eFE‘yu”, (1.16)

where u#* = dz*/dr is again the charge’s four-velocity, but a* = Du*/dr is now its covariant
acceleration.

1.5 World line and retarded coordinates

To flesh out the ideas contained in the preceding subsection we add yet another layer of mathe-
matical formalism and construct a convenient coordinate system to chart a neighbourhood of the
particle’s world line. In the next subsection we will display explicit expressions for the retarded,
singular, and regular fields of a point electric charge.

Let v be the world line of a point particle in a curved spacetime. It is described by parametric
relations z#(7) in which 7 is proper time. Its tangent vector is u* = dz*/dr and its acceleration
is a* = Dut/dr; we shall also encounter a* := Da* /dr.

On v we erect an orthonormal basis that consists of the four-velocity u* and three spatial
vectors el labelled by a frame index a = (1,2, 3). These vectors satisfy the relations g,, u#u” = —1,
guute; =0, and g, eley = dqp. We take the spatial vectors to be Fermi-Walker transported on
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the world line: De* /dr = aq,u*, where
ao(7) = ayel (1.17)

are frame components of the acceleration vector; it is easy to show that Fermi—Walker transport
preserves the orthonormality of the basis vectors. We shall use the tetrad to decompose various
tensors evaluated on the world line. An example was already given in Eq. (1.17) but we shall also
encounter frame components of the Riemann tensor,

A A A
Raovo(T) = Runvpelueyu?, Raope(T) = Runvpehueyel, Raped(T) = Ruavpehepelel,
(1.18)
as well as frame components of the Ricci tensor,

Roo(7) = Ryputu”, Ro.o(T) = Rebu”, R.p(T) = Ryuveley. (1.19)

We shall use 6, = diag(1,1,1) and its inverse §%° = diag(1,1,1) to lower and raise frame indices,
respectively.

Consider a point x in a neighbourhood of the world line v. We assume that « is sufficiently close
to the world line that a unique geodesic links = to any neighbouring point z on . The two-point
function o(z, z), known as Synge’s world function [169], is numerically equal to half the squared
geodesic distance between z and z; it is positive if z and z are spacelike related, negative if they
are timelike related, and o(x, z) is zero if x and z are linked by a null geodesic. We denote its
gradient do/0z* by 0,(z, z), and —c* gives a meaningful notion of a separation vector (pointing
from z to x).

To construct a coordinate system in this neighbourhood we locate the unique point 2’ := z(u)
on v which is linked to x by a future-directed null geodesic (this geodesic is directed from z’ to x);
we shall refer to x’ as the retarded point associated with x, and u will be called the retarded time.
To tensors at x’ we assign indices o, 3, ...; this will distinguish them from tensors at a generic
point z(7) on the world line, to which we have assigned indices p, v, .... We have o(z,2') =0
and —U"‘/(x, 2’) is a null vector that can be interpreted as the separation between z’ and z.

The retarded coordinates of the point x are (u,&®), where £% = —eg,aa/ are the frame com-
ponents of the separation vector. They come with a straightforward interpretation (see Figure 4).

The invariant quantity
=\ 0a293 = ugo® (1.20)

is an affine parameter on the null geodesic that links = to z’; it can be loosely interpreted as the
time delay between x and z’ as measured by an observer moving with the particle. This therefore
gives a meaningful notion of distance between x and the retarded point, and we shall call  the
retarded distance between x and the world line. The unit vector

Qo =3%/r (1.21)

is constant on the null geodesic that links z to z/. Because Q¢ is a different constant on each
null geodesic that emanates from z’, keeping u fixed and varying Q% produces a congruence of
null geodesics that generate the future light cone of the point 2’ (the congruence is hypersurface
orthogonal). Each light cone can thus be labelled by its retarded time u, each generator on a given
light cone can be labelled by its direction vector 2%, and each point on a given generator can be
labelled by its retarded distance r. We therefore have a good coordinate system in a neighbourhood
of ~.

To tensors at x we assign indices a, 3, .... These tensors will be decomposed in a tetrad
(ef,e) that is constructed as follows: Given x we locate its associated retarded point z’ on the
world line, as well as the null geodesic that links these two points; we then take the tetrad (ua/, eg‘/)
at ' and parallel transport it to x along the null geodesic to obtain (e, e5).
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Figure 4: Retarded coordinates of a point x relative to a world line . The retarded time u selects a
particular null cone, the unit vector Q¢ := Z%/r selects a particular generator of this null cone, and the
retarded distance r selects a particular point on this generator.

1.6 Retarded, singular, and regular electromagnetic fields of a point
electric charge

The retarded solution to Eq. (1.13) is
A%(x) = e/ G & (x, 2)ut dr, (1.22)
8!

where the integration is over the world line of the point electric charge. Because the retarded
solution is the physically relevant solution to the wave equation, it will not be necessary to put a
label ‘ret” on the vector potential.

From the vector potential we form the electromagnetic field tensor Fi,g, which we decompose
in the tetrad (eff, ed) introduced at the end of Section 1.5. We then express the frame components
of the field tensor in retarded coordinates, in the form of an expansion in powers of r. This gives

FaO(uara Qa) = aﬁ(fc)eg(m)eoﬁ(af)

1 1
— T%Qa - ;(aa — Q') + 3eRi002 2 — e(5Raomn®’ + Rupoc ')
1 1 1 .
+ Ee(5R00 + Rpe°Q° + R)Q, + 36Ra0 - 6eRabe + EBL L O@r),  (1.23)

Fop(u,7,9Q%) := Fop(x)el (x)el (x)

1
= ;(aaQb - Qaab) + §e(Ra0bc - RbOac + RaOcOQb - Qa}{bOCO)QC

1 .
- 5e(RaoQb — Qo Ruyo) + E + O(r), (1.24)
Fil = Fi, (a))ed v Fill = Fi, (a)ed e (1.25)
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are the frame components of the “tail part” of the field, which is given by
Fi5,(a") = 26/ Vie Gy, z)ut dr. (1.26)

In these expressions, all tensors (or their frame components) are evaluated at the retarded point
2’ = z(u) associated with z; for example, aq = aq(u) := age? . The tail part of the electro-
magnetic field tensor is written as an integral over the portion of the world line that corresponds
to the interval —oo < 7 < u™ := u — 07; this represents the past history of the particle. The
integral is cut short at u~ to avoid the singular behaviour of the retarded Green’s function when
z(7) coincides with z’; the portion of the Green’s function involved in the tail integral is smooth,
and the singularity at coincidence is completely accounted for by the other terms in Egs. (1.23)
and (1.24).

The expansion of F,3(x) near the world line does indeed reveal many singular terms. We first
recognize terms that diverge when r — 0; for example the Coulomb field F,, diverges as r~2 when
we approach the world line. But there are also terms that, though they stay bounded in the limit,
possess a directional ambiguity at » = 0; for example F,; contains a term proportional to R,op.2°
whose limit depends on the direction of approach.

This singularity structure is perfectly reproduced by the singular field Fgﬂ obtained from the
potential

A (x) = e/ G (@, z)ut dr, (1.27)
8!

where Gy, (z,2) is the singular Green’s function of Eq. (1.14). Near the world line the singular
field is given by

Fio(u,7,9Q%) := Fig(x)ed (x)e] (x)

2 1 1

= 50— = (a0 — a2"Q) - S¢a + 3eRi00Q 2 — e(5Raomn®’ + Rupoc ')
1 1

+ 1—2@(5300 + RpeQ°Q° + R)Q, — 6eRabe +O(r), (1.28)

FS (u,m,Q%) i= Fg(x)el (x)ey ()

[e3

1
= ;(%Qb — Qo) + §€(Ra0bc — Rioac + RaocoS — QaRpoco) Q2°
1
- §e(RaoQb — QqRyo) + O(r). (1.29)

Comparison of these expressions with Egs. (1.23) and (1.24) does indeed reveal that all singular
terms are shared by both fields.

The difference between the retarded and singular fields defines the regular field F; f‘ﬁ(x). Its
frame components are

2 1 .
FR = 3€0a + geRao + Fi 4 O(r), (1.30)
FR = Ffil 4 O(r), (1.31)
and at z’ the regular field becomes
2 G 1 / ’ ai
FOI;/B/ = 26’1,6[0/ (gﬁ/},y/ —|— uﬁ/]uy) (3&7 + gR’Yﬁlug ) + F(;/Bl/, (132)

where a7 = Da"’ /dT is the rate of change of the acceleration vector, and where the tail term was
given by Eq. (1.26). We see that F, aRﬁ (x) is a regular tensor field, even on the world line.
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1.7 Motion of an electric charge in curved spacetime

We have argued in Section 1.4 that the self-force acting on a point electric charge is produced
by the regular field, and that the charge’s equations of motion should take the form of ma, =
f;j"t + el E,u”, where f;"t is an external force also acting on the particle. Substituting Eq. (1.32)
gives

2 DfY 1 T v !
ma* = fl + e (0", + u'u,) ( ext 4 3R”/\u)‘> + 262ul,/ V[“G+ ])\, (2(1), 2(7"))u™ dr’,

3m dr
(1.33)

in which all tensors are evaluated at z(7), the current position of the particle on the world line.
The primed indices in the tail integral refer to a point z(7') which represents a prior position;
the integration is cut short at 7/ = 7= := 7 — 0" to avoid the singular behaviour of the retarded
Green’s function at coincidence. To get Eq. (1.33) we have reduced the order of the differential
equation by replacing ¢” with m~! -é’xt on the right-hand side; this procedure was explained at the
end of Section 1.2.

Equation (1.33) is the result that was first derived by DeWitt and Brehme [54] and later
corrected by Hobbs [95]. (The original version of the equation did not include the Ricci-tensor
term.) In flat spacetime the Ricci tensor is zero, the tail integral disappears (because the Green’s
function vanishes everywhere within the domain of integration), and Eq. (1.33) reduces to Dirac’s
result of Eq. (1.5). In curved spacetime the self-force does not vanish even when the electric charge
is moving freely, in the absence of an external force: it is then given by the tail integral, which
represents radiation emitted earlier and coming back to the particle after interacting with the
spacetime curvature. This delayed action implies that in general, the self-force is nonlocal in time:
it depends not only on the current state of motion of the particle, but also on its past history. Lest
this behaviour should seem mysterious, it may help to keep in mind that the physical process that
leads to Eq. (1.33) is simply an interaction between the charge and a free electromagnetic field
F Rﬂ; it is this field that carries the information about the charge’s past.

[e3

— 00

1.8 Motion of a scalar charge in curved spacetime

The dynamics of a point scalar charge can be formulated in a way that stays fairly close to the
electromagnetic theory. The particle’s charge g produces a scalar field ®(x) which satisfies a wave
equation

(D — §R)<I> = —dmp (1.34)
that is very similar to Eq. (1.13). Here, R is the spacetime’s Ricci scalar, and £ is an arbitrary
coupling constant; the scalar charge density p(z) is given by a four-dimensional Dirac functional
supported on the particle’s world line . The retarded solution to the wave equation is

B(z) = q / G (w,2)dr, (1.35)

where G (z, z) is the retarded Green’s function associated with Eq. (1.34). The field exerts a force
on the particle, whose equations of motion are

mat = q(g"" + u'u’)V,®, (1.36)

where m is the particle’s mass; this equation is very similar to the Lorentz-force law. But the
dynamics of a scalar charge comes with a twist: If Eqgs. (1.34) and (1.36) are to follow from a
variational principle, the particle’s mass should not be expected to be a constant of the motion. It
is found instead to satisfy the differential equation

d
g = —qu'V,®, (1.37)
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and in general m will vary with proper time. This phenomenon is linked to the fact that a scalar
field has zero spin: the particle can radiate monopole waves and the radiated energy can come at
the expense of the rest mass.

The scalar field of Eq. (1.35) diverges on the world line and its singular part ®g(z) must be
removed before Egs. (1.36) and (1.37) can be evaluated. This procedure produces the regular field
O (z), and it is this field (which satisfies the homogeneous wave equation) that gives rise to a
self-force. The gradient of the regular field takes the form of

1 1 -V 1 v al
Vulr = — 15 (1= 6)qRu,, + a(gpw + upuy) (3a +oR /\u)‘) + oy (1.38)

when it is evaluated on the world line. The last term is the tail integral

@ffﬂ = q/ V.Gy (Z(T), z(’r’)) dr', (1.39)

and this brings the dependence on the particle’s past.
Substitution of Eq. (1.38) into Eqgs. (1.36) and (1.37) gives the equations of motion of a point
scalar charge. (At this stage we introduce an external force fI., and reduce the order of the

differential equation.) The acceleration is given by

1 DfY 1 T
mat = fhi + (0%, + u'uy) | 7——4 + —R” u’\—l—/ VY Gy (2(7), 2(7")) dr’ (1.40)
t ( ) 3m dr 6 * oo +( )

and the mass changes according to

T

d 1 )
TT - 75(1 — 66)¢*R — ¢*u” [m V.G (2(7), 2(7")) dr'. (1.41)

These equations were first derived by Quinn [149]. (His analysis was restricted to a minimally
coupled scalar field, so that £ = 0 in his expressions. We extended Quinn’s results to an arbitrary
coupling counstant for this review.)

In flat spacetime the Ricci-tensor term and the tail integral disappear and Eq. (1.40) takes the
form of Eq. (1.5) with ¢?/(3m) replacing the factor of 2e/(3m). In this simple case Eq. (1.41)
reduces to dm/dr = 0 and the mass is in fact a constant. This property remains true in a
conformally flat spacetime when the wave equation is conformally invariant (£ = 1/6): in this case
the Green’s function possesses only a light-cone part and the right-hand side of Eq. (1.41) vanishes.
In generic situations the mass of a point scalar charge will vary with proper time.

1.9 Motion of a point mass, or a small body, in a background spacetime

The case of a point mass moving in a specified background spacetime presents itself with a serious
conceptual challenge, as the fundamental equations of the theory are nonlinear and the very notion
of a “point mass” is somewhat misguided. Nevertheless, to the extent that the perturbation hag(z)
created by the point mass can be considered to be “small”, the problem can be formulated in close
analogy with what was presented before.

We take the metric gog of the background spacetime to be a solution of the Einstein field equa-
tions in vacuum. (We impose this condition globally.) We describe the gravitational perturbation
produced by a point particle of mass m in terms of trace-reversed potentials v, defined by

1
Yas = hap = 5 (9" hys) gas, (1.42)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7


http://www.livingreviews.org/lrr-2011-7

The Motion of Point Particles in Curved Spacetime 21

where hap is the difference between g4, the actual metric of the perturbed spacetime, and gag.
The potentials satisfy the wave equation

Oy*? 4+ 2R %747 = —167T*% + O(m?) (1.43)

together with the Lorenz gauge condition 7“5 s = 0. Here and below, covariant differentiation
refers to a connection that is compatible with the background metric, 0 = ¢g*?V,V is the wave
operator for the background spacetime, and 77 is the energy-momentum tensor of the point mass;
this is given by a Dirac distribution supported on the particle’s world line . The retarded solution
is

B (z) = 4m/ Gfﬁy(:c, 2)utu” dr + O(m?), (1.44)
gl
where fow(a?, z) is the retarded Green’s function associated with Eq. (1.43). The perturbation

hap(x) can be recovered by inverting Eq. (1.42).

Equations of motion for the point mass can be obtained by formally demanding that the
motion be geodesic in the perturbed spacetime with metric gog = gog + hag. After a mapping to
the background spacetime, the equations of motion take the form of

at — _% (6" + uu”) (2hunp — h/\p;y)uAuP + O(m?). (1.45)

The acceleration is thus proportional to m; in the test-mass limit the world line of the particle is
a geodesic of the background spacetime.

We now remove hS s (z) from the retarded perturbation and postulate that it is the regular field
hgﬁ (z) that should act on the particle. (Note that 'ygﬁ satisfies the same wave equation as the
retarded potentials, but that 70% is a free gravitational field that satisfies the homogeneous wave
equation.) On the world line we have

By = —4m (U(MRV)pAE + Rupufuz\)up u® 4+ hih, (1.46)

where the tail term is given by

; T 1 '
Rl = 4m/ Va (Gﬂwﬂ/u, — QQWG+ppu’V') (2(7), 2(7"))u" w” dr'. (1.47)
— 0o

When Eq. (1.46) is substituted into Eq. (1.45) we find that the terms that involve the Riemann
tensor cancel out, and we are left with

at = —%(g’“’ + ufu”) (th,a)fi) — hg\a;,l,)u/\up + O(m?). (1.48)
Only the tail integral appears in the final form of the equations of motion. It involves the current
position z(7) of the particle, at which all tensors with unprimed indices are evaluated, as well as
all prior positions z(7'), at which tensors with primed indices are evaluated. As before the integral
is cut short at 7 = 7~ := 7 — 0% to avoid the singular behaviour of the retarded Green’s function
at coincidence.

The equations of motion of Eq. (1.48) were first derived by Mino, Sasaki, and Tanaka [130], and
then reproduced with a different analysis by Quinn and Wald [150]. They are now known as the
MiSaTaQuWa equations of motion. As noted by these authors, the MiSaTaQuWa equation has
the appearance of the geodesic equation in a metric gog + hffél. Detweiler and Whiting [53] have
contributed the more compelling interpretation that the motion is actually geodesic in a spacetime

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7


http://www.livingreviews.org/lrr-2011-7

22 Eric Poisson, Adam Pound and Ian Vega

with metric gog + hgﬁ. The distinction is important: Unlike the first version of the metric, the
Detweiler-Whiting metric is regular on the world line and satisfies the Einstein field equations in
vacuum; and because it is a solution to the field equations, it can be viewed as a physical metric
— specifically, the metric of the background spacetime perturbed by a free field produced by the
particle at an earlier stage of its history.

While Eq. (1.48) does indeed give the correct equations of motion for a small mass m moving
in a background spacetime with metric g,3, the derivation outlined here leaves much to be desired
— to what extent should we trust an analysis based on the existence of a point mass? As a partial
answer to this question, Mino, Sasaki, and Tanaka [130] produced an alternative derivation of their
result, which involved a small nonrotating black hole instead of a point mass. In this alternative
derivation, the metric of the black hole perturbed by the tidal gravitational field of the external
universe is matched to the metric of the background spacetime perturbed by the moving black hole.
Demanding that this metric be a solution to the vacuum field equations determines the motion of
the black hole: it must move according to Eq. (1.48). This alternative derivation (which was given
a different implementation in Ref. [142]) is entirely free of singularities (except deep within the
black hole), and it suggests that that the MiSaTaQuWa equations can be trusted to describe the
motion of any gravitating body in a curved background spacetime (so long as the body’s internal
structure can be ignored). This derivation, however, was limited to the case of a non-rotating black
hole, and it relied on a number of unjustified and sometimes unstated assumptions [83, 144, 145].
The conclusion was made firm by the more rigorous analysis of Gralla and Wald [83] (as extended
by Pound [144]), who showed that the MiSaTaQuWa equations apply to any sufficiently compact
body of arbitrary internal structure.

It is important to understand that unlike Eqgs. (1.33) and (1.40), which are true tensorial
equations, Eq. (1.48) reflects a specific choice of coordinate system and its form would not be
preserved under a coordinate transformation. In other words, the MiSaTaQuWa equations are not
gauge tnvariant, and they depend upon the Lorenz gauge condition 70‘6 5= O(m?). Barack and
Ori [17] have shown that under a coordinate transformation of the form z* — z® + £*, where z®
are the coordinates of the background spacetime and £% is a smooth vector field of order m, the
particle’s acceleration changes according to a* — a* + a[¢]*, where

D2§V v w, A

alé]* = (5’ﬁ, + u“ul,) (d7’2 + R, \u’§u ) (1.49)
is the “gauge acceleration”; D¢ /dr? = (& Hu”);pup is the second covariant derivative of £ in
the direction of the world line. This implies that the particle’s acceleration can be altered at will
by a gauge transformation; £ could even be chosen so as to produce a* = 0, making the motion
geodesic after all. This observation provides a dramatic illustration of the following point: The
MiSaTaQuWa equations of motion are not gauge invariant and they cannot by themselves produce
a meaningful answer to a well-posed physical question; to obtain such answers it is necessary to
combine the equations of motion with the metric perturbation hog so as to form gauge-invariant
quantities that will correspond to direct observables. This point is very important and cannot be
over-emphasized.

The gravitational self-force possesses a physical significance that is not shared by its scalar and
electromagnetic analogues, because the motion of a small body in the strong gravitational field
of a much larger body is a problem of direct relevance to gravitational-wave astronomy. Indeed,
extreme-mass-ratio inspirals, involving solar-mass compact objects moving around massive black
holes of the sort found in galactic cores, have been identified as promising sources of low-frequency
gravitational waves for space-based interferometric detectors such as the proposed Laser Interfer-
ometer Space Antenna (LISA [115]). These systems involve highly eccentric, nonequatorial, and
relativistic orbits around rapidly rotating black holes, and the waves produced by such orbital
motions are rich in information concerning the strongest gravitational fields in the Universe. This
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information will be extractable from the LISA data stream, but the extraction depends on so-
phisticated data-analysis strategies that require a detailed and accurate modeling of the source.
This modeling involves formulating the equations of motion for the small body in the field of the
rotating black hole, as well as a consistent incorporation of the motion into a wave-generation
formalism. In short, the extraction of this wealth of information relies on a successful evaluation
of the gravitational self-force.

The finite-mass corrections to the orbital motion are important. For concreteness, let us assume
that the orbiting body is a black hole of mass m = 10 Mg and that the central black hole has a
mass M = 10% M. Let us also assume that the small black hole is in the deep field of the large
hole, near the innermost stable circular orbit, so that its orbital period P is of the order of minutes.
The gravitational waves produced by the orbital motion have frequencies f of the order of the mHz,
which is well within LISA’s frequency band. The radiative losses drive the orbital motion toward
a final plunge into the large black hole; this occurs over a radiation-reaction timescale (M /m)P of
the order of a year, during which the system will go through a number of wave cycles of the order
of M/m = 10°. The role of the gravitational self-force is precisely to describe this orbital evolution
toward the final plunge. While at any given time the self-force provides fractional corrections of
order m/M = 1075 to the motion of the small black hole, these build up over a number of orbital
cycles of order M /m = 10° to produce a large cumulative effect. As will be discussed in some detail
in Section 2.6, the gravitational self-force is important, because it drives large secular changes in
the orbital motion of an extreme-mass-ratio binary.

1.10 Case study: static electric charge in Schwarzschild spacetime

One of the first self-force calculations ever performed for a curved spacetime was presented by
Smith and Will [163]. They considered an electric charge e held in place at position r = ry outside
a Schwarzschild black hole of mass M. Such a static particle must be maintained in position with
an external force that compensates for the black hole’s attraction. For a particle without electric
charge this force is directed outward, and its radial component in Schwarzschild coordinates is
given by fl, = %mf’, where m is the particle’s mass, f := 1 — 2M/rq is the usual metric factor,
and a prime indicates differentiation with respect to ro, so that f/ = 2M/r3. Smith and Will found
that for a particle of charge e, the external force is given instead by fl., = %mf’ — 2 M f12 3.
The second term is contributed by the electromagnetic self-force, and implies that the external
force is smaller for a charged particle. This means that the electromagnetic self-force acting on
the particle is directed outward and given by

- e?M
self — 3 f1/2- (150)
7o

This is a repulsive force. It was shown by Zel'nikov and Frolov [186] that the same expression
applies to a static charge outside a Reissner—Nordstrom black hole of mass M and charge Q,
provided that f is replaced by the more general expression f =1 —2M/ro + Q%/r3.

The repulsive nature of the electromagnetic self-force acting on a static charge outside a black
hole is unexpected. In an attempt to gain some intuition about this result, it is useful to recall that
a black-hole horizon always acts as perfect conductor, because the electrostatic potential ¢ := —A;
is necessarily uniform across its surface. It is then tempting to imagine that the self-force should
result from a fictitious distribution of induced charge on the horizon, and that it could be estimated
on the basis of an elementary model involving a spherical conductor. Let us, therefore, calculate
the electric field produced by a point charge e situated outside a spherical conductor of radius
R. The charge is placed at a distance rg from the centre of the conductor, which is taken at first
to be grounded. The electrostatic potential produced by the charge can easily be obtained with
the method of images. It is found that an image charge ¢/ = —eR/r¢ is situated at a distance
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ry, = R?/ry from the centre of the conductor, and the potential is given by ¢ = e/s + ¢'/s,
where s is the distance to the charge, while s’ is the distance to the image charge. The first term
can be identified with the singular potential g, and the associated electric field exerts no force
on the point charge. The second term is the regular potential pgr, and the associated field is
entirely responsible for the self-force. The regular electric field is EF; = —0,¢r, and the self-force
is fI; = eER. A simple computation returns

—_— e’R

self — 7‘8’(1 — RZ/TS) . (151)
This is an attractive self-force, because the total induced charge on the conducting surface is equal
to €/, which is opposite in sign to e. With R identified with M up to a numerical factor, we find
that our intuition has produced the expected factor of e2M /rd, but that it gives rise to the wrong
sign for the self-force. An attempt to refine this computation by removing the net charge ¢’ on
the conductor (to mimic more closely the black-hole horizon, which cannot support a net charge)
produces a wrong dependence on 1y in addition to the same wrong sign. In this case the conductor
is maintained at a constant potential ¢y = —e’/ R, and the situation involves a second image charge
—e’ situated at r = 0. It is easy to see that in this case,

2R3
== 1.52
self 7"8(1 _ R2/T%) ( )
This is still an attractive force, which is weaker than the force of Eq. (1.51) by a factor of (R/rg)?%;
the force is now exerted by an image dipole instead of a single image charge.

The computation of the self-force in the black-hole case is almost as straightforward. The exact
solution to Maxwell’s equations that describes a point charge e situated r = rg and 8 = 0 in the
Schwarzschild spacetime is given by

p= LPS + (pR7 (153)

where

s_ € (r—M)(ro — M) — M?cosf (150)
ToT [(r — M)% —2(r — M)(ro — M) cos 0 + (ro — M)? —M251n20]1/27 .

is the solution first discovered by Copson in 1928 [43], while

o = Mo (1.55)
r

is the monopole field that was added by Linet [114] to obtain the correct asymptotic behaviour
@ ~ e/r when r is much larger than ro. It is easy to see that Copson’s potential behaves as
e(1— M/ro)/r at large distances, which reveals that in addition to e, ¢° comes with an additional
(and unphysical) charge —eM /rg situated at 7 = 0. This charge must be removed by adding to ¢°
a potential that (i) is a solution to the vacuum Maxwell equations, (ii) is regular everywhere except
at 7 = 0, and (iii) carries the opposite charge +eM /ry; this potential must be a pure monopole,
because higher multipoles would produce a singularity on the horizon, and it is given uniquely by
©®. The Copson solution was generalized to Reissner-Nordstrom spacetime by Léauté and Linet
[113], who also showed that the regular potential of Eq. (1.55) requires no modification.

The identification of Copson’s potential with the singular potential ° is dictated by the fact
that its associated electric field F5. = 0,¢° is isotropic around the charge e and therefore exerts
no force. The self-force comes entirely from the monopole potential, which describes a (fictitious)
charge +eM /rq situated at r = 0. Because this charge is of the same sign as the original charge e,
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the self-force is repulsive. More precisely stated, we find that the regular piece of the electric field
is given by

; (1.56)

and that it produces the self-force of Eq. (1.50). The simple picture described here, in which the
electromagnetic self-force is produced by a fictitious charge eM/rg situated at the centre of the
black hole, is not easily extracted from the derivation presented originally by Smith and Will [163].
To the best of our knowledge, the monopolar origin of the self-force was first noticed by Alan
Wiseman [185]. (In his paper, Wiseman computed the scalar self-force acting on a static particle
in Schwarzschild spacetime, and found a zero answer. In this case, the analogue of the Copson
solution for the scalar potential happens to satisfy the correct asymptotic conditions, and there is
no need to add another solution to it. Because the scalar potential is precisely equal to the singular
potential, the self-force vanishes.)

We should remark that the identification of ¢° and ¢ with the Detweiler-Whiting singular
and regular fields, respectively, is a matter of conjecture. Although ° and (' satisfy the essential
properties of the Detweiler—Whiting decomposition — being, respectively, a regular homogenous
solution and a singular solution sourced by the particle — one should accept the possibility that
they may not be the actual Detweiler—Whiting fields. It is a topic for future research to investigate
the precise relation between the Copson field and the Detweiler—Whiting singular field.

It is instructive to compare the electromagnetic self-force produced by the presence of a
grounded conductor to the self-force produced by the presence of a black hole. In the case of
a conductor, the total induced charge on the conducting surface is ¢/ = —eR/rg, and it is this
charge that is responsible for the attractive self-force; the induced charge is supplied by the elec-
trodes that keep the conductor grounded. In the case of a black hole, there is no external apparatus
that can supply such a charge, and the total induced charge on the horizon necessarily vanishes.
The origin of the self-force is therefore very different in this case. As we have seen, the self-force is
produced by a fictitious charge eM /r( situated at the centre of black hole; and because this charge
is positive, the self-force is repulsive.

1.11 Organization of this review

After a detailed review of the literature in Section 2, the main body of the review begins in
Part T (Sections 3 to 7) with a description of the general theory of bitensors, the name designating
tensorial functions of two points in spacetime. We introduce Synge’s world function o(z,z’) and
its derivatives in Section 3, the parallel propagator g% ,(x,z’) in Section 5, and the van Vleck
determinant A(x,z’) in Section 7. An important portion of the theory (covered in Sections 4
and 6) is concerned with the expansion of bitensors when z is very close to z’; expansions such as
those displayed in Egs. (1.23) and (1.24) are based on these techniques. The presentation in Part I
borrows heavily from Synge’s book [169] and the article by DeWitt and Brehme [54]. These two
sources use different conventions for the Riemann tensor, and we have adopted Synge’s conventions
(which agree with those of Misner, Thorne, and Wheeler [131]). The reader is therefore warned
that formulae derived in Part I may look superficially different from those found in DeWitt and
Brehme.

In Part IT (Sections 8 to 11) we introduce a number of coordinate systems that play an important
role in later parts of the review. As a warmup exercise we first construct (in Section 8) Riemann
normal coordinates in a neighbourhood of a reference point ’. We then move on (in Section 9)
to Fermi normal coordinates [122], which are defined in a neighbourhood of a world line . The
retarded coordinates, which are also based at a world line and which were briefly introduced in
Section 1.5, are covered systematically in Section 10. The relationship between Fermi and retarded
coordinates is worked out in Section 11, which also locates the advanced point z(v) associated with
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a field point z. The presentation in Part IT borrows heavily from Synge’s book [169]. In fact, we are
much indebted to Synge for initiating the construction of retarded coordinates in a neighbourhood
of a world line. We have implemented his program quite differently (Synge was interested in a
large neighbourhood of the world line in a weakly curved spacetime, while we are interested in a
small neighbourhood in a strongly curved spacetime), but the idea is originally his.

In Part IIT (Sections 12 to 16) we review the theory of Green’s functions for (scalar, vectorial,
and tensorial) wave equations in curved spacetime. We begin in Section 12 with a pedagogi-
cal introduction to the retarded and advanced Green’s functions for a massive scalar field in flat
spacetime; in this simple context the all-important Hadamard decomposition [88] of the Green’s
function into “light-cone” and “tail” parts can be displayed explicitly. The invariant Dirac func-
tional is defined in Section 13 along with its restrictions on the past and future null cones of a
reference point z’. The retarded, advanced, singular, and regular Green’s functions for the scalar
wave equation are introduced in Section 14. In Sections 15 and 16 we cover the vectorial and
tensorial wave equations, respectively. The presentation in Part III is based partly on the paper by
DeWitt and Brehme [54], but it is inspired mostly by Friedlander’s book [71]. The reader should
be warned that in one important aspect, our notation differs from the notation of DeWitt and
Brehme: While they denote the tail part of the Green’s function by —v(x,z’), we have taken the
liberty of eliminating the silly minus sign and call it instead 4V (x, 2’). The reader should also note
that all our Green’s functions are normalized in the same way, with a factor of —47 multiplying a
four-dimensional Dirac functional of the right-hand side of the wave equation. (The gravitational
Green’s function is sometimes normalized with a —167 on the right-hand side.)

In Part IV (Sections 17 to 19) we compute the retarded, singular, and regular fields associated
with a point scalar charge (Section 17), a point electric charge (Section 18), and a point mass
(Section 19). We provide two different derivations for each of the equations of motion. The first
type of derivation was outlined previously: We follow Detweiler and Whiting [53] and postulate
that only the regular field exerts a force on the particle. In the second type of derivation we take
guidance from Quinn and Wald [150] and postulate that the net force exerted on a point particle
is given by an average of the retarded field over a surface of constant proper distance orthogonal
to the world line — this rest-frame average is easily carried out in Fermi normal coordinates. The
averaged field is still infinite on the world line, but the divergence points in the direction of the
acceleration vector and it can thus be removed by mass renormalization. Such calculations show
that while the singular field does not affect the motion of the particle, it nonetheless contributes
to its inertia.

In Part V (Sections 20 to 23), we show that at linear order in the body’s mass m, an extended
body behaves just as a point mass, and except for the effects of the body’s spin, the world line
representing its mean motion is governed by the MiSaTaQuWa equation. At this order, therefore,
the picture of a point particle interacting with its own field, and the results obtained from this
picture, is justified. Our derivation utilizes the method of matched asymptotic expansions, with
an inner expansion accurate near the body and an outer expansion accurate everywhere else. The
equation of motion of the body’s world line, suitably defined, is calculated by solving the Einstein
equation in a buffer region around the body, where both expansions are accurate.

Concluding remarks are presented in Section 24, and technical developments that are required
in Part V are relegated to Appendices. Throughout this review we use geometrized units and
adopt the notations and conventions of Misner, Thorne, and Wheeler [131].
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2 Computing the self-force: a 2010 literature survey

Much progress has been achieved in the development of practical methods for computing the
self-force. We briefly summarize these efforts in this section, with the goal of introducing the
main ideas and some key issues. A more detailed coverage of the various implementations can be
found in Barack’s excellent review [9]. The 2005 collection of reviews published in Classical and
Quantum Gravity [118] is also recommended for an introduction to the various aspects of self-force
theory and numerics. Among our favourites in this collection are the reviews by Detweiler [49] and
Whiting [183].

An important point to bear in mind is that all the methods covered here mainly compute the
self-force on a particle moving on a fized world line of the background spacetime. A few numerical
codes based on the radiative approximation have allowed orbits to evolve according to energy and
angular-momentum balance. As will be emphasized below, however, these calculations miss out on
important conservative effects that are only accounted for by the full self-force. Work is currently
underway to develop methods to let the self-force alter the motion of the particle in a self-consistent
manner.

2.1 Early work: DeWitt and DeWitt; Smith and Will

The first evaluation of the electromagnetic self-force in curved spacetime was carried out by DeWitt
and DeWitt [132] for a charge moving freely in a weakly curved spacetime characterized by a
Newtonian potential ® < 1. In this context the right-hand side of Eq. (1.33) reduces to the tail
integral, because the particle moves in a vacuum region of the spacetime, and there is no external
force acting on the charge. They found that the spatial components of the self-force are given by

o M 2 ,dg

=e"— 7+ -e"—, 2.1

fem 7/.3 + 3 dt ( )
where M is the total mass contained in the spacetime, r = |x| is the distance from the centre of
mass, 7 = & /r, and g = —V® is the Newtonian gravitational field. (In these expressions the bold-

faced symbols represent vectors in three-dimensional flat space.) The first term on the right-hand
side of Eq. (2.1) is a conservative correction to the Newtonian force mg. The second term is the
standard radiation-reaction force; although it comes from the tail integral, this is the same result
that would be obtained in flat spacetime if an external force mg were acting on the particle. This
agreement is necessary, but remarkable!

A similar expression was obtained by Pfenning and Poisson [141] for the case of a scalar charge.
Here o L4

Sscalar = 26‘127473 7+ §q2£a (22)

where £ is the coupling of the scalar field to the spacetime curvature; the conservative term disap-
pears when the field is minimally coupled. Pfenning and Poisson also computed the gravitational
self-force acting on a point mass moving in a weakly curved spacetime. The expression they ob-
tained is in complete agreement (within its domain of validity) with the standard post-Newtonian
equations of motion.

The force required to hold an electric charge in place in a Schwarzschild spacetime was com-
puted, without approximations, by Smith and Will [163]. As we reviewed previously in Section 1.10,

the self-force contribution to the total force is given by
: M
fearr = ezﬁflm, (2.3)

where M is the black-hole mass, r the position of the charge (in Schwarzschild coordinates), and
f:=1—=2M/r. When r > M, this expression agrees with the conservative term in Eq. (2.1).
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This result was generalized to Reissner—Nordstrom spacetime by Zel'nikov and Frolov [186]. Wise-
man [185] calculated the self-force acting on a static scalar charge in Schwarzschild spacetime. He
found that in this case the self-force vanishes. This result is not incompatible with Eq. (2.2), even
for nonminimal coupling, because the computation of the weak-field self-force requires the presence
of matter, while Wiseman’s scalar charge lives in a purely vacuum spacetime.

2.2 Mode-sum method

Self-force calculations involving a sum over modes were pioneered by Barack and Ori [16, 7], and the
method was further developed by Barack, Ori, Mino, Nakano, and Sasaki [15, 8, 18, 20, 19, 127];
a somewhat related approach was also considered by Lousto [117]. It has now emerged as the
method of choice for self-force calculations in spacetimes such as Schwarzschild and Kerr. Our
understanding of the method was greatly improved by the Detweiler—Whiting decomposition [53]
of the retarded field into singular and regular pieces, as outlined in Sections 1.4 and 1.8, and
subsequent work by Detweiler, Whiting, and their collaborators [51].

Detweiler—Whiting decomposition; mode decomposition; regularization parameters

For simplicity we consider the problem of computing the self-force acting on a particle with a
scalar charge ¢ moving on a world line 4. (The electromagnetic and gravitational problems are
conceptually similar, and they will be discussed below.) The potential ® produced by the particle
satisfies Eq. (1.34), which we rewrite schematically as

O = ¢d(z, 2), (2.4)

where [0 is the wave operator in curved spacetime, and 0(z, z) represents a distributional source
that depends on the world line v through its coordinate representation z(7). From the perspective
of the Detweiler—Whiting decomposition, the scalar self-force is given by

Fo = qVa®r = q(Va® — V,®s), (2.5)

where ®, &g, and Py are the retarded, singular, and regular potentials, respectively. To evaluate
the self-force, then, is to compute the gradient of the regular potential.

From the point of view of Eq. (2.5), the task of computing the self-force appears conceptually
straightforward: Either (i) compute the retarded and singular potentials, subtract them, and take
a gradient of the difference; or (ii) compute the gradients of the retarded and singular potentials,
and then subtract the gradients. Indeed, this is the basic idea for most methods of self-force
computations. However, the apparent simplicity of this sequence of steps is complicated by the
following facts: (i) except for a very limited number of cases, the retarded potential of a point
particle cannot be computed analytically and must therefore be obtained by numerical means; and
(ii) both the retarded and singular potential diverge at the particle’s position. Thus, any sort
of subtraction will generally have to be performed numerically, and for this to be possible, one
requires representations of the retarded and singular potentials (and/or their gradients) in terms
of finite quantities.

In a mode-sum method, these difficulties are overcome with a decomposition of the potential
in spherical-harmonic functions:

=) "L, r)Y'™(0,9). (2.6)
lm

When the background spacetime is spherically symmetric, Eq. (2.4) gives rise to a fully decoupled
set of reduced wave equations for the mode coefficients ®(¢,7), and these are easily integrated

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7


http://www.livingreviews.org/lrr-2011-7

The Motion of Point Particles in Curved Spacetime 29

with simple numerical methods. The dimensional reduction of the wave equation implies that each
®!™(t,r) is finite and continuous (though nondifferentiable) at the position of the particle. There
is, therefore, no obstacle to evaluating each I-mode of the field, defined by

l
(Va®)r:=lim Y Va[0!"(t,1)Y"™(6,0)]. (2.7)
m=—1
The sum over modes, however, must reproduce the singular field evaluated at the particle’s position,
and this is infinite; the mode sum, therefore, does not converge.

Fortunately, there is a piece of each [-mode that does not contribute to the self-force, and that
can be subtracted out; this piece is the corresponding I-mode of the singular field V,®g. Because
the retarded and singular fields share the same singularity structure near the particle’s world line
(as described in Section 1.6), the subtraction produces a mode decomposition of the regular field
Vao®r. And because this field is regular at the particle’s position, the sum over all modes ¢(V,PRr);
is guaranteed to converge to the correct value for the self-force. The key to the mode-sum method,
therefore, is the ability to express the singular field as a mode decomposition.

This can be done because the singular field, unlike the retarded field, can always be expressed
as a local expansion in powers of the distance to the particle; such an expansion was displayed in
Egs. (1.28) and (1.29). (In a few special cases the singular field is actually known exactly [43, 114,
33, 86, 162].) This local expansion can then be turned into a multipole decomposition. Barack
and Ori [18, 15, 20, 19, 9], and then Mino, Nakano, and Sasaki [127], were the first to show that
this produces the following generic structure:

Co D, Ea
1D T =D+ i+ D

where A,, B,, Cu, and so on are [-independent functions that depend on the choice of field
(i.e., scalar, electromagnetic, or gravitational), the choice of spacetime, and the particle’s state of
motion. These so-called regularization parameters are now ubiquitous in the self-force literature,
and they can all be determined from the local expansion for the singular field. The number
of regularization parameters that can be obtained depends on the accuracy of the expansion.
For example, expansions accurate through order r° such as Eqs. (1.28) and (1.29) permit the
determination of A, B, and Cy; to obtain D, one requires the terms of order r, and to get E, the
expansion must be carried out through order r2. The particular polynomials in ! that accompany
the regularization parameters were first identified by Detweiler and his collaborators [51]. Because
the D, term is generated by terms of order r in the local expansion of the singular field, the sum
of [ —4)(1+ 2)]7! from [ = 0 to | = oo evaluates to zero. The sum of the polynomial in front of
E,, also evaluates to zero, and this property is shared by all remaining terms in Eq. (2.8).

(Va®s)i = (I+ 3)Aq + Ba + -y (2.8)

Mode sum

With these elements in place, the self-force is finally computed by implementing the mode-sum
formula

C(X D(X

I+3 (—3)0+3)

L
Fo=q) {(Vaé)l —(+3)Aa — Ba

1=0

E,
- — -++ | + remainder, (2.9)
(=3 -50+351+3)

where the infinite sum over ! is truncated to a maximum mode number L. (This truncation
is necessary in practice, because in general the modes must be determined numerically.) The
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remainder consists of the remaining terms in the sum, from I = L 4+ 1 to [ = oo; it is easy to see
that since the next regularization term would scale as [ =% for large [, the remainder scales as L™°,
and can be made negligible by summing to a suitably large value of [. This observation motivates
the inclusion of the D, and E, terms within the mode sum, even though their complete sums
evaluate to zero. These terms are useful because the sum must necessarily be truncated, and they
permit a more rapid convergence of the mode sum. For example, exclusion of the D, and E,, terms
in Eq. (2.9) would produce a remainder that scales as L~ instead of L~°; while this is sufficient
for convergence, the rate of convergence is too slow to permit high-accuracy computations. Rapid
convergence therefore relies on a knowledge of as many regularization parameters as possible, but
unfortunately these parameters are not easy to calculate. To date, only A, By, Cu, and D,
have been calculated for general orbits in Schwarzschild spacetime [51, 87], and only A,, Ba,
C,, have been calculated for orbits in Kerr spacetime [19]. It is possible, however, to estimate a
few additional regularization parameters by fitting numerical results to the structure of Eq. (2.8);
this clever trick was first exploited by Detweiler and his collaborators [51] to achieve extremely
high numerical accuracies. This trick is now applied routinely in mode-sum computations of the
self-force.

Case study: static electric charge in extreme Reissner—Nordstréom spacetime

The practical use of the mode-sum method can be illustrated with the help of a specific example
that can be worked out fully and exactly. We consider, as in Section 1.10, an electric charge e held
in place at position r = rg in the spacetime of an extreme Reissner—Nordstréom black hole of mass
M and charge @@ = M. The reason for selecting this spacetime resides in the resulting simplicity
of the spherical-harmonic modes for the electromagnetic field.

The metric of the extreme Reissner—Nordstrom spacetime is given by

ds* = —fdt* + f1dr? + r?dQ?, (2.10)

where f = (1 — M/r)2. The only nonzero component of the electromagnetic field tensor is Fj, =
—F,., and this is decomposed as

P = Y E (Y0, 0). (211)
ilm

This field diverges at r = 7, but the modes F}™(r) are finite, though discontinuous. The multipole
coefficients of the field are defined to be

l
(Fi)i =lim Y Fry'™, (2.12)

m=—I

where the limit is taken in the direction of the particle’s position. The charge can be placed on the
axis 8 = 0, and this choice produces an axisymmetric field with contributions from m = 0 only.
Because Y = [(2] 4 1)/47]'/2P;(cos §) and P;(1) = 1, we have

20+1
(Fir) =\ = — lim. FP(ro + A). (2.13)

The sign of A is arbitrary, and (F}); depends on the direction in which 7 is approached.
The charge density of a static particle can also be decomposed in spherical harmonics, and the
mode coeflicients are given by

20+1
2.0 _
) =€ 47

fod(r — o), (2.14)
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where fo = (1 — M/ro)%. If we let

o' = —r?F), (2.15)
then Gauss’s law in the extreme Reissner—Nordstrom spacetime can be shown to reduce to
(14+1) 2041
"/ !
(f(p ) — T¢ = 4re ?foé (7" — TO), (216)

in which a prime indicates differentiation with respect to r, and the index [ on ® is omitted to
simplify the expressions. The solution to Eq. (2.16) can be expressed as ®(r) = & (r)O(r —
r0) + @< (r)O(ro — r), where &~ and ®. are each required to satisfy the homogeneous equation
(f®") —I(1+1)®/r? = 0, as well as the junction conditions

20+ 1
A7

[®] = 4me [@'] =0, (2.17)
with [®] := & (rg) — P (1) denoting the jump across r = rq.

For [ = 0 the general solution to the homogeneous equation is ¢17* + co, where ¢; and ¢ are
constants and r* = fffl dr. The solution for r < rg must be regular at » = M, and we select
®_ = constant. The solution for r > ry must produce a field that decays as r~2 at large r, and
we again select ¢ = constant. Since each constant is proportional to the total charge enclosed
within a sphere of radius r, we arrive at

d. =0, P =+A4me, (1=0). (2.18)

For [ # 0 the solutions to the homogeneous equation are

r— M\
o, = 61€<r0 — M) (Ir+ M) (2.19)
and "
7"07M
(I)>C26<’I“—M) [(l+1)r— M]. (2.20)

The constants ¢; and ¢y are determined by the junction conditions, and we get

47 1 47 1
_ ./ L _ L 9221
“ A+1re. 2 Vaoatir (2.21)

The modes of the electromagnetic field are now completely determined.
According to the foregoing results, and recalling the definition of Eq. (2.13), the multipole
coefficients of the electromagnetic field at r = ro + 0" are given by

(F7), = -, (F7),=e(l+3) (—:3) - 2—%(% —2M). (2.22)

For r = rg + 0~ we have instead
1 e
(F5), =0, (Fis), =e(l+3) <+2> — —5(ro —2M). (2.23)
T 2rg

We observe that the multipole coefficients lead to a diverging mode sum. We also observe, however,
that the multipole structure is identical to the decomposition of the singular field displayed in
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Eq. (2.8). Comparison of the two expressions allows us to determine the regularization parameters
for the given situation, and we obtain

A=%2, B=-—(rp-2M), C=D=E=---=0. (2.24)
g 2rg

Regularization of the mode sum via Eq. (2.9) reveals that the modes I # 0 give rise to the singular
field, while the regular field comes entirely from the mode [ = 0. In this case, therefore, we can
state that the exact expression for the regular field evaluated at the position of the particle is
FR = (Fy)o — 3A — B, or F{(rg) = —eM/r§. Because the regular field must be a solution to
the vacuum Maxwell equations, its monopole structure guarantees that its value at any position is
given by

M
FR(r) = -7 (2.25)
r
This is the field of an image charge ¢’ = +eM/rg situated at the centre of the black hole.
The self-force acting on the static charge is then
e2M e M
J7 = —eV/FoFR(ro) = 5 /Jo = S5 (1 = M/ro). (2.26)

3
7o o

This expression agrees with the Smith-Will force of Eq. (1.50). The interpretation of the result in
terms of an interaction between e and the image charge ¢’ was elaborated in Sec. 1.10.

Computations in Schwarzschild spacetime

The mode-sum method was successfully implemented in Schwarzschild spacetime to compute the
scalar and electromagnetic self-forces on a static particle [31, 36] . It was used to calculate the
scalar self-force on a particle moving on a radial trajectory [10], circular orbit [30, 51, 87, 37], and
a generic bound orbit [84]. It was also developed to compute the electromagnetic self-force on a
particle moving on a generic bound orbit [85], as well as the gravitational self-force on a point
mass moving on circular [21, 1] and eccentric orbits [22]. The mode-sum method was also used to
compute unambiguous physical effects associated with the gravitational self-force [50, 157, 11], and
these results were involved in detailed comparisons with post-Newtonian theory [50, 29, 28, 44, 11].
These achievements will be described in more detail in Section 2.6.

An issue that arises in computations of the electromagnetic and gravitational self-forces is the
choice of gauge. While the self-force formalism is solidly grounded in the Lorenz gauge (which
allows the formulation of a wave equation for the potentials, the decomposition of the retarded
field into singular and regular pieces, and the computation of regularization parameters), it is
often convenient to carry out the numerical computations in other gauges, such as the popular
Regge—Wheeler gauge and the Chrzanowski radiation gauge described below. Compatibility of
calculations carried out in different gauges has been debated in the literature. It is clear that
the singular field is gauge invariant when the transformation between the Lorenz gauge and the
adopted gauge is smooth on the particle’s world line; in such cases the regularization parameters
also are gauge invariant [17], the transformation affects the regular field only, and the self-force
changes according to Eq. (1.49). The transformations between the Lorenz gauge and the Regge—
Wheeler and radiation gauges are not regular on the world line, however, and in such cases the
regularization of the retarded field must be handled with extreme care.

Computations in Kerr spacetime; metric reconstruction

The reliance of the mode-sum method on a spherical-harmonic decomposition makes it generally
impractical to apply to self-force computations in Kerr spacetime. Wave equations in this spacetime
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are better analyzed in terms of a spheroidal-harmonic decomposition, which simultaneously requires
a Fourier decomposition of the field’s time dependence. (The eigenvalue equation for the angular
functions depends on the mode’s frequency.) For a static particle, however, the situation simplifies,
and Burko and Liu [35] were able to apply the method to calculate the self-force on a static scalar
charge in Kerr spacetime. More recently, Warburton and Barack [181] carried out a mode-sum
calculations of the scalar self-force on a particle moving on equatorial orbits of a Kerr black hole.
They first solve for the spheroidal multipoles of the retarded potential, and then re-express them in
terms of spherical-harmonic multipoles. Fortunately, they find that a spheroidal multipole is well
represented by summing over a limited number of spherical multipoles. The Warburton—Barack
work represents the first successful computations of the self-force in Kerr spacetime, and it reveals
the interesting effect of the black hole’s spin on the behaviour of the self-force.

The analysis of the scalar wave equation in terms of spheroidal functions and a Fourier decom-
position permits a complete separation of the variables. For decoupling and separation to occur in
the case of a gravitational perturbation, it is necessary to formulate the perturbation equations in
terms of Newman-Penrose (NP) quantities [172], and to work with the Teukolsky equation that
governs their behaviour. Several computer codes are now available that are capable of integrating
the Teukolsky equation when the source is a point mass moving on an arbitrary geodesic of the Kerr
spacetime. (A survey of these codes is given below.) Once a solution to the Teukolsky equation
is at hand, however, there still remains the additional task of recovering the metric perturbation
from this solution, a problem referred to as metric reconstruction.

Reconstruction of the metric perturbation from solutions to the Teukolsky equation was tackled
in the past in the pioneering efforts of Chrzanowski [41], Cohen and Kegeles [42, 105], Stewart [166],
and Wald [179]. These works have established a procedure, typically attributed to Chrzanowski,
that returns the metric perturbation in a so-called radiation gauge. An important limitation of
this method, however, is that it applies only to vacuum solutions to the Teukolsky equation. This
makes the standard Chrzanowski procedure inapplicable in the self-force context, because a point
particle must necessarily act as a source of the perturbation. Some methods were devised to extend
the Chrzanowski procedure to accommodate point sources in specific circumstances [121, 134], but
these were not developed sufficiently to permit the computation of a self-force. See Ref. [184] for
a review of metric reconstruction from the perspective of self-force calculations.

A remarkable breakthrough in the application of metric-reconstruction methods in self-force
calculations was achieved by Keidl, Wiseman, and Friedman [107, 106, 108], who were able to com-
pute a self-force starting from a Teukolsky equation sourced by a point particle. They did it first
for the case of an electric charge and a point mass held at a fixed position in a Schwarzschild space-
time [107], and then for the case of a point mass moving on a circular orbit around a Schwarzschild
black hole [108]. The key conceptual advance is the realization that, according to the Detweiler—
Whiting perspective, the self-force is produced by a regularized field that satisfies vacuum field
equations in a neighbourhood of the particle. The regular field can therefore be submitted to the
Chrzanowski procedure and reconstructed from a source-free solution to the Teukolsky equation.

More concretely, suppose that we have access to the Weyl scalar 1y produced by a point mass
moving on a geodesic of a Kerr spacetime. To compute the self-force from this, one first calculates
the singular Weyl scalar 9§ from the Detweiler-Whiting singular field hS 5, and subtracts it from
0. The result is a regularized Weyl scalar ¢\, which is a solution to the homogeneous Teukolsky
equation. This sets the stage for the metric-reconstruction procedure, which returns (a piece of)
the regular field hgﬁ in the radiation gauge selected by Chrzanowski. The computation must be
completed by adding the pieces of the metric perturbation that are not contained in g; these
are referred to either as the nonradiative degrees of freedom (since vy is purely radiative), or as
the I = 0 and [ = 1 field multipoles (because the sum over multipoles that make up v begins
at [ = 2). A method to complete the Chrzanowski reconstruction of hsﬂ was devised by Keidl et
al. [107, 108], and the end result leads directly to the gravitational self-force. The relevance of the
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I =0and ! =1 modes to the gravitational self-force was emphasized by Detweiler and Poisson [52].

Time-domain versus frequency-domain methods

When calculating the spherical-harmonic components ®™(¢,r) of the retarded potential ® — refer
back to Eq. (2.6) — one can choose to work either directly in the time domain, or perform a
Fourier decomposition of the time dependence and work instead in the frequency domain. While
the time-domain method requires the integration of a partial differential equation in ¢ and r,
the frequency-domain method gives rise to set of ordinary differential equations in r, one for
each frequency w. For particles moving on circular or slightly eccentric orbits in Schwarzschild
spacetime, the frequency spectrum is limited to a small number of discrete frequencies, and a
frequency-domain method is easy to implement and yields highly accurate results. As the orbital
eccentricity increases, however, the frequency spectrum broadens, and the computational burden
of summing over all frequency components becomes more significant. Frequency-domain methods
are less efficient for large eccentricities, the case of most relevance for extreme-mass-ratio inspirals,
and it becomes advantageous to replace them with time-domain methods. (See Ref. [25] for a
quantitative study of this claim.) This observation has motivated the development of accurate
evolution codes for wave equations in 141 dimensions.

Such codes must be able to accommodate point-particle sources, and various strategies have
been pursued to represent a Dirac distribution on a numerical grid, including the use of very narrow
Gaussian pulses [116, 110, 34] and of “finite impulse representations” [168]. These methods do a
good job with waveform and radiative flux calculations far away from the particle, but are of very
limited accuracy when computing the potential in a neighborhood of the particle. A numerical
method designed to provide an exact representation of a Dirac distribution in a time-domain
computation was devised by Lousto and Price [120] (see also Ref. [123]). It was implemented
by Haas [84, 85] for the specific purpose of evaluating ®'(¢,7) at the position of particle and
computing the self-force. Similar codes were developed by other workers for scalar [176] and
gravitational [21, 22] self-force calculations.

Most extant time-domain codes are based on finite-difference techniques, but codes based on
pseudo-spectral methods have also been developed [67, 68, 37, 38]. Spectral codes are a powerful
alternative to finite-difference codes, especially when dealing with smooth functions, because they
produce much faster convergence. The fact that self-force calculations deal with point sources
and field modes that are not differentiable might suggest that spectral convergence should not
be expected in this case. This objection can be countered, however, by placing the particle at
the boundary between two spectral domains. Functions are then smooth in each domain, and
discontinuities are handled by formulating appropriate boundary conditions; spectral convergence
is thereby achieved.

2.3 Effective-source method

The mode-sum methods reviewed in the preceding subsection have been developed and applied
extensively, but they do not exhaust the range of approaches that may be exploited to compute
a self-force. Another set of methods, devised by Barack and his collaborators [12, 13, 60] as well
as Vega and his collaborators [176, 177, 175], begin by recognizing that an approximation to the
exact singular potential can be used to regularize the delta-function source term of the original
field equation. We shall explain this idea in the simple context of a scalar potential .

We continue to write the wave equation for the retarded potential ® in the schematic form

0P = ¢d(z, 2), (2.27)

where [ is the wave operator in curved spacetime, and d(z, z) is a distributional source term that
depends on the particle’s world line  through its coordinate representation z(7). By construction,
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the exact singular potential ®g satisfies the same equation, and an approximation to the singular
potential, denoted ®g, will generally satisfy an equation of the form

O®s = ¢d(z, z0) + O(r™) (2.28)

for some integer n > 0, where r is a measure of distance to the world line. A “better” approximation
to the singular potential is one with a higher value of n. From the approximated singular potential
we form an approximation to the regular potential by writing

g = & — Whg, (2.29)

where W is a window function whose properties will be specified below. The approximated regular
potential is governed by the wave equation

Odgr = gd(x, 2) — D(Wés) = S(x, 2), (2.30)

and the right-hand side of this equation defines the effective source term S(z, z). This equation is
much less singular than Eq. (2.27), and it can be integrated using numerical methods designed to
handle smooth functions.

To see this, we write the effective source more specifically as

S(x,2) = —OsOW — 2V, WV*Dg — Wdg + ¢d(z, 2). (2.31)

With the window function W designed to approach unity as  — z, we find that the delta function
that arises from the third term on the right-hand side precisely cancels out the fourth term. To
keep the other terms in S well behaved on the world line, we further restrict the window function
to satisfy VW = O(rP) with p > 2; this ensures that multiplication by V,®s = O(r~2) leaves
behind a bounded quantity. In addition, we demand that OW = O(r?) with ¢ > 1, so that
multiplication by ®s = O(r~') again produces a bounded quantity. It is also useful to require
that W (z) have compact (spatial) support, to ensure that the effective source term S(z, z) does
not extend beyond a reasonably small neighbourhood of the world line; this property also has the
virtue of making P precisely equal to the retarded potential ® outside the support of the window
function. This implies, in particular, that ®r can be used directly to compute radiative fluxes at
infinity. Another considerable virtue of these specifications for the window function is that they
guarantee that the gradient of ®g is directly tied to the self-force. We indeed see that

lim Vo ®p = lim (Vo® — WV, ®s) — lim &5V, W
rT—z T—rz T—z
= lim (V,® — V,®s)
rT—rz
=q 'Fa, (2.32)

with the second line following by virtue of the imposed conditions on W, and the third line from
the properties of the approximated singular field.
The effective-source method therefore consists of integrating the wave equation

O®g = S(z, 2), (2.33)

for the approximated regular potential &g, with a source term S(z, z) that has become a regular
function (of limited differentiability) of the spacetime coordinates . The method is also known
as a “puncture approach,” in reference to a similar regularization strategy employed in numerical
relativity. It is well suited to a 3+1 integration of the wave equation, which can be implemented
on mature codes already in circulation within the numerical-relativity community. An important
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advantage of a 3+1 implementation is that it is largely indifferent to the choice of background
spacetime, and largely insensitive to the symmetries possessed by this spacetime; a self-force in
Kerr spacetime is in principle just as easy to obtain as a self-force in Schwarzschild spacetime.

The method is also well suited to a self-consistent implementation of the self-force, in which
the motion of the particle is not fixed in advance, but determined by the action of the computed
self-force. This amounts to combining Eq. (2.33) with the self-force equation

Du*

m—— = q(g"" + u'u”)V, g, (2.34)
T

in which the field is evaluated on the dynamically determined world line. The system of equations is
integrated jointly, and self-consistently. The 3+1 version of the effective-source approach presents
a unique opportunity for the numerical-relativity community to get involved in self-force compu-
tations, with only a minimal amount of infrastructure development. This was advocated by Vega
and Detweiler [176], who first demonstrated the viability of the approach with a 141 time-domain
code for a scalar charge on a circular orbit around a Schwarzschild black hole. An implementation
with two separate 341 codes imported from numerical relativity was also accomplished [177].

The work of Barack and collaborators [12, 13] is a particular implementation of the effective-
source approach in a 2+1 numerical calculation of the scalar self-force in Kerr spacetime. (See also
the independent implementation by Lousto and Nakano [119].) Instead of starting with Eq. (2.27),
they first decompose ® according to

O(x) =Y " (t,r,0) exp(img) (2.35)

and formulate reduced wave equations for the Fourier coefficients ®. Each coefficient is then regu-
larized with an appropriate singular field fig”‘, which eliminates the delta-function from Eq. (2.27).
This gives rise to regularized source terms for the reduced wave equations, which can then be
integrated with a 241 evolution code. In the final stage of the computation, the self-force is re-
covered by summing over the regularized Fourier coefficients. This strategy, known as the m-mode
reqularization scheme, is currently under active development. Recently it was successfully applied
by Dolan and Barack [60] to compute the self-force on a scalar charge in circular orbit around a
Schwarzschild black hole.

2.4 Quasilocal approach with “matched expansions”

As was seen in Egs. (1.33), (1.40), and (1.47), the self-force can be expressed as an integral over the
past world line of the particle, the integrand involving the Green’s function for the appropriate wave
equation. Attempts have been made to compute the Green’s function directly [132, 141, 33, 86],
and to evaluate the world-line integral. The quasilocal approach, first introduced by Anderson
and his collaborators [4, 3, 6, 5], is based on the expectation that the world-line integral might
be dominated by the particle’s recent past, so that the Green’s function can be represented by
its Hadamard expansion, which is restricted to the normal convex neighbourhood of the particle’s
current position. To help with this enterprise, Ottewill and his collaborators [136, 182, 137, 39]
have pushed the Hadamard expansion to a very high order of accuracy, building on earlier work
by Décanini and Folacci [48].

The weak-field calculations performed by DeWitt and DeWitt [132] and Pfenning and Pois-
son [141] suggest that the world-line integral is not, in fact, dominated by the recent past. Instead,
most of the self-force is produced by signals that leave the particle at some time in the past, scatter
off the central mass, and reconnect with the particle at the current time; such signals mark the
boundary of the normal convex neighbourhood. The quasilocal evaluation of the world-line inte-
gral must therefore be supplemented with contributions from the distant past, and this requires
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a representation of the Green’s function that is not limited to the normal convex neighbourhood.
In some spacetimes it is possible to express the Green’s function as an expansion in quasi-normal
modes, as was demonstrated by Casals and his collaborators for a static scalar charge in the Nariai
spacetime [40]. Their study provided significant insights into the geometrical structure of Green’s
functions in curved spacetime, and increased our understanding of the non-local character of the
self-force.

2.5 Adiabatic approximations

The accurate computation of long-term waveforms from extreme-mass-ratio inspirals (EMRIs)
involves a lengthy sequence of calculations that include the calculation of the self-force. One can
already imagine the difficulty of numerically integrating the coupled linearized Einstein equation
for durations much longer than has ever been attempted by existing numerical codes. While doing
so, the code would also have to evaluate the self-force reasonably often (if not at each time step) in
order to remain close to the true dynamics of the point mass. Moreover, gravitational-wave data
analysis via matched filtering require full evolutions of the sort just described for a large sample
of systems parameters. All these considerations underlie the desire for simplified approximations
to fully self-consistent self-force EMRI models.

The adiabatic approximation refers to one such class of potentially useful approximations. The
basic assumption is that the secular effects of the self-force occur on a timescale that is much
longer than the orbital period. In an extreme-mass-ratio binary, this assumption is valid during
the early stage of inspiral; it breaks down in the final moments, when the orbit transitions to a
quasi-radial infall called the plunge. From the adiabaticity assumption, numerous approximations
have been formulated: For example, (i) since the particle’s orbit deviates only slowly from geodesic
motion, the self-force can be calculated from a field sourced by a geodesic; (ii) since the radiation-
reaction timescale t,.,., over which a significant shrinking of the orbit occurs due to the self-force,
is much longer than the orbital period, periodic effects of the self-force can be neglected; and (iii)
conservative effects of the self-force can be neglected (the radiative approzimation).

A seminal example of an adiabatic approximation is the Peters-Mathews formalism [140, 139],
which determines the long-term evolution of a binary orbit by equating the time-averaged rate of
change of the orbital energy E and angular momentum L to, respectively, the flux of gravitational-
wave energy and angular momentum at infinity. This formalism was used to successfully predict the
decreasing orbital period of the Hulse-Taylor pulsar, before more sophisticated methods, based on
post-Newtonian equations of motion expanded to 2.5PN order, were incorporated in times-of-arrival
formulae.

In the hope of achieving similar success in the context of the self-force, considerable work has
been done to formulate a similar approximation for the case of an extreme-mass-ratio inspiral [124,
125, 126, 98, 61, 62, 159, 158, 78, 128, 94]. Bound geodesics in Kerr spacetime are specified by
three constants of motion — the energy F, angular momentum L, and Carter constant C. If one
could easily calculate the rates of change of these quantities, using a method analogous to the
Peters—-Mathews formalism, then one could determine an approximation to the long-term orbital
evolution of the small body in an EMRI, avoiding the lengthy process of regularization involved in
the direct integration of the self-forced equation of motion. In the early 1980s, Gal’tsov [77] showed
that the average rates of change of F and L, as calculated from balance equations that assume
geodesic source motion, agree with the averaged rates of change induced by a self-force constructed
from a radiative Green’s function defined as Gyaa 1= 1(G_ — G4). As discussed in Section 1.4,
this is equal to the regular two-point function Ggr in flat spacetime, but G,.q # Ggr in curved
spacetime; because of its time-asymmetry, it is purely dissipative. Mino [124], building on the work
of Gal’tsov, was able to show that the true self-force and the dissipative force constructed from
Grad cause the same averaged rates of change of all three constants of motion, lending credence
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to the radiative approximation. Since then, the radiative Green’s function was used to derive
explicit expressions for the rates of change of F, L, and C' in terms of the particle’s orbit and wave
amplitudes at infinity [159, 158, 78], and radiative approximations based on such expressions have
been concretely implemented by Drasco, Hughes and their collaborators [99, 61, 62].

The relevance of the conservative part of the self-force — the part left out when using G,,q — was
analyzed in numerous recent publications [32, 148, 146, 147, 94, 97]. As was shown by Pound et
al. [148, 146, 147], neglect of the conservative effects of the self-force generically leads to long-term
errors in the phase of an orbit and the gravitational wave it produces. These phasing errors are
due to orbital precession and a direct shift in orbital frequency. This shift can be understood by
considering a conservative force acting on a circular orbit: the force is radial, it alters the centripetal
acceleration, and the frequency associated with a given orbital radius is affected. Despite these
errors, a radiative approximation may still suffice for gravitational-wave detection [94]; for circular
orbits, which have minimal conservative effects, radiative approximations may suffice even for
parameter-estimation [97]. However, at this point in time, these analyses remain inconclusive
because they all rely on extrapolations from post-Newtonian results for the conservative part
of the self-force. For a more comprehensive discussion of these issues, the reader is referred to
Ref. [04, 143).

Hinderer and Flanagan performed the most comprehensive study of these issues [69], utilizing
a two-timescale expansion [109, 145] of the field equations and self-forced equations of motion in
an EMRI. In this method, all dynamical variables are written in terms of two time coordinates:
a fast time ¢ and a slow time ¢ := (m/M)t. In the case of an EMRI, the dynamical variables are
the metric and the phase-space variables of the world line. The fast-time dependence captures
evolution on the orbital timescale ~ M, while the slow-time dependence captures evolution on the
radiation-reaction timescale ~ M?/m. One obtains a sequence of fast-time and slow-time equations
by expanding the full equations in the limit of small m while treating the two time coordinates as
independent. Solving the leading-order fast-time equation, in which # is held fixed, yields a metric
perturbation sourced by a geodesic, as one would expect from the linearized field equations for a
point particle. The leading-order effects of the self-force are incorporated by solving the slow-time
equation and letting ¢ vary. (Solving the next-higher-order slow-time equation determines similar
effects, but also the backreaction that causes the parameters of the large black hole to change
slowly.)

Using this method, Hinderer and Flanagan identified the effects of the various pieces of the
self-force. To describe this we write the self-force as

2
L m m
"= M(f(unrr +f(“nc) + W(fém +f(“z)c> +oe (2.36)

where ‘rr’ denotes a radiation-reaction, or dissipative, piece of the force, and ‘c’ denotes a conser-
vative piece. Hinderer and Flanagan’s principal result is a formula for the orbital phase (which
directly determines the phase of the emitted gravitational waves) in terms of these quantities:
M? - m -
= M0 £ (g ) 2.37
o=— (400 + 500D+ ), (2.37)

where ¢ depends on an averaged piece of f(“l) while ¢(1) depends on f(“l)C7 the oscillatory piece

rr’
of f(“l)rr7 and the averaged piece of f(’;)rr. From this result, we see that the radiative approximation
yields the leading-order phase, but fails to determine the first subleading correction. We also see
that the approximations (i) — (iii) mentioned above are consistent (so long as the parameters of the
‘geodesic’ source are allowed to vary slowly) at leading order in the two-timescale expansion, but
diverge from one another beyond that order. Hence, we see that an adiabatic approximation is
generically insufficient to extract parameters from a waveform, since doing so requires a description
of the inspiral accurate up to small (i.e., smaller than order-1) errors. But we also see that an
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adiabatic approximation based on the radiative Green’s function may be an excellent approximation
for other purposes, such as detection.

To understand this result, consider the following naive analysis of a quasicircular EMRI — that
is, an orbit that would be circular were it not for the action of the self-force, and which is slowly spi-
raling into the large central body. We write the orbital frequency as w(® (E)+ (m/M)w%l) (E)+---,
where w(®) (E) is the frequency as a function of energy on a circular geodesic, and (m/M)w%l)(E) is
the correction to this due to the conservative part of the first-order self-force (part of the correction
also arises due to oscillatory zeroth-order effects combining with oscillatory first-order effects, but
for simplicity we ignore this contribution). Neglecting oscillatory effects, we write the energy in
terms only of its slow-time dependence: E = E(©) ()4 (m/M)E™ (t)+---. The leading-order term
E) is determined by the dissipative part of first-order self-force, while E(V) is determined by both
the dissipative part of the second-order force and a combination of conservative and dissipative
parts of the first-order force. Substituting this into the frequency, we arrive at

w=w®(EO) + % W (E@) + WM (BO), E<1>)} T (2.38)

where wél) = EMW9w® /9E, in which the partial derivative is evaluated at E = E(®). Integrating

this over a radiation-reaction time, we arrive at the orbital phase of Eq. (2.37). (In a complete

description, E(t) will have oscillatory pieces, which are functions of ¢ rather than #, and one must

know these in order to correctly determine ¢ .) Such a result remains valid even for generic orbits,

ngt)ere, for example, orbital precession due to the conservative force contributes to the analogue of
1

wy .

2.6 Physical consequences of the self-force

To be of relevance to gravitational-wave astronomy, the paramount goal of the self-force community
remains the computation of waveforms that properly encode the long-term dynamical evolution
of an extreme-mass-ratio binary. This requires a fully consistent orbital evolution fed to a wave-
generation formalism, and to this day the completion of this program remains as a future challenge.
In the meantime, a somewhat less ambitious, though no less compelling, undertaking is that of
probing the physical consequences of the self-force on the motion of point particles.

Scalar charge in cosmological spacetimes

The intriguing phenomenon of a scalar charge changing its rest mass because of an interaction
with its self-field was studied by Burko, Harte, and Poisson [33] and Haas and Poisson [86] in the
simple context of a particle at rest in an expanding universe. The scalar Green’s function could
be computed explicitly for a wide class of cosmological spacetimes, and the action of the field on
the particle determined without approximations. It is found that for certain cosmological models,
the mass decreases and then increases back to its original value. For other models, the mass is
restored only to a fraction of its original value. For de Sitter spacetime, the particle radiates all of
its rest mass into monopole scalar waves.

Physical consequences of the gravitational self-force

The earliest calculation of a gravitational self-force was performed by Barack and Lousto for the
case of a point mass plunging radially into a Schwarzschild black hole [14]. The calculation,
however, depended on a specific choice of gauge and did not identify unambiguous physical con-
sequences of the self-force. To obtain such consequences, it is necessary to combine the self-force
(computed in whatever gauge) with the metric perturbation (computed in the same gauge) in the
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calculation of a well-defined observable that could in principle be measured. For example, the con-
servative pieces of the self-force and metric perturbation can be combined to calculate the shifts in
orbital frequencies that originate from the gravitational effects of the small body; an application of
such a calculation would be to determine the shift (as measured by frequency) in the innermost sta-
ble circular orbit of an extreme-mass-ratio binary, or the shift in the rate of periastron advance for
eccentric orbits. Such calculations, however, must exclude all dissipative aspects of the self-force,
because these introduce an inherent ambiguity in the determination of orbital frequencies.

A calculation of this kind was recently achieved by Barack and Sago [22, 23], who computed the
shift in the innermost stable circular orbit of a Schwarzschild black hole caused by the conservative
piece of the gravitational self-force. The shift in orbital radius is gauge dependent (and was reported
in the Lorenz gauge by Barack and Sago), but the shift in orbital frequency is measurable and
therefore gauge invariant. Their main result — a genuine milestone in self-force computations — is
that the fractional shift in frequency is equal to 0.4870m/M; the frequency is driven upward by
the gravitational self-force. Barack and Sago compare this shift to the ambiguity created by the
dissipative piece of the self-force, which was previously investigated by Ori and Thorne [135] and
Sundararajan [167]; they find that the conservative shift is very small compared with the dissipative
ambiguity. In a follow-up analysis, Barack, Damour, and Sago [11] computed the conservative shift
in the rate of periastron advance of slightly eccentric orbits in Schwarzschild spacetime.

Conservative shifts in the innermost stable circular orbit of a Schwarzschild black hole were
first obtained in the context of the scalar self-force by Diaz-Rivera et al. [55]; in this case they
obtain a fractional shift of 0.0291657¢>/(mM), and here also the frequency is driven upward.

Detweiler’s redshift factor

In another effort to extract physical consequences from the gravitational self-force on a particle in
circular motion in Schwarzschild spacetime, Detweiler discovered [50] that u!, the time component
of the velocity vector in Schwarzschild coordinates, is invariant with respect to a class of gauge
transformations that preserve the helical symmetry of the perturbed spacetime. Detweiler further
showed that 1/u is an observable: it is the redshift that a photon suffers when it propagates
from the orbiting body to an observer situated at a large distance on the orbital axis. This gauge-
invariant quantity can be calculated together with the orbital frequency 2, which is a second gauge-
invariant quantity that can be constructed for circular orbits in Schwarzschild spacetime. Both u!
and ) acquire corrections of fractional order m/M from the self-force and the metric perturbation.
While the functions u!(r) and Q(r) are still gauge dependent, because of the dependence on the
radial coordinate r, elimination of r from these relations permits the construction of u*(Q), which
is gauge invariant. A plot of u! as a function of Q therefore contains physically unambiguous
information about the gravitational self-force.

The computation of the gauge-invariant relation u‘(2) opened the door to a detailed com-
parison between the predictions of the self-force formalism to those of post-Newtonian theory.
This was first pursued by Detweiler [50], who compared u!(2) as determined accurately through
second post-Newtonian order, to self-force results obtained numerically; he reported full consis-
tency at the expected level of accuracy. This comparison was pushed to the third post-Newtonian
order [29, 28, 44, 11]. Agreement is remarkable, and it conveys a rather deep point about the
methods of calculation. The computation of u!(£2), in the context of both the self-force and post-
Newtonian theory, requires regularization of the metric perturbation created by the point mass. In
the self-force calculation, removal of the singular field is achieved with the Detweiler—Whiting pre-
scription, while in post-Newtonian theory it is performed with a very different prescription based
on dimensional regularization. Each prescription could have returned a different regularized field,
and therefore a different expression for u!(€). This, remarkably, does not happen; the singular
fields are “physically the same” in the self-force and post-Newtonian calculations.
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A generalization of Detweiler’s redshift invariant to eccentric orbits was recently proposed and
computed by Barack and Sago [24], who report consistency with corresponding post-Newtonian
results in the weak-field regime. They also computed the influence of the conservative gravitational
self-force on the periastron advance of slightly eccentric orbits, and compared their results with full
numerical relativity simulations for modest mass-ratio binaries. Thus, in spite of the unavailability
of self-consistent waveforms, it is becoming clear that self-force calculations are already proving
to be of value: they inform post-Newtonian calculations and serve as benchmarks for numerical
relativity.
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Part I: General Theory of Bitensors

3 Synge’s world function

3.1 Definition

In this and the following sections we will construct a number of bitensors, tensorial functions of
two points in spacetime. The first is 2/, which we call the “base point”, and to which we assign
indices o, ', etc. The second is z, which we call the “field point”, and to which we assign indices
a, B, etc. We assume that x belongs to N (z'), the normal convex neighbourhood of x’; this is the
set of points that are linked to =’ by a unique geodesic. The geodesic segment S that links x to
2’ is described by relations z#(A) in which A is an affine parameter that ranges from Ay to Ay;
we have z(A\g) := ¢’ and z(\1) := z. To an arbitrary point z on the geodesic we assign indices
u, v, etc. The vector t* = dz#/d\ is tangent to the geodesic, and it obeys the geodesic equation
Dt# /dX\ = 0. The situation is illustrated in Figure 5.

Figure 5: The base point z’, the field point 2, and the geodesic segment 3 that links them. The geodesic
is described by parametric relations z#(A) and t* = dz*/dX is its tangent vector.

Synge’s world function is a scalar function of the base point z’ and the field point z. It is
defined by

A1

1
o(z,z') = 5()\1 — )\0)/ G ()t d, (3.1)
Ao

and the integral is evaluated on the geodesic 3 that links = to z'. You may notice that o is invariant
under a constant rescaling of the affine parameter, A — A = a\ + b, where a and b are constants.

By virtue of the geodesic equation, the quantity ¢ := g, t#t" is constant on the geodesic. The
world function is therefore numerically equal to %5()\1 — Xo)2. If the geodesic is timelike, then
A can be set equal to the proper time 7, which implies that ¢ = —1 and o = —%(AT)Q. If the
geodesic is spacelike, then A can be set equal to the proper distance s, which implies that ¢ = 1
and 0 = %(As)? If the geodesic is null, then o = 0. Quite generally, therefore, the world function
is half the squared geodesic distance between the points z’ and z.

In flat spacetime, the geodesic linking  to 2’ is a straight line, and o0 = Lnas(z —z')%(z —2’)?
in Lorentzian coordinates.
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3.2 Differentiation of the world function

The world function o(z,z’) can be differentiated with respect to either argument. We let o, =
0o /0z® be its partial derivative with respect to z, and o, = 9o/ oz its partial derivative with
respect to x’. It is clear that o, behaves as a dual vector with respect to tensorial operations
carried out at x, but as a scalar with respect to operations carried out x’. Similarly, o,/ is a scalar
at x but a dual vector at z’.

We let 0,5 := Vo, be the covariant derivative of o, with respect to z; this is a rank-2 tensor
at x and a scalar at 2. Because o is a scalar at , we have that this tensor is symmetric: 0gq = 043.
Similarly, we let o4 := 0g04 = 820/8935/8;5" be the partial derivative of o, with respect to x;
this is a dual vector both at 2 and z’. We can also define 04/3 1= dgon = 820/8:3'8(’%0‘/ to be the
partial derivative of o, with respect to z. Because partial derivatives commute, these bitensors
are equal: 0gq = 0qp . Finally, we let 043 1= Vg0, be the covariant derivative of o, with
respect to ’; this is a symmetric rank-2 tensor at =’ and a scalar at .

The notation is easily extended to any number of derivatives. For example, we let 0,gys' 1=
Vs V,VgVao, which is a rank-3 tensor at = and a dual vector at 2’. This bitensor is symmetric
in the pair of indices o and S, but not in the pairs a and 7, nor 8 and 7. Because Vy is
here an ordinary partial derivative with respect to z’, the bitensor is symmetric in any pair of
indices involving ¢’. The ordering of the primed index relative to the unprimed indices is therefore
irrelevant: the same bitensor can be written as 0sqgy Or 0as78y O 0agsy, making sure that the
ordering of the unprimed indices is not altered.

More generally, we can show that derivatives of any bitensor )...(x, 2') satisfy the property

Qo ipar = Qoo (3.2)

in which “ --” stands for any combination of primed and unprimed indices. We start by establishing
the symmetry of Q.....5 with respect to the pair @ and 4’. This is most easily done by adopting
Fermi normal coordinates (see Section 9) adapted to the geodesic 8 and setting the connection
to zero both at « and #’. In these coordinates, the bitensor ..., is the partial derivative of Q...
with respect to ¢, and €2....qs is obtained by taking an additional partial derivative with respect
to z°'. These two operations commute, and )....5: = §....qp follows as a bitensorial identity.
Equation (3.2) then follows by further differentiation with respect to either x or 2.

The message of Eq. (3.2), when applied to derivatives of the world function, is that while the
ordering of the primed and unprimed indices relative to themselves is important, their ordering
with respect to each other is arbitrary. For example, 0n/g/y57e = 0a/g/5/ve = Trea’grs: -

3.3 Evaluation of first derivatives

We can compute o, by examining how o varies when the field point £ moves. We let the new
field point be z + dz, and do := o(x + oz, 2") — o(x, ") is the corresponding variation of the world
function. We let 8 + 6 be the unique geodesic segment that links x + dx to z’; it is described by
relations z#(\) + dz#(A), in which the affine parameter is scaled in such a way that it runs from
Ao to A1 also on the new geodesic. We note that dz(XAg) = d2’ = 0 and dz(\1) = dz.

Working to first order in the variations, Eq. (3.1) implies

)\1 1
do = A\ / <ng'“ §2Y + 3 Guw A2 M) dX,
Ao
where AX = A1 — A9, an overdot indicates differentiation with respect to A, and the metric and its
derivatives are evaluated on . Integrating the first term by parts gives
A A1
o = AX [g,wzﬂ 5ZV] —AX

(g,wz” + sz'"z*) 521 dA.
Ao o
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The integral vanishes because z#(\) satisfies the geodesic equation. The boundary term at Ag is
zero because the variation dz# vanishes there. We are left with 6o = AAgast*6x”, or

o, 2") = (A — o) gapt?, (3.3)

in which the metric and the tangent vector are both evaluated at x. Apart from a factor A\, we
see that o®(z,z’) is equal to the geodesic’s tangent vector at z. If in Eq. (3.3) we replace x by a
generic point z(\) on 3, and if we correspondingly replace A\; by A, we obtain o#(z,2') = (A—Xg)t#;
we therefore see that o#(z,2’) is a rescaled tangent vector on the geodesic.

A virtually identical calculation reveals how o varies under a change of base point x’. Here
the variation of the geodesic is such that dz(Ag) = dz’ and dz(A1) = dx = 0, and we obtain
bo = —A)\ga/g/to‘/&cﬁ/. This shows that

Oa’ ('Tv :E/) = _()‘1 - >‘0) ga/ﬁ’tﬂlv (34)

in which the metric and the tangent vector are both evaluated at z’. Apart from a factor A\, we
see that o (,2) is minus the geodesic’s tangent vector at z.

It is interesting to compute the norm of o,. According to Eq. (3.3) we have gagaaaﬁ =
(AN)2gaptt? = (AN)%e. According to Eq. (3.1), this is equal to 20. We have obtained

g*P o058 = 20, (3.5)

and similarly, .
9° P oo = 20. (3.6)
These important relations will be the starting point of many computations to be described below.
We note that in flat spacetime, o, = n45(x — 2')? and 0o = —n4s(x — 2')? in Lorentzian

coordinates. From this it follows that c.g = 0a/gr = —0ap = —0a/g = 7ap, and finally, go‘ﬁoag =
4 = ga,B/O'a/g/.

3.4 Congruence of geodesics emanating from x’

If the base point 2z’ is kept fixed, o can be considered to be an ordinary scalar function of z.
According to Eq. (3.5), this function is a solution to the nonlinear differential equation % g*Pon0p =
0. Suppose that we are presented with such a scalar field. What can we say about it?

An additional differentiation of the defining equation reveals that the vector o := ¢’“ satisfies

00;605 =0, (3.7)

which is the geodesic equation in a non-affine parameterization. The vector field is therefore
tangent to a congruence of geodesics. The geodesics are timelike where o < 0, they are spacelike
where ¢ > 0, and they are null where o = 0. Here, for concreteness, we shall consider only the
timelike subset of the congruence.

The vector -

[
u® = 50712 (3.8)

is a normalized tangent vector that satisfies the geodesic equation in affine-parameter form: u’, Bu'B =
0. The parameter A is then proper time 7. If A* denotes the original parameterization of the
geodesics, we have that d\*/dr = |20]|~'/2, and we see that the original parameterization is sin-
gular at 0 = 0.

In the affine parameterization, the expansion of the congruence is calculated to be

0" ‘o
= o7 0" =0, — 1, (3.9)
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where 0* = (6V)71(d/d\*)(6V) is the expansion in the original parameterization (6V is the con-
gruence’s cross-sectional volume). While 6* is well behaved in the limit o — 0 (we shall see below
that 8* — 3), we have that § — oo. This means that the point 2’ at which o = 0 is a caustic of
the congruence: all geodesics emanate from this point.

These considerations, which all follow from a postulated relation %go‘ﬁ 0,08 = 0, are clearly
compatible with our preceding explicit construction of the world function.

4 Coincidence limits

It is useful to determine the limiting behaviour of the bitensors o... as x approaches z’. We
introduce the notation

[Q...] = lim Q..(z,2) = a tensor at 2’
z—ax’

to designate the limit of any bitensor Q...(x,2’) as x approaches z’; this is called the coincidence
limit of the bitensor. We assume that the coincidence limit is a unique tensorial function of the
base point 2/, independent of the direction in which the limit is taken. In other words, if the limit
is computed by letting A — Ag after evaluating Q...(z,z’) as a function of A on a specified geodesic
3, it is assumed that the answer does not depend on the choice of geodesic.

4.1 Computation of coincidence limits
From Egs. (3.1), (3.3), and (3.4) we already have

[o] =0, [0a] = [0a] =0. (4.1)

Additional results are obtained by repeated differentiation of the relations (3.5) and (3.6). For
example, Eq. (3.5) implies 0., = ¢*°0,05, = 0%04,, or (gsy — 0p,)t? = 0 after using Eq. (3.3).
From the assumption stated in the preceding paragraph, o, becomes independent of t? in the
limit z — 2/, and we arrive at [0a8] = garp’. By very similar calculations we obtain all other
coincidence limits for the second derivatives of the world function. The results are

[0as]) = [0as'] = garpr, [0apr] = [0ars] = —garpr- (4.2)

From these relations we infer that [c®] = 4, so that [6*] = 3, where 6* was defined in Eq. (3.9).
To generate coincidence limits of bitensors involving primed indices, it is efficient to invoke

Synge’s rule,
[0.ar] = [04..].0/ — [o.a], (4.3)

in which “-.” designates any combination of primed and unprimed indices; this rule will be
established below. For example, according to Synge’s rule we have [oa5] = [0a];p0 — [0ag], and
since the coincidence limit of o, is zero, this gives us [0ap/| = —[0ag] = —ga’p’, as was stated in
Eq. (4.2). Similarly, [oag'] = [0w].8 — [0ar8] = —[08ar] = garp- The results of Eq. (4.2) can thus
all be generated from the known result for [o,a].

The coincidence limits of Eq. (4.2) were derived from the relation o, = 0°,05. We now
differentiate this twice more and obtain c.g, = U‘samo(; + a‘saﬁa(sy + 0-504’)10.6/3 + 050(0557. At
coincidence we have )

[UQBW] = [Jgaﬁ}gfs’v/ + [Uéa'y]gls/ﬁ’ + 6% [Utiﬁv]?
or [0yap] + [08a~y] = 0 if we recognize that the operations of raising or lowering indices and taking
the limit © — 2’ commute. Noting the symmetries of 0,4, this gives us [oays] + [0apy] = 0, or
2[capy] — [R‘;aﬂvog] =0, or 2[oap,] = R‘S;,ﬁ,,y, [0s/]. Since the last factor is zero, we arrive at

[Uaﬁv] = [Uaﬁv’] = [Uaﬁ’v’] = [Ua’ﬁ’v’] =0. (4.4)
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The last three results were derived from [o,4,] = 0 by employing Synge’s rule.
We now differentiate the relation o, = 05a05 three times and obtain

Oaprys = Ueaﬂ'yéaﬁ + 06&57065 + Ueaﬂﬁaf’Y + o-ea’yéo-fﬁ + Ueaﬂaeﬂs + Uea'yaﬁ,@(s + Ueaéaéﬁ’*f + Ueaaﬁﬂ’ﬂs‘

At coincidence this reduces to [0agys] + [Tassy] + [0ayss) = 0. To simplify the third term we
differentiate Ricci’s identity oayg = 0agy— R, 5,0 with respect to 2° and then take the coincidence
limit. This gives us [0a~ygs] = [Oapys] + Rass'py. The same manipulations on the second term
give [Jm;g,y} = [O’ag(spy] + Raw/g/y. Using the identity OaBsy = Tapys — Rea,y(saeﬁ — REB,Y(;UQE and
the symmetries of the Riemann tensor, it is then easy to show that [0agsy] = [0apys]. Gathering
the results, we obtain 3[cagys] + Rary/ g6’ + Rars 4 = 0, and Synge’s rule allows us to generalize
this to any combination of primed and unprimed indices. Our final results are

1 1
[0-06,8"/5] = —g(Ra/,Y/B/(;/ —|— Ra/(glﬂ/,yl)7 [O-Oé,@"/(s’:l = g(Ra/'Y,/B/‘S/ + Ralélﬁl,yl)’
1 1
I:O'aB,Y/(;/] = —g(Ra/,y//BI(SI —|— Ralélﬁl,y/)’ [U(x,@”’ylél} = —g(Ralﬁl,ylél —|— Ra/,ylﬁlb'/)7
1
[Uo/ﬁ"y/&] = —g(RO/,Y/B/(;/ + Ralélﬁl,-y/). (45)

4.2 Derivation of Synge’s rule

We begin with any bitensor Q4p/(z,2’) in which A = «--- 8 is a multi-index that represents any
number of unprimed indices, and B’ = v’ - - - ¢’ a multi-index that represents any number of primed
indices. (It does not matter whether the primed and unprimed indices are segregated or mixed.)
On the geodesic 3 that links x to 2’ we introduce an ordinary tensor P*(z) where M is a multi-
index that contains the same number of indices as A. This tensor is arbitrary, but we assume that
it is parallel transported on (; this means that it satisfies PA;ata =0 at . Similarly, we introduce
an ordinary tensor Q™ (z) in which N contains the same number of indices as B’. This tensor is
arbitrary, but we assume that it is parallel transported on f3; at z’ it satisfies QB;a,to‘/ = 0. With
Q, P, and @ we form a biscalar H(z, ') defined by

H(z,2') = Qap (z,2")PA(2)Q (2).

Having specified the geodesic that links x to x’, we can consider H to be a function of Ay and A;.
If A; is not much larger than A\ (so that z is not far from z’), we can express H(\1, \o) as

oH
H()\h)\o):H()\()?/\Q)—l-()\l—)\o)ai)\l 4o
A1=Xo
Alternatively,
oOH
H(Aly)\o):H()\l,Al)*(/\lf)\())ai)\o +,
Ao=X\1
and these two expressions give
d OH OH
7H )\ ’)\ = — + - ,
g H 0 ho) = 55 VRV

because the left-hand side is the limit of [H (A1, A1) — H(Xo, Ao)]/(A1 — Ag) when Ay — Ag. The
partial derivative of H with respect to )¢ is equal to Q4 p/.o/t* PAQPB’, and in the limit this becomes

[QAB/;ax}ta,PAlQB/. Similarly, the partial derivative of H with respect to A; is QAB/;atO‘PAQB/,
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and in the limit A; — Ao this becomes [Qapr.o]t* PA'QP". Finally, H(\, \o) = [Qap|PY QF,
and its derivative with respect to Ag is [Qa B/];a/to‘,PA/QB/. Gathering the results we find that

{[QAB’LQ’ — [QAB’;o/] — [QAB’;a] }to/PA/QB/ — 07
and the final statement of Synge’s rule,
[Qup],, = [Qupio] + [QuBa], (4.6)

follows from the fact that the tensors PM and @', and the direction of the selected geodesic 8,
are all arbitrary. Equation (4.6) reduces to Eq. (4.3) when o... is substituted in place of Q4p/.

5 Parallel propagator
5.1 Tetrad on 3

On the geodesic segment § that links 2 to 2’ we introduce an orthonormal basis ef(z) that is
parallel transported on the geodesic. The frame indices a, b, ..., run from 0 to 3 and the basis
vectors satisfy

De#
dX

where n,, = diag(—1,1,1,1) is the Minkowski metric (which we shall use to raise and lower frame
indices). We have the completeness relations

Guv eg‘eg = Tab, =0, (5'1)

g =P elel, (5.2)
and we define a dual tetrad €3, (z) by

€2 =1, ep; (5.3)
this is also parallel transported on 5. In terms of the dual tetrad the completeness relations take
the form

Guv = Tab 62657 (54)

and it is easy to show that the tetrad and its dual satisfy elef = 0% and elel = %,. Equa-
tions (5.1)—(5.4) hold everywhere on 8. In particular, with an appropriate change of notation
they hold at 2’ and z; for example, gag = 7ab e;e% is the metric at z.

(You will have noticed that we use sans-serif symbols for the frame indices. This is to distinguish
them from another set of frame indices that will appear below. The frame indices introduced here
run from 0 to 3; those to be introduced later will run from 1 to 3.)

5.2 Definition and properties of the parallel propagator

Any vector field A*(z) on 8 can be decomposed in the basis ef: A* = A?ek, and the vector’s
frame components are given by A* = At e, If A¥ is parallel transported on the geodesic, then

the coefficients A? are constants. The vector at 2 can then be expressed as A® = (A% ¢€2,)e2, or

A%(x) = g% (2,2)) A (2'), g% (x,a’) = e (a) el (). (5.5)

The object g%, = eSe?, is the parallel propagator: it takes a vector at ' and parallel-transports
it to = along the unique geodesic that links these points.
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Similarly, we find that

’ ’ ’ ’

AY () = g% (" 2) A%(x), g% (2 @) =g (2) €l (w), (5.6)

and we see that g% = e ¢2 performs the inverse operation: it takes a vector at z and parallel-
transports it back to z’. Clearly,

w9 =0% W9 =%, (5.7)

and these relations formally express the fact that gaO: is the inverse of g<,,.

a

’ ’ .
2, can also be expressed as g,* = eley , and this reveals that

The relation g%, = efe 2es,

’

9.2 (x,2") = g% (2! x), g (2 x) = g% (x,2"). (5.8)

The ordering of the indices, and the ordering of the arguments, are arbitrary.
The action of the parallel propagator on tensors of arbitrary rank is easy to figure out. For

example, suppose that the dual vector p, = p, €, is parallel transported on 5. Then the frame
components p, = p, ef are constants, and the dual vector at x can be expressed as p, = (pa/eg/)eg,
or

Pal(z) = g% (2, 2) par (2'). (5.9)

It is therefore the inverse propagator g"‘o; that takes a dual vector at ' and parallel-transports it
to z. As another example, it is easy to show that a tensor A*? at x obtained by parallel transport
from 2’ must be given by

AP () = g% (2, 2") g (w,2") A7 (). (5.10)

o

Here we need two occurrences of the parallel propagator, one for each tensorial index. Because the
metric tensor is covariantly constant, it is automatically parallel transported on 3, and a special

case of Eq. (5.10) is gag = gaagﬂﬁ Garp-
Because the basis vectors are parallel transported on [, they satisfy e;";ﬂaﬁ = 0 at z and

e;’ﬂ,aﬁl = 0 at 2/. This immediately implies that the parallel propagators must satisfy

’

gaa/;ﬁo—ﬁ = gaa/;ﬁlaﬁ = 0, gaa;ﬁgﬂ = gaa;lg/gﬂ =0. (511)

Another useful property of the parallel propagator follows from the fact that if t* = dz#/d\ is
tangent to the geodesic connecting z to z’, then t* = g% ,t*. Using Eqs. (3.3) and (3.4), this
observation gives us the relations

0o =—9%,00/, Oor = —G%, 00 (5.12)

5.3 Coincidence limits

Eq. (5.5) and the completeness relations of Egs. (5.2) or (5.4) imply that

[9%/] = 6% (5.13)

Other coincidence limits are obtained by differentiation of Egs. (5.11). For example, the relation
9%.,07 =0 implies 9%r.507 + gaﬁ,;,yavé =0, and at coincidence we have

[gaﬂ’w] = [gaﬁ’;"/’] =0 (5.14)
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the second result was obtained by applying Synge’s rule on the first result. Further differentiation
gives
91667+ 91350 e + 9550605 + 95905 = 0,

and at coincidence we have [g%. 5] + [9%:.5,] = 0, or 2[g%, 5] + Ra[;/,y,(;, = 0. The coincidence
limit for 9% s = 931,60, CAN then be obtained from Synge’s rule, and an additional application
of the rule gives [¢%, .5 ]. Our results are

(03 1 Oé, (03 1 O(,
9% 8] = =5 B%ys [9%me] = 5 R%res
(5.15)

1 ’ 1 7
9% sl = =5 Bws [9%rw] = 5 B

6 Expansion of bitensors near coincidence

6.1 General method

We would like to express a bitensor g (x,2’) near coincidence as an expansion in powers of
—o® (x,2"), the closest analogue in curved spacetime to the flat-spacetime quantity (z — z’)*. For
concreteness we shall consider the case of rank-2 bitensor, and for the moment we will assume that
the tensorial indices all refer to the base point z’.

The expansion we seek is of the form

’ 1 ’ !
Qalﬁl(x’xl) = Aalﬂl + AO/B”‘// o’ —+ 5 Aa’ﬁ"‘/’&’ o 0'6 —+ 0(63), (61)

in which the “expansion coefficients” Ay/g/, Aapy, and Ayp4e are all ordinary tensors at z’;
this last tensor is symmetric in the pair of indices 7' and §’, and € measures the size of a typical
component of ¢® .

To find the expansion coefficients we differentiate Eq. (6.1) repeatedly and take coincidence
limits. Equation (6.1) immediately implies [Qqy/5/] = Ayp. After one differentiation we obtain
Qa/gl;,y/ = Aa’ﬁ/;'y’ + Aalg/e/;,y/ael + Aa/ﬁ/EIUE;/ + %Aa/glelL/;,y/O'ela'L/ + Aa/g/E/L/UE/JL;/ + 0(62), and
at coincidence this reduces to [Qq/g/.y/] = Aargriy + Aarpry. Taking the coincidence limit after two
differentiations yields [Qa/g/iv/s'] = Aarpriysr + Aarpryisr + Aarprory + Aarprys. The expansion
coefficients are therefore

Aa/B/ = [Qa’ﬂ’] s
A(x’,ﬁ”y’ = I:Qa/ﬁ/;,y/:l — 14(1/[3/;,),/7
Awgys = [Qarpiysr] = Aargriye = Awrgryier = Aoy (6.2)

These results are to be substituted into Eq. (6.1), and this gives us Qqg/(x,2’) to second order in
€.

Suppose now that the bitensor is Q4/g, with one index referring to 2’ and the other to z. The
previous procedure can be applied directly if we introduce an auxiliary bitensor Qq g = gﬁ B’Qa’ 8
whose indices all refer to the point z’. Then Qa/ﬁ/ can be expanded as in Eq. (6.1), and the original

bitensor is reconstructed as Q53 = g%fla/ﬁ,7 or

’ ’ ]_ / ’
Qa/ﬁ(x,x/) = gﬁﬂ (Balﬁl + Ba/ﬁ"y/ o’ + 5 BO"B”Y’E’ ol 0'6 ) + 0(63). (63)
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The expansion coefficients can be obtained from the coincidence limits of Q4 g and its derivatives.
It is convenient, however, to express them directly in terms of the original bitensor 2,5 by substi-
tuting the relation Qu/ 5 = gBB,Qo/g and its derivatives. After using the results of Eq. (5.13) —(5.15)
we find

Ba/ﬁl = [Qa/ﬂ],
Ba/B/,Y/ = [Qalﬂ;,y/] — Ba/IBI;,YI’
1 /
Ba/B/,Y/(;/ = [Qalﬂ;,y/é/:l —|— _ Ba’E’REﬂ"y’(S’ - Ba/ﬁ/;,ylél — Ba/ﬁlryl;(sl - Ba/ﬂl(sl;,yl. (64)

2

The only difference with respect to Eq. (6.3) is the presence of a Riemann-tensor term in Bysgrrsr.
Suppose finally that the bitensor to be expanded is €23, whose indices all refer to . Much as

we did before, we introduce an auxiliary bitensor Q5 = g%, g’BB/QQB whose indices all refer to 2,

we expand Qalgz as in Eq. (6.1), and we then reconstruct the original bitensor. This gives us
’ ’ ’ ]_ ’ 7
Qaﬁ(xa zl) = gaagﬁﬁ <Ca'ﬂ/ + Ca'ﬁ/’)" o7 + 5 Oo/ﬁ”y’é/ o’ 05 ) + 0(63)7 (65)

and the expansion coefficients are now

Cuop = [QQB]’
Corgry = [Qaﬁ;v’] — Capriys
1 / 1 /
Ca’ﬁ”y’é’ = [Qaﬁ;'y’é’] —|— 5 CO/E’Reﬁ’fylé/ + 5 CE,B"RSO/’Y/(;’ — CO/B,?’YI‘;/ — CO/B"Y,;‘;/ — Ca’ﬁ’(;’;"/’(6'6)

This differs from Eq. (6.4) by the presence of an additional Riemann-tensor term in Cygryrs:.

6.2 Special cases

We now apply the general expansion method developed in the preceding subsection to the bitensors
Oa'g’s Oa'g, and o4g. In the first instance we have Ayg = garpr, Aarpry = 0, and Ayigrysy =

— 2 (Rary s 1+Ra/5/5/7/). In the sec?nd instance we have Ba/@l/ = —gu'p, Ba’B/vf = 0, and

Bygryrsr = *g(Rﬁ/o/'y’S’ JrRﬁ/,),/a/(;/) — §Ra/g/7/5/ = 7§Ra/5/5/7/ — gRa’ﬁ/'y’é“ In the third instance

we have Ca’ﬁ’ = go'p’, Coz’ﬁ"y’ =0, and Ca’ﬂ"y’é’ = _%(Ra"\/’ﬁ’é’ + Ra’é’ﬁ"y’)~ This giVQS us the
expansions

B Y o L O 6.7

o’'B = Go' B’ 3 aly' B8 0" O + (E ), ( . )

’ ]_ 7 7
ows = ~0s(9ersr + G Ry 070" ) +0(), (63)
/ ’ ]_ ’ 1
Oap = gaagﬁﬁ/ (ga’B’ ~3 Ry o 0 ) +0(e%). (6.9)

Taking the trace of the last equation returns 0%, =4 — 1R, s o7 0% + O(e%), or
1 ’ ! G
0" =3 = 3 Rugr o® o +0(e), (6.10)

where 0* := 0%, — 1 was shown in Section 3.4 to describe the expansion of the congruence of
geodesics that emanate from a’. Equation (6.10) reveals that timelike geodesics are focused if the
Ricci tensor is nonzero and the strong energy condition holds: when R, g/ o P > 0 we see that
0* is smaller than 3, the value it would take in flat spacetime.
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The expansion method can easily be extended to bitensors of other tensorial ranks. In partic-
ular, it can be adapted to give expansions of the first derivatives of the parallel propagator. The
expansions

1 ’ 5 1 ’ ’ 5
gaﬁ/;,y/ = 5 gaa/Raﬁl,y/(;/ o + 0(62), gofg/;,y = 5 gaa/g’y,yRaﬁ/,yl(s/ o’ + 0(62) (611)

and thus easy to establish, and they will be needed in part III of this review.

6.3 Expansion of tensors

The expansion method can also be applied to ordinary tensor fields. For concreteness, suppose
that we wish to express a rank-2 tensor A, at a point x in terms of its values (and that of its
covariant derivatives) at a neighbouring point z’. The tensor can be written as an expansion in
powers of —o® (2, ') and in this case we have

’ ! ’ 1 ’ ’
Aaﬁ(x) = gaagﬁﬁ (Aa’ﬁ’ — Aa/ﬁ/;,\// o7 + § Aa’,@’;’y’(S’ o7 05 ) + 0(63). (612)

If the tensor field is parallel transported on the geodesic 8 that links z to 2/, then Eq. (6.12)
reduces to Eq. (5.10). The extension of this formula to tensors of other ranks is obvious.

To derive this result we express A, (z), the restriction of the tensor field on 3, in terms of its
tetrad components A,p(A) = A, efep. Recall from Section 5.1 that e is an orthonormal basis
that is parallel transported on f; recall also that the affine parameter A ranges from Aq (its value at
z’) to A (its value at x). We have Ayp (2') = Aab()\o)eaa,e%,, Anp(x) = Aab()\l)e;e%, and Aap(Ar)
can be expressed in terms of quantities at A\ = )y by straightforward Taylor expansion. Since, for
example,

dA, ,,
b = ()\1 — AO)(Altyegeb) )\t)\

(A= 20)75 N :

VA o B A
N (A1 = Ao)Apwneledt N —Awpyey e, 00,
0 0

where we have used Eq. (3.4), we arrive at Eq. (6.12) after involving Eq. (5.6).

7 wvan Vleck determinant

7.1 Definition and properties
The van Vleck biscalar A(z,z') is defined by

’ ’

Az, 2') := det[A%, (z,2")], Aaﬁ//(x,x’) = —g% (@ x)0% (z,2'). (7.1)
As we shall show below, it can also be expressed as

det[—oap (z,2')]
V=9v—4
where ¢ is the metric determinant at x and ¢’ the metric determinant at z’.

Egs. 4.2) and (5.13) imply that at coincidence, [Aaé,] = 50‘5/, and [A] = 1. Equation (6.8), on
the other hand, implies that near coincidence,

Az, 2') =

(7.2)

7 ’ 1 ’ ’ 7
A = 8% + ¢ R%prs 07 o +0(e), (7.3)
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so that 1
A=1+; Rap o o +0(). (7.4)

This last result follows from the fact that for a “small” matrix a, det(1 +a) = 1 + tr(a) + O(a?).
We shall prove below that the van Vleck determinant satisfies the differential equation

1

X (Ao®) =4, (7.5)
which can also be written as (InA) ,0% =4 — 0%, or
4 (nay—3— ¢ (7.6)
dX* N '

in the notation introduced in Section 3.4. Equation (7.6) reveals that the behaviour of the van
Vleck determinant is governed by the expansion of the congruence of geodesics that emanate from
/. If 6* < 3, then the congruence expands less rapidly than it would in flat spacetime, and A
increases along the geodesics. If, on the other hand, 6* > 3, then the congruence expands more
rapidly than it would in flat spacetime, and A decreases along the geodesics. Thus, A > 1 indicates
that the geodesics are undergoing focusing, while A < 1 indicates that the geodesics are undergoing
defocusing. The connection between the van Vleck determinant and the strong energy condition

is well illustrated by Eq. (7.4): the sign of A —1 near 2’ is determined by the sign of Ry p oo

7.2 Derivations

To show that Eq. (7.2) follows from Eq. (7.1) we rewrite the completeness relations at z, g*% =

nabeg‘ef, in the matrix form g=! = EnET, where E denotes the 4 x 4 matrix whose entries

correspond to e$. (In this translation we put tensor and frame indices on an equal footing.) With

e denoting the determinant of this matrix, we have 1/g = —e?, or e = 1/y/—g. Similarly, we rewrite
the completeness relations at 2/, g*# = nabeg/ef , in the matrix form ¢’~! = E'nE’", where E’

is the matrix corresponding to 2. With ¢’ denoting its determinant, we have 1/g’ = —e'?

, Or
e/ = 1/y/—g’. Now, the parallel propagator is defined by g%, = nabga/g/eg‘efl, and the matrix
form of this equation is § = EnE’Tg’". The determinant of the parallel propagator is therefore

g=—ee'g =+/—g'/\/—g. So we have

|
CQ\
3

Nd
and Eq. (7.2) follows from the fact that the matrix form of Eq. (7.1) is A = —g g~ o, where o

is the matrix corresponding to oags.
To establish Eq. (7.5) we differentiate the relation o = %o”’aaY twice and obtain oo5° = 07,05 +

det[¢%,] = det [gal;] = (7.7)

0Y0qp . If we replace the last factor by o,g, and multiply both sides by —go‘/o‘ we find

A% = —g**(0%0yp + 07 0ag).

In this expression we make the substitution o,5 = —gaaer‘B//, which follows directly from
Eq. (7.1). This gives us

A, = g2 g 0t AT b A o7, 8)
where we have used Eq. (5.11). At this stage we introduce an inverse (A‘l)o‘ﬁ/, to the van Vleck
bitensor, defined by AC‘B/,(A*I)B;, = 50‘,;/. After multiplying both sides of Eq. (7.8) by (Afl)ﬁ;, we

find ) / .
B = gaagﬁﬁ’aaﬂ + (A_l)vﬁ’Aav’way’
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and taking the trace of this equation yields

4=0%+ (A_l)B;,AO‘ﬁ/,WUW.

(03

We now recall the identity § IndetM = Tr(M ~1§ M), which relates the variation of a determinant

to the variation of the matrix elements. It implies, in particular, that (A‘l)ﬁ;,Aaf;,,W = (InA) 4,

and we finally obtain
4=0% + (InA) 40, (7.9)

which is equivalent to Eq. (7.5) or Eq. (7.6).
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Part II: Coordinate Systems

8 Riemann normal coordinates

8.1 Definition and coordinate transformation

Given a fixed base point z’ and a tetrad eg‘/ (2'), we assign to a neighbouring point z the four
coordinates ,
2 =—e (2o (z,2'), (8.1)

o
where €2, = n?Pg, Bref " is the dual tetrad attached to 2’. The new coordinates &2 are called Rie-
mann normal coordinates (RNC), and they are such that 1,,224° = nabez,e%,ao‘/aﬁ/ = ga/ﬁzaalaﬁl,
or

Napd23° = 20 (z, 2'). (8.2)

Thus, 7,5222P is the squared geodesic distance between 2 and the base point 2. It is obvious that
2’ is at the origin of the RNC, where #* = 0.

If we move the point x to x+dx, the new coordinates change to 24402 = —efl,aa/ (x+0z,a’) =
2 — ez,a"/; §x”, so that

di? = —efx,ao‘ﬁ/ dxP. (8.3)
The coordinate transformation is therefore determined by 9#2/0x = —eaa,ao‘ﬁ,, and at coincidence
we have e G
€T T ’
e [Bm]-en (5.4

the second result follows from the identities efl/eg‘/ = 6% and eg/e;, = (50‘,6/,,.

It is interesting to note that the Jacobian of the transformation of Eq. (8.3), J := det (922 /0z"),
is given by J = /—gA(x,2’), where g is the determinant of the metric in the original coordinates,
and A(z,z’) is the Van Vleck determinant of Eq. (7.2). This result follows simply by writing the
coordinate transformation in the form 942 /02% = fnabeﬁ‘laa/ s and computing the product of the
determinants. It allows us to deduce that in RNC, the determinant of the metric is given by

/—g(BRNC) = m. (8.5)

It is easy to show that the geodesics emanating from z’ are straight coordinate lines in RNC. The
proper volume of a small comoving region is then equal to dV = A~! d*%, and this is smaller than
the flat-spacetime value of d*Z if A > 1, that is, if the geodesics are focused by the spacetime
curvature.

8.2 Metric near z’

We now would like to invert Eq. (8.3) in order to express the line element ds? = g,5 dz*dz” in terms
of the displacements dz®. We shall do this approximately, by working in a small neighbourhood of
z’. We recall the expansion of Eq. (6.8),

’ ’ 1 ’ Y
O’aﬂ = _gB,B< aﬁ/ + 6 Ra,yzﬂ/(gla"y 0'6 ) + 0(63),

. . . . . . /! /
and in this we substitute the frame decomposition of the Riemann tensor, R, 55 = R°,4 €5 €5, ebﬁ, ed,,

and the tetrad decomposition of the parallel propagator, gB ﬁ/ = ef /e%, where e/bg (x) is the dual tetrad

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7


http://www.livingreviews.org/lrr-2011-7

The Motion of Point Particles in Curved Spacetime 55

at x obtained by parallel transport of 6%/ (). After some algebra we obtain

’ ! 1 ’
0% = —€3 €f — 5 Repa 5 %29 + O(%),

where we have used Eq. (8.1). Substituting this into Eq. (8.3) yields

di? = [51 - éRacbdchﬁ;d + 0(#)] e da”, (8.6)
and this is easily inverted to give

€ do — [51 - % R0 + O(x?’)} di. (8.7)

This is the desired approximate inversion of Eq. (8.3). It is useful to note that Eq. (8.7), when
specialized from the arbitrary coordinates x® to 22, gives us the components of the dual tetrad at
2 in RNC. And since eao‘/ = 50‘3/ in RNC, we immediately obtain the components of the parallel
propagator: g% = 63, — FR? 4329 + O(2?).

We are now in a position to calculate the metric in the new coordinates. We have ds? =
Jap dzdzP = (nabeaae%)dxadxﬁ = Nap(€d dxo‘)(e% dz?), and in this we substitute Eq. (8.7). The
final result is ds?® = gap d#?dzP, with

1 ca
Gab = Tlab — gRacbdmcajd + O($3) (88)
The quantities Rabd appearing in Eq. (8.8) are the frame components of the Riemann tensor
evaluated at the base point z’,

— 'Y B 0
Racbd = Ralfy/,glgl 6? 62 €y, €4 (89)

and these are independent of 2. They are also, by virtue of Eq. (8.4), the components of the
(base-point) Riemann tensor in RNC, because Eq. (8.9) can also be expressed as

0z [027] [02P] [ 020
R =Rovyps | 757 |5l | 58 | | 559 |
acdb VRS {axaHaxcHabuaxd}
which is the standard transformation law for tensor components.
It is obvious from Eq. (8.8) that gas(2') = nap and T3y (2) = 0, where I'?y . = —1(R% 4 +

R, )39 + O(2?) is the connection compatible with the metric gap. The Riemann normal coordi-
nates therefore provide a constructive proof of the local flatness theorem.

9 Fermi normal coordinates

9.1 Fermi—Walker transport

Let v be a timelike curve described by parametric relations z#(7) in which 7 is proper time. Let
u* = dz"/dt be the curve’s normalized tangent vector, and let a* = Du*/dr be its acceleration
vector.
A vector field v* is said to be Fermi—Walker transported on + if it is a solution to the differential
equation
Dot
dr

= (Ul,a”)u“ — (vl,u”)a”. (9'1)
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Notice that this reduces to parallel transport when a* = 0 and ~ is a geodesic.

The operation of Fermi—-Walker (FW) transport satisfies two important properties. The first is
that u* is automatically FW transported along ; this follows at once from Eq. (9.1) and the fact
that u* is orthogonal to a*. The second is that if the vectors v* and w* are both FW transported
along +, then their inner product v,w’ is constant on v: D(v,w")/dr = 0; this also follows
immediately from Eq. (9.1).

9.2 Tetrad and dual tetrad on ~

Let z be an arbitrary reference point on v. At this point we erect an orthonormal tetrad (u”,e?)
where, as a modification to former usage, the frame index a runs from 1 to 3. We then propagate
each frame vector on v by FW transport; this guarantees that the tetrad remains orthonormal
everywhere on . At a generic point z(7) we have

n
Det

e (al,eZ)u“, guuru” = -1, guvehu” =0, guvehey = dap. (9.2)

From the tetrad on v we define a dual tetrad (eg, eZ) by the relations
60 - _u % — 6ab ev- (9 3)
“w 123 N Guvps .
this also is FW transported on 7. The tetrad and its dual give rise to the completeness relations

g = —utu” + 5‘”’656’5, Juv = —ege?, + dap eZeb (9.4)

v

9.3 Fermi normal coordinates

To construct the Fermi normal coordinates (FNC) of a point x in the normal convex neighbourhood
of v we locate the unique spacelike geodesic B that passes through x and intersects v orthogonally.
We denote the intersection point by & := z(¢), with ¢ denoting the value of the proper-time
parameter at this point. To tensors at Z we assign indices @, 3, and so on. The FNC of z are
defined by

0=t 2% = —e2(2)0%(z, ), oa(z, Z)u*(z) = 0; (9.5)

the last statement determines Z from the requirement that —o®, the vector tangent to 3 at Z, be
orthogonal to u®, the vector tangent to 7. From the definition of the FNC and the completeness
relations of Eq. (9.4) it follows that

§% 1= §p2%2° = 20(z, T), (9.6)
so that s is the spatial distance between Z and x along the geodesic 8. This statement gives an
immediate meaning to %, the spatial Fermi normal coordinates, and the time coordinate z° is
simply proper time at the intersection point z. The situation is illustrated in Figure 6.

Suppose that x is moved to x + dz. This typically induces a change in the spacelike geodesic
B, which moves to 8 + §3, and a corresponding change in the intersection point Z, which moves
to 2" = ¥ + 6z, with 2% = u®t. The FNC of the new point are then 2°(z + dx) = ¢ + dt
and #%(z + 6x) = —e%, (2o (x + dx,2"), with 2 determined by oo (z + 6z, 2" )u® (z") = 0.
Expanding these relations to first order in the displacements, and simplifying using Egs. (9.2),
yields

dt = pogpu® da®, dz2® = —el (0% + po Buﬁaﬁ,—yu;’)dxﬁ, (9.7)

where 4 is determined by ! = —(O’aguau’é + 0za%).
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]

Y

Figure 6: Fermi normal coordinates of a point x relative to a world line 7. The time coordinate t selects
a particular point on the word line, and the disk represents the set of spacelike geodesics that intersect
~ orthogonally at z(¢). The unit vector w® := £%/s selects a particular geodesic among this set, and the
spatial distance s selects a particular point on this geodesic.

9.4 Coordinate displacements near ~

The relations of Eq. (9.7) can be expressed as expansions in powers of s, the spatial distance from
T to z. For this we use the expansions of Egs. (6.7) and (6.8), in which we substitute ¢ = —e% %%
and g%, = u%Y + e2e?, where (€2,¢%) is a dual tetrad at z obtained by parallel transport of
(—ua,el) on the spacelike geodesic 8. After some algebra we obtain

a ") (R Ito
1 ~a 1 ~cad 3
pw =14+ a,2% + gRowcﬂ 4+ 0(s?),
where a,(t) := age] are frame components of the acceleration vector, and Rocoa(t) := Rgs Bgu’iezqﬁ eg
are frame components of the Riemann tensor evaluated on ~. This last result is easily inverted to
give
. a2 1 e n
w=1—a.,z2*+ (aax“) — gROCodxcxd + 0(33).

Proceeding similarly for the other relations of Eq. (9.7), we obtain

1 1
dt = [1 —a, i+ (aa:fc“)2 — §R000d:%%d + 0(33)} (egda”) + [— éROdefc%d + 0(33)} (e3dz”) (9.8)

and
1 1
di® = [2 @ oadci? + 0(53)] (ehda?) + {5% + ERacbdﬁ:%d + 0(33)} (e4dz"), (9.9)
where Rgcod(t) := R&;Yggeg‘ejugeg and Rgepa(t) = R&;Yggeg‘ejefeg are additional frame compo-

nents of the Riemann tensor evaluated on 7. (Note that frame indices are raised with §9°.)
As a special case of Egs. (9.8) and (9.9) we find that

o 0
ox« ox«

(9.10)

|
D
Qe

= —Ua,

~

Y
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because in the limit z — Z, the dual tetrad (€2,e2) at = coincides with the dual tetrad (—ug,e%)

(o2 2o (a4

at Z. It follows that on ~, the transformation matrix between the original coordinates z and the
FNC (t,2%) is formed by the Fermi-Walker transported tetrad:
ox® = ox® -

—| =u", —| =eg. (9.11)
ot |, oz |,

This implies that the frame components of the acceleration vector, a,(t), are also the components
of the acceleration vector in FNC; orthogonality between u® and a® means that ag = 0. Similarly,
Rocod(t), Roeva(t), and Rgepa(t) are the components of the Riemann tensor (evaluated on ) in
Fermi normal coordinates.

9.5 Metric near ~
Inversion of Eqs. (9.8) and (9.9) gives

1 1
el dax® = [1 + g + §ROCOd:zC§:d + 0(53)] dt + {GROCW@C:&(I + 0(33)} dz® (9.12)

and
1 1
eldr® = [5% — éRacbdch:Ed - 0(53)] dab + [—2RacOdazC§:d + 0(53)} dt. (9.13)

These relations, when specialized to the FNC, give the components of the dual tetrad at x. They
can also be used to compute the metric at x, after invoking the completeness relations g.g =
—edel + dapesey. This gives

P [1 +20,3" + (003)” + Rocai®i? + 0(33)], (9.14)
2
Ga = —3 Rocaadd® + O(s?), (9.15)
1
Gab = Oap — gRacbdch:%d + O(s%). (9.16)

This is the metric near v in the Fermi normal coordinates. Recall that a,(t) are the components
of the acceleration vector of v — the timelike curve described by % = 0 — while Rocoq(t), Rocpa(t),
and R,cpq(t) are the components of the Riemann tensor evaluated on ~.

Notice that on v, the metric of Egs. (9.14)—(9.16) reduces to g = —1 and gup = dap. On the
other hand, the nonvanishing Christoffel symbols (on 7) are I',, = I'%, = a,; these are zero (and
the FNC enforce local flatness on the entire curve) when « is a geodesic.

9.6 Thorne-Hartle-Zhang coordinates
The form of the metric can be simplified when the Ricci tensor vanishes on the world line:

In such circumstances, a transformation from the Fermi normal coordinates (¢, %) to the Thorne—
Hartle-Zhang (THZ) coordinates (t,§”) brings the metric to the form

~a ~a)2 PNGRN
g = —[14 202" + (@§°)° + Rocoa 3" + O(s*)] (9.18)
2 on .
Jta = *gROcady yd + O(Sd)a (919)
9ab = 6ab (1 — Rocoad“9?) + O(s°). (9.20)
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We see that the transformation leaves g4 and gy, unchanged, but that it diagonalizes gqp. This
metric was first displayed in Ref. [174] and the coordinate transformation was later produced by
Zhang [187].

The key to the simplification comes from Eq. (9.17), which dramatically reduces the number of
independent components of the Riemann tensor. In particular, Eq. (9.17) implies that the frame
components R,.q of the Riemann tensor are completely determined by &, := Rgq0p, which in this
special case is a symmetric-tracefree tensor. To prove this we invoke the completeness relations of
Eq. (9.4) and take frame components of Eq. (9.17). This produces the three independent equations

6CdRacbd = gaba §CdROcad = 07 6Cdgcd = Oa

the last of which stating that £,; has a vanishing trace. Taking the trace of the first equation gives
3§ Repa = 0, and this implies that Raepq has five independent components. Since this is also the
number of independent components of £,;, we see that the first equation can be inverted — R,cpq can
be expressed in terms of £,,. A complete listing of the relevant relations is Ri212 = £11+&22 = —&33,
Ri213 = Ea3, Ri1223 = —&13, Riz13 = E11 +E33 = —Ea2, Ri323 = E12, and Razaz = Ex +E33 = —E&11.
These are summarized by

Racbd = 5abgcd + 5cdgab - 5ad€bc - 5bcgad; (921)
and &, = Roqop satisfies §%°E,;, = 0.
We may also note that the relation 6°“Rg..q = 0, together with the usual symmetries of

the Riemann tensor, imply that Rg.q.q too possesses five independent components. These may
thus be related to another symmetric-tracefree tensor B,,. We take the independent components
to be Roi12 := —Bi3, Roinz = Bi2, Roi2s = —Bi1, Ro2iz := —DBas, and Rog13 = Bag, and
it is easy to see that all other components can be expressed in terms of these. For example,
Ro223 = —Ro113 = —Bi2, Rosi2 = —Ro123 + Ro213 = Bi1 + Baa = — B33, Roz13 = —Ro212 = Bas,

and Rg323 = Ro112 = —Bi3. These relations are summarized by
Roape = _5bchdaa (922)
where €4 is the three-dimensional permutation symbol. The inverse relation is B = —%saCdRObcd.

Substitution of Eq. (9.21) into Eq. (9.16) gives
1 ~cad 1 N 1 - ~C 1 ~ ~c 3
Yab = 5ab<1 - g cd T ) - g(xcx )Sab + gxagbcx + gxbgacx + O(S )a

and we have not yet achieved the simple form of Eq. (9.20). The missing step is the transformation
from the FNC 2% to the THZ coordinates §*. This is given by

1 1
G = 2%+ &2, £ = _6(;@6@0)5@@1’ + gzﬁa&w:ﬁbic +0(sh). (9.23)

It is easy to see that this transformation does not affect gy nor g;, at orders s and s2. The remaining
components of the metric, however, transform according to g (THZ) = g4 (FNC) — €46 — Epia,

where

1 1 1 2
ga;b = g(sabgcdj:c-id - 6 (i'c-%c)gab - ggac:ﬁci‘b + g-/i‘agbci‘c + 0(33)

It follows that T2 = 6,5(1 — E.45°9?) + O(4?), which is just the same statement as in Eq. (9.20).
Alternative expressions for the components of the THZ metric are

g = =1+ 205" + (aa")” + Eai "3’ + O(s*)] (9.24)
2 e

Gra = =3 EabeB'459" + O(s7), (9.25)

Gab = Oab (1 — Ecat®y?) + O(s?). (9.26)
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10 Retarded coordinates

10.1 Geometrical elements

We introduce the same geometrical elements as in Section 9: we have a timelike curve « described
by relations z#(7), its normalized tangent vector u* = dz*/dr, and its acceleration vector a* =
Dut/dr. We also have an orthonormal triad e” that is FW transported on the world line according
to

De¥
dTa = aqu”, (10.1)
where aq(7) = ayell are the frame components of the acceleration vector. Finally, we have a
dual tetrad (e?“eZ), with eg = —u, and e, = §%g,e¥. The tetrad and its dual give rise to the
completeness relations
g = —utu¥ + 5%etel, Guv = —egeg + dap eﬁei’,, (10.2)

which are the same as in Eq. (9.4).

The Fermi normal coordinates of Section 9 were constructed on the basis of a spacelike geodesic
connecting a field point = to the world line. The retarded coordinates are based instead on a null
geodesic going from the world line to the field point. We thus let x be within the normal convex
neighbourhood of 7, 5 be the unique future-directed null geodesic that goes from the world line to
x, and 2’ := z(u) be the point at which § intersects the world line, with v denoting the value of
the proper-time parameter at this point.

From the tetrad at ' we obtain another tetrad (eJ,e2) at x by parallel transport on 8. By
raising the frame index and lowering the vectorial index we also obtain a dual tetrad at x: e;, =
—ga/geg and el = 5“bgage£. The metric at z can be then be expressed as

GaB = —ege% + 5abege%, (10.3)

and the parallel propagator from z’ to z is given by

’

g% (2, 2)) = —eSuq + e, g% (2, x) = u® e + e el 10.4
o 0 a~a o7 [} a “a

10.2 Definition of the retarded coordinates

The quasi-Cartesian version of the retarded coordinates are defined by

0 =, 2% = —e% (2")o® (z,2'), o(z,z') = 0; (10.5)
the last statement indicates that ' and z are linked by a null geodesic. From the fact that o' is
a null vector we obtain

= (622" Y% = ugo® (10.6)
and 7 is a positive quantity by virtue of the fact that § is a future-directed null geodesic — this
makes 0@ past-directed. In flat spacetime, 0® = —(z — /), and in a Lorentz frame that is
momentarily comoving with the world line, r = ¢t — ¢ > 0; with the speed of light set equal
to unity, r is also the spatial distance between x’ and z as measured in this frame. In curved
spacetime, the quantity r = Ua o can still be called the retarded distance between the point x
and the world line. Another consequence of Eq. (10.5) is that

o = —r(uo‘/ + Qaeg‘l), (10.7)

where Q7 := £%/r is a unit spatial vector that satisfies 6,,Q2%Q" = 1.
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A straightforward calculation reveals that under a displacement of the point z, the retarded
coordinates change according to

du = —kq dz®, dz" = —(ra® — W + eg,a‘};,uﬁ/) du — eg/a"é dz?, (10.8)

where k, = 0,/r is a future-directed null vector at « that is tangent to the geodesic 5. To obtain
these results we must keep in mind that a displacement of z typically induces a simultaneous
displacement of 2’ because the new points z+dx and 2’40z’ must also be linked by a null geodesic.
We therefore have 0 = o (& + 6z, 2" 4 02') = 04 02 4+ 0o 62 , and the first relation of Eq. (10.8)
follows from the fact that a displacement along the world line is described by s = u® Su.

10.3 The scalar field r(x) and the vector field £(x)
If we keep 2’ linked to = by the relation o(z,2’) = 0, then the quantity

’

r(x) = oo (z, 2 )u® (2') (10.9)

can be viewed as an ordinary scalar field defined in a neighbourhood of 7. We can compute
the gradient of r by finding how r changes under a displacement of x (which again induces a
displacement of z'). The result is

Ogr = —(Ua/aa, + Gafg/ualuﬁl)kﬁ + Ualgua/. (10.10)

Similarly, we can view

(10.11)

as an ordinary vector field, which is tangent to the congruence of null geodesics that emanate from
2. Tt is easy to check that this vector satisfies the identities
Oq/

Oapk? = ka, Oaphk® = -, (10.12)

from which we also obtain Ja/Bua/kﬂ = 1. From this last result and Eq. (10.10) we deduce the
important relation
E*0qr = 1. (10.13)

In addition, combining the general statement o® = —g®,0% — cf. Eq. (5.12) — with Eq. (10.7)
gives ) )
k= g% (u* + Q% ); (10.14)

the vector at = is therefore obtained by parallel transport of u® + Q“eg/ on . From this and
Eq. (10.4) we get the alternative expression

k® = e + Q% (10.15)

which confirms that k¢ is a future-directed null vector field (recall that Q% = &% /r is a unit vector).

The covariant derivative of k, can be computed by finding how the vector changes under a
displacement of z. (It is in fact easier to calculate first how rk, changes, and then substitute our
previous expression for dgr.) The result is

Tko.g = Oap — kaamzu“/ — kgoa,ydﬂ/ + (Ja/ao‘/ + Ja/g/ua/uﬁ/)kakg. (10.16)

From this we infer that k* satisfies the geodesic equation in affine-parameter form, £ ﬁkﬁ =0,
and Eq. (10.13) informs us that the affine parameter is in fact r. A displacement along a member
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of the congruence is therefore given by dx® = k®dr. Specializing to retarded coordinates, and
using Eqs. (10.8) and (10.12), we find that this statement becomes du = 0 and dz® = (£%/r)dr,
which integrate to u = constant and 2% = rQ®, respectively, with Q¢ still denoting a constant unit
vector. We have found that the congruence of null geodesics emanating from z’ is described by

u = constant, = rQe(04) (10.17)

in the retarded coordinates. Here, the two angles 4 (A = 1,2) serve to parameterize the unit
vector 2, which is independent of r.
Eq. (10.16) also implies that the expansion of the congruence is given by
%, —2
0=k, =—2—= (10.18)
’ T

Using Eq. (6.10), we find that this becomes 76 = 2 — %Ralgfaa/oﬁl +O(r3), or

1
ro =2 — §r2 (Roo + 2R0aQ" + RapQ°Q°) + O(r?) (10.19)

after using Eq. (10.7). Here, Ryy = Ra/ﬁ/ua/u6/7 Ry, = Rafglua/e'g/, and Ry, = Ra/greg‘/ef/ are
the frame components of the Ricci tensor evaluated at z’. This result confirms that the congruence
is singular at r = 0, because 6 diverges as 2/r in this limit; the caustic coincides with the point z’.

Finally, we infer from Eq. (10.16) that k¢ is hypersurface orthogonal. This, together with the
property that k® satisfies the geodesic equation in affine-parameter form, implies that there exists
a scalar field u(z) such that

ko = —0qu. (10.20)

This scalar field was already identified in Eq. (10.8): it is numerically equal to the proper-time
parameter of the world line at z’. We conclude that the geodesics to which k% is tangent are
the generators of the null cone u = constant. As Eq. (10.17) indicates, a specific generator is
selected by choosing a direction Q% (which can be parameterized by two angles #4), and r is an
affine parameter on each generator. The geometrical meaning of the retarded coordinates is now
completely clear; it is illustrated in Figure 7.

10.4 Frame components of tensor fields on the world line

The metric at = in the retarded coordinates will be expressed in terms of frame components of
vectors and tensors evaluated on the world line . For example, if a® is the acceleration vector at
2/, then as we have seen,

’

aq(u) = aq €y (10.21)
are the frame components of the acceleration at proper time wu.
Similarly,
o O/ 'Y/ 5/ 6/
Raovo(u) = Raryrprs € u” ey u®
Ra()bd(u) = Ra/,ylg/(;/ 63 u” 65 62 s
Racba(w) = Raryprsr €5 €l ey €5 (10.22)

are the frame components of the Riemann tensor evaluated on 7. From these we form the useful
combinations

Sav(u, 0%) = Raopo + Raobe2® + Rp0acQ + Racba Q" = Spa, (10.23)
Sa(u, 04) = Sap = Ra0p0Q” — Rapo 20, (10.24)
S(u,01) = S,Q% = RaopoQ2°Q°, (10.25)
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Figure 7: Retarded coordinates of a point x relative to a world line . The retarded time u selects a
particular null cone, the unit vector Q¢ := Z%/r selects a particular generator of this null cone, and the
retarded distance r selects a particular point on this generator. This figure is identical to Figure 4.

in which the quantities Q% := #%/r depend on the angles 84 only — they are independent of u and
T

We have previously introduced the frame components of the Ricci tensor in Eq. (10.19). The
identity

Roo 4 2R0a " + RypQ°Q° = 595, — S (10.26)

follows easily from Egs. (10.23) —(10.25) and the definition of the Ricci tensor.

In Section 9 we saw that the frame components of a given tensor were also the components of
this tensor (evaluated on the world line) in the Fermi normal coordinates. We should not expect
this property to be true also in the case of the retarded coordinates: the frame components of a
tensor are mot to be identified with the components of this tensor in the retarded coordinates. The
reason is that the retarded coordinates are in fact singular on the world line. As we shall see,
they give rise to a metric that possesses a directional ambiguity at 7 = 0. (This can easily be seen
in Minkowski spacetime by performing the coordinate transformation v = t — y/x2 + y2 + 22.)
Components of tensors are therefore not defined on the world line, although they are perfectly well
defined for r # 0. Frame components, on the other hand, are well defined both off and on the
world line, and working with them will eliminate any difficulty associated with the singular nature
of the retarded coordinates.

10.5 Coordinate displacements near v

The changes in the quasi-Cartesian retarded coordinates under a displacement of z are given
by Eq. (10.8). In these we substitute the standard expansions for oy s and o4/, as given by
Egs. (6.7) and (6.8), as well as Egs. (10.7) and (10.14). After a straightforward (but fairly lengthy)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7


http://www.livingreviews.org/lrr-2011-7

64 Eric Poisson, Adam Pound and Ian Vega

calculation, we obtain the following expressions for the coordinate displacements:
du = (€5 dz®) — Q, (efx dz®), (10.27)
1
dz® = — {ra“ + 57*2,5'“ + O(r?’)} (€2 dz®)
1 1
+ [0+ (ras + §r2sa)9b 7280+ 00| (¢h da®). (10.28)

Notice that the result for du is exact, but that dz® is expressed as an expansion in powers of 7.
These results can also be expressed in the form of gradients of the retarded coordinates:

Dot = €2 — Qe (10.29)
002 = — {ra“ + %rQS“ + O(r?’)} el
a a 1 2 qQa 1 2 qa 3 b
+[ u (m +5r2s )Qb+ 2125+ O(r )]ea. (10.30)

Notice that Eq. (10.29) follows immediately from Egs. (10.15) and (10.20). From Eq. (10.30) and
the identity 0,7 = 2,0, we also infer

Dot = — [mam + %725 + O(r?’)} eq + [(1 +rapQ + %r%‘)ﬁa + %vﬂsa + O(r?’)}ei, (10.31)

where we have used the facts that Sy = S5Q% and S = S,Q%; these last results were derived in
Egs. (10.24) and (10.25). It may be checked that Eq. (10.31) agrees with Eq. (10.10).

10.6 Metric near vy

It is straightforward (but fairly tedious) to invert the relations of Eqgs. (10.27) and (10.28) and
solve for €2 dz® and €2 dz®. The results are

& dz® = [1 b ra 0 + 125 4 0(r3)} du + [(1 + 1r?s)Qa I O(T?’)} di®, (10.32)
2 6 6
1 1 1
el dr® = {raa + 57"25'“ + O(r?’)} du + [(5% - 67‘25% + 67“25“(21, + O(r?’)} di’. (10.33)

These relations, when specialized to the retarded coordinates, give us the components of the dual
tetrad (e2,e%) at x. The metric is then computed by using the completeness relations of Eq. (10.3).

We find o
Guu = —(1 + raaQa)2 +7r%a® —r%S + O(r?’), (10.34)
Jua = — (1 + rapQ’ + §T2S) Qq +raq + §r25a + O(r?), (10.35)
Gab = Oab — (1 + %rZS)QaQb — %ﬂsab + %ﬂ(saﬂb +QaS) + O(r), (10.36)
where a? := §,a%°. We see (as was pointed out in Section 10.4) that the metric possesses a

directional ambiguity on the world line: the metric at r = 0 still depends on the vector Q* = &% /r
that specifies the direction to the point x. The retarded coordinates are therefore singular on the
world line, and tensor components cannot be defined on ~.

By setting Sqp = Sq = 5 =0 in Eqgs. (10.34) —(10.36) we obtain the metric of flat spacetime in
the retarded coordinates. This we express as

Nuw = —(1 + raaQ“)2 +72a?,
Nua = _(1 + Tabe)Qa + raq, (1037)
TNab = 6ab - QaQb-
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In spite of the directional ambiguity, the metric of flat spacetime has a unit determinant everywhere,
and it is easily inverted:

7" =0, ' = —-Q%, N =9t 4 r(aaQb + Qaab). (10.38)

The inverse metric also is ambiguous on the world line.

To invert the curved-spacetime metric of Eqgs. (10.34) - (10.36) we express it as gog = 7ag +
hap + O(r3) and treat hos = O(r?) as a perturbation. The inverse metric is then g% = % —
n°nhs + O(r3), or

g =0, (10.39)

gua — _Qa’ (1040)
1 1

9" =6 +r(a®Q’ + Q%a") + gﬁsab + §r2 (5*Q" + Q*S) + O(r?). (10.41)

The results for g“* and g“* are exact, and they follow from the general relations g®* (9, u)(9su) = 0
and g*?(9,u)(9sr) = —1 that are derived from Eqgs. (10.13) and (10.20).
The metric determinant is computed from /—g =1+ %n“ﬁ hap + O(r3), which gives

1 1
V—g=1- 67«2 (6°Sap — S) +O(r®) =1 — 67«2 (Roo + 2R0aQ" + Rap Q%) + O(r®),  (10.42)

where we have substituted the identity of Eq. (10.26). Comparison with Eq. (10.19) gives us the
interesting relation /—¢g = %7"9 + O(r3), where @ is the expansion of the generators of the null
cones u = constant.

10.7 Transformation to angular coordinates

Because the vector Q% = &% /r satisfies 6,,Q2%Q% = 1, it can be parameterized by two angles 4. A
canonical choice for the parameterization is Q% = (sin € cos ¢, sin 6 sin ¢, cos 0). It is then convenient
to perform a coordinate transformation from ¢ to (r,#4), using the relations &% = rQ2(64).
(Recall from Section 10.3 that the angles §* are constant on the generators of the null cones u =
constant, and that r is an affine parameter on these generators. The relations £% = rQ)* therefore
describe the behaviour of the generators.) The differential form of the coordinate transformation
is

di® = Q% dr 4+ rQ¢% do*, (10.43)
where the transformation matrix
a onN®
satisfies the identity 2,09 = 0.
We introduce the quantities
Qap = 040, (10.45)

which act as a (nonphysical) metric in the subspace spanned by the angular coordinates. In the
canonical parameterization, Qap = diag(l,sin2 ). We use the inverse of Q4p, denoted Q45| to
raise upper-case Latin indices. We then define the new object

Q4 = 6,0480Y (10.46)
which satisfies the identities

QAQ(L _ (SA, 0o QA — 5 _ QaQb- 10.47
a““B B A°%p b
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The second result follows from the fact that both sides are simultaneously symmetric in a and b,
orthogonal to 2, and Q°, and have the same trace.

From the preceding results we establish that the transformation from £ to (r,64) is accom-
plished by

oz oz
; = Q°, 6% = rQq, (10.48)
while the transformation from (r,#4) to £ is accomplished by
or 004 1
577 = e h = TQ;“. (10.49)

With these transformation rules it is easy to show that in the angular coordinates, the metric is
given by

Guu = —(1+ raaQ“)Q +7r2a® — 125 4+ O(r?), (10.50)
Gur = —1, (10.51)
2
JuA =T {raa + gTQSa + O(TB)} % (10.52)
1
gap = 1" [QAB — =S + 0(r3)}. (10.53)

The results g, = —1, g = 0, and g4 = 0 are exact, and they follow from the fact that in the
retarded coordinates, k., dz® = —du and k%0, = 0,.
The nonvanishing components of the inverse metric are

9" =-1, (10.54)
g =1+ 2maQa + 728 +0(r?), (10.55)

1
g = . {ra + 7“25“ +O(r )] 04, (10.56)

1
g = [0+ §r25“beQbB +0(%)]. (10.57)
The results g** = 0, ¢*" = —1, and ¢*“* = 0 are exact, and they follow from the same reasoning

as before.
Finally, we note that in the angular coordinates, the metric determinant is given by
1

V=9 = V|1 = 21 (Roo + 2R0a2" + Rap2°2") + O(%)|, (10.58)

where () is the determinant of €24 p; in the canonical parameterization, VQ =sind.

10.8 Specialization to ¢ =0 = R,

In this subsection we specialize our previous results to a situation where v is a geodesic on which
the Ricci tensor vanishes. We therefore set a* = 0 = R, everywhere on 1.

We have seen in Section 9.6 that when the Ricci tensor vanishes on +, all frame components of
the Riemann tensor can be expressed in terms of the symmetric-tracefree tensors £y, (u) and By (u).
The relations are Raop0 = Eabs Raobe = €pealBe,, and Racpd = 0aped + 6calab — 0adlbe — OpeEad-
These can be substituted into Egs. (10.23)—(10.25) to give

Sab(ua GA) = 2€ab - Qagchc - ngacﬂc + 5abgchCQd + EachCBdb + 5bchCBda> (1059)
Sa(u, 04) = EQ° + £4p.Q°B,0°, (10.60)
S(u, 04) = £,45Q°Q". (10.61)
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In these expressions the dependence on retarded time w is contained in &, and B, while the
angular dependence is encoded in the unit vector 2.
It is convenient to introduce the irreducible quantities

E* 1= EpN°00, (10.62)
Er = (6 — Q) E,Q°, (10.63)
x = 280 — 200Epe° — 20,E0 0 + (Oap + Qa2)E, (10.64)
B = £4c0°B¢,04, (10.65)
By, = acdQBL (6% — QD) + epeaQBL (65, — Q°Q,). (10.66)

These are all orthogonal to Q% £:Q¢ = B:0Q% = 0 and £5,Q = B0 = 0. In terms of these
Egs. (10.59)—(10.61) become

Sap = EXp + Qb + E50% + QaSWE + By + Qo By + By, (10.67)
Sa =&, + Q&+ B, (10.68)
S =¢&*. (10.69)

When Egs. (10.67)—(10.69) are substituted into the metric tensor of Egs. (10.34)—(10.36) — in
which a, is set equal to zero — we obtain the compact expressions

G = —1— 12E° 1+ O(%), (10.70)
2
Gua = _Qa + §T2 (g; + BZ) + O(T3)7 (1071)
1

Gab = 5ab - QaQb - §T2 (S:b + B;b) + O(T3)' (1072)

The metric becomes
Guy = —1 — r2g* + O(r3>7 (1073)
Gur = -1, (1074)

2
gur = P (E3+ BY) + O*), (1075
1

gaB =1°Qap — 57"4 (Eip + Biag) +0(°) (10.76)

after transforming to angular coordinates using the rules of Eq. (10.48). Here we have introduced
the projections

4= E1QY = £,9400, ( )
Eqp = ERQ405 = 26,9405 4+ £ Qap, ( )
By = Bi0Y = £,4.040°8,04, (10.79)
Bip = By Q405 = 26,040 B4 Q. ( )

It may be noted that the inverse relations are & = £3Q2, B = BQ4, &5 = E150408, and
B, = By 50408 where Q2 was introduced in Eq. (10.46).
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11 Transformation between Fermi and retarded coordinates;
advanced point

A point z in the normal convex neighbourhood of a world line vy can be assigned a set of Fermi
normal coordinates (as in Section 9), or it can be assigned a set of retarded coordinates (Section 10).
These coordinate systems can obviously be related to one another, and our first task in this section
(which will occupy us in Sections 11.1-11.3) will be to derive the transformation rules. We begin
by refining our notation so as to eliminate any danger of ambiguity.

x7 =z(v)
X =z(t)
X
x =z(u)

Figure 8: The retarded, simultaneous, and advanced points on a world line 4. The retarded point
z' := 2(u) is linked to x by a future-directed null geodesic. The simultaneous point Z := z(t) is linked to
z by a spacelike geodesic that intersects v orthogonally. The advanced point =" := z(v) is linked to = by

a past-directed null geodesic.

The Fermi normal coordinates of x refer to a point T := z(¢) on ~ that is related to = by
a spacelike geodesic that intersects v orthogonally; see Figure 8. We refer to this point as x’s
simultaneous point, and to tensors at T we assign indices @, 3, etc. We let (¢, sw®) be the Fermi
normal coordinates of x, with ¢ denoting the value of ’s proper-time parameter at z, s = v/20(z, Z)
representing the proper distance from Z to = along the spacelike geodesic, and w® denoting a unit
vector ((5abwawb = 1) that determines the direction of the geodesic. The Fermi normal coordinates
are defined by sw® = —e2c® and ogu® = 0. Finally, we denote by (g, &%) the tetrad at x that is
obtained by parallel transport of (u®,e%) on the spacelike geodesic.

The retarded coordinates of z refer to a point z’ := z(u) on 7 that is linked to x by a future-
directed null geodesic; see Figure 8. We refer to this point as x’s retarded point, and to tensors at z’
we assign indices o/, 3, etc. We let (u, 7Q2*) be the retarded coordinates of x, with u denoting the
value of 7’s proper-time parameter at z’, r = ooru® representing the affine-parameter distance from
2’ to = along the null geodesic, and Q% denoting a unit vector (9,,2%Q% = 1) that determines the
direction of the geodesic. The retarded coordinates are defined by rQ2* = feg,ao‘/ and o(z,z') = 0.
Finally, we denote by (e§,e%) the tetrad at = that is obtained by parallel transport of (ua/,eg‘/)
on the null geodesic.
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The reader who does not wish to follow the details of this discussion can be informed that: (i) our
results concerning the transformation from the retarded coordinates (u, r, 2%) to the Fermi normal
coordinates (t,s,w®) are contained in Eqgs. (11.1)—(11.3) below; (ii) our results concerning the
transformation from the Fermi normal coordinates (¢, s,w®) to the retarded coordinates (u,r, Q%)
are contained in Eqgs. (11.4)—(11.6); (iii) the decomposition of each member of (€, %) in the tetrad
(e§,e%) is given in retarded coordinates by Eqgs. (11.7) and (11.8); and (iv) the decomposition of
each member of (e§, e7) in the tetrad (€F,€S) is given in Fermi normal coordinates by Eqgs. (11.9)
and (11.10).

Our final task will be to define, along with the retarded and simultaneous points, an advanced
point =" on the world line v; see Figure 8. This is taken on in Section 11.4.

11.1 From retarded to Fermi coordinates

Quantities at Z := z(t) can be related to quantities at ' := z(u) by Taylor expansion along the
world line . To implement this strategy we must first find an expression for A := ¢t —wu. (Although
we use the same notation, this should not be confused with the van Vleck determinant introduced
in Section 7.)

Consider the function p(7) of the proper-time parameter 7 defined by

p(7) = op (@, 2(7))u(7),

in which z is kept fixed and in which z(7) is an arbitrary point on the world line. We have that
p(u) = r and p(t) = 0, and A can ultimately be obtained by expressing p(t) as p(u + A) and
expanding in powers of A. Formally,

p(t) = p(u) + p(u)A + %z‘i(u)AQ + ép(3)(u)A3 +O0(AY),

where overdots (or a number within brackets) indicate repeated differentiation with respect to 7.
We have

p(u) = Ua’ﬂ’ua/uﬁ, + Ua’aa/7
P(u) = gargrpu® v ul + 304 pu d® + o0,
p(g) (u) = aa/g/,yfg/ua'uﬂlzﬂlu‘s/ + oagry (5ao‘/u5/u”’, + ua/uﬁlcﬂ/)
+0w g (3a“/a5/ + 4ua/dﬁ,) + Ua’dalv
where a* = Dut/dr, a* = Da* /dr, and a* = Da* /dr.
We now express all of this in retarded coordinates by invoking the expansion of Eq. (6.7) for
oo p (as well as additional expansions for the higher derivatives of the world function, obtained

by further differentiation of this result) and the relation o = —r(u® + Q%2") first derived in
Eq. (10.7). With a degree of accuracy sufficient for our purposes we obtain

p(u) = = [1+7a,Q° + éﬂs +0(%)],
plu) = —r(ao + daQ“) + O(’I"2),
PP (u) = ao + O(r),

’ ’

where S = Ru0p0Q%Q° was first introduced in Eq. (10.25), and where dg := dou® , dq = (o
are the frame components of the covariant derivative of the acceleration vector. To arrive at these
results we made use of the identity aa/ao‘/ + da/ua/ = 0 that follows from the fact that a* is
orthogonal to u*. Notice that there is no distinction between the two possible interpretations
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Gq = dag/dr and a, = auef for the quantity a.(7); their equality follows at once from the
substitution of De’ /dT = a,u” (which states that the basis vectors are Fermi-Walker transported
on the world line) into the identity da,/dT = D(a,e%)/dr.

Collecting our results we obtain

1 1 1
r= [1 + 70,0 + g1~2S + O(r3)} Asgr [ao + 4,0 + O(r)} A? — 5 [ao + O(r)] A3 +0(AY),
which can readily be solved for A := t — u expressed as an expansion in powers of r. The final

result is

1 1 1
t=u+ r{l —raq(u)Q® + 72 [aa(u)Qa]2 — =r%ag(u) — =72a4 (u)Q* — =72 Raopo (1)QQ + O (13 }7

3 2 3
(11.1)
)

where we show explicitly that all frame components are evaluated at the retarded point z(u
To obtain relations between the spatial coordinates we consider the functions

Pa(T) = —0, (x, Z(T))eg(T),

in which z is fixed and z(7) is an arbitrary point on . We have that the retarded coordinates are
given by Q2% = p®(u), while the Fermi coordinates are given instead by sw?® = p®(t) = p®(u + A).
This last expression can be expanded in powers of A, producing

1 1
0% = () £ 5 ()DL ()A 4 2O () A+ O(AY)
with

’

ba(u) = —owged u” — (o) (apre])
1
= —rag, — §r25a + O(r?),

’

Pa(u) = —aar,g/n,reg‘,uﬁlu'y/ - (ZJarglua,uﬁl + Ua/ao‘/) (avfez,) — o€y o’ — (Uo/uo‘/) (dlg/eg/)
= (1 + rabe)aa —Taq + %TRaObOQb +0(r?),
PP (u) = —Ua/,g/yg/e;“/uﬁ,u”/uy — (30a/g17/ua/u5lu7, + 6aa//g/uo‘/aﬂ/ to0a® + Ua/ua,dgfuﬁ/) (a(;/ez/)
- aa/gw/eg/ (Qaﬁ/qﬂl + u'B/aV/) — (SUQ/B/UO‘IUBI + QUO/aa/) (dyez/) — aa/ﬁ/eg‘/aﬁl
— (00u™) (ipref)
= 2a, + O(r).
To arrive at these results we have used the same expansions as before and re-introduced S, =

Raop02? — Rap0c2°Q°, as it was first defined in Eq. (10.24).
Collecting our results we obtain

sw® =7rQ% —r {a“ + %TS“ + O(T2)i| A+ % [(1 +rapQ’)a® — ra® + érR“ObOQb + O(r2)] A?
1
+3 [aa + O(T)] AP+ 0O(AY),

which becomes

1 1 1
Zr24® (u) — ETQRGObO(U)Qb + §r2R“bOC(u)QbQC + O(r?’)}

sw = r{Q“ — %r[l — rab(u)Qb] a®(u) — 5
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after substituting Eq. (11.1) for A := ¢t — w. From squaring Eq. (11.2) and using the identity
Spww? = 1 we can also deduce

1 1 1 1
5= T{l — iraa(u)Q“ + §r2 [aa(u)Qa]2 — —r%ag(u) — =r%a, (u)Q* — frzRQObo(u)QaQb —+ O(r3)}

8 8 6 6
(11.3)
for the spatial distance between x and z(t).

11.2 From Fermi to retarded coordinates

The techniques developed in the preceding subsection can easily be adapted to the task of relating
the retarded coordinates of z to its Fermi normal coordinates. Here we use T := z(¢) as the
reference point and express all quantities at 2’ := z(u) as Taylor expansions about 7 = t.
We begin by considering the function
o(r) = o(x,2(1))
of the proper-time parameter 7 on 7. We have that o(t) = 2s% and o(u) = 0, and A :=t — u is
now obtained by expressing o(u) as o(t — A) and expanding in powers of A. Using the fact that
&(7) = p(7), we have
1. o L. s, 1 (3 4 5
o(u) =0o(t) —p(t)A + ip(t)A — gp(t)A + 24P (A" + O(A°).

Expressions for the derivatives of p(7) evaluated at 7 = ¢ can be constructed from results derived
previously in Section 11.1: it suffices to replace all primed indices by barred indices and then
substitute the relation ¢ = —sw®e? that follows immediately from Eq. (9.5). This gives

. _ a 1 2 a, b 3

p(t) = — |1 + saw® + 35 Raopoww” + O(s°) |,

P(t) = —sa,w® + O(s?),

and then

2 = [1 ¥ 50407 + %S2Ra0b0w“wb + 0(33)} AZ - %s [aawa + 0(5)} A — % [ao + 0(3)} A* 1+ O(A?)

after recalling that p(t) = 0. Solving for A as an expansion in powers of s returns

1 3 1 1 1
u=t-— 5{1 ~ 5% (t)w® + gsz [aq(t)w”] g ﬂszdo(t) + 652% (t)w? — ESQRaobo(t)wawb + 0(33)},
(11.4)

in which we emphasize that all frame components are evaluated at the simultaneous point z(t).
An expression for r = p(u) can be obtained by expanding p(t — A) in powers of A. We have

1 1
r=-p)A+ SHH)AT - gp(?’) (A% +0(AY),
and substitution of our previous results gives
1 a Lo a2 1 o, Lo, a, L2 a, b 3
r=s 1—|—§saa(t)w —g° [aq (t)w”] —5* ao(t)—gs g (t)w +68 Raopo (t)ww’+0(s7) p (11.5)

for the retarded distance between z and z(u).
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Finally, the retarded coordinates 2 = p%(u) can be related to the Fermi coordinates by
expanding p®(t — A) in powers of A, so that

1 1
PO = (1) — (DA + 35 (DA — 2O (A% +0(AY),

Results from the preceding subsection can again be imported with mild alterations, and we find

1
Pa(t) = §S2Rawcwbwc +0(s%),

Pa(t) = (1 + sabwb)aa + %sRaObowb + 0(32),
P (t) = 2a4(t) + O(s).

This, together with Eq. (11.4), gives

3

1 1
rQ¢ = s{w“ + isa“(t) — —s%a%(t) — 3

1 1 .

—52R%0. (H)wPw® + gszR“ObO(t)wb + O(sd)}. (11.6)
It may be checked that squaring this equation and using the identity §,,Q2%Q% = 1 returns the
same result as Eq. (11.5).

11.3 Transformation of the tetrads at z

Recall that we have constructed two sets of basis vectors at z. The first set is the tetrad (€, €%)
that is obtained by parallel transport of (u®,e2) on the spacelike geodesic that links z to the
simultaneous point Z := z(t). The second set is the tetrad (e, e%) that is obtained by parallel
transport of (u®’,e2") on the null geodesic that links z to the retarded point 2/ := z(u). Since
each tetrad forms a complete set of basis vectors, each member of (€F,€%) can be decomposed
in the tetrad (e§,eS), and correspondingly, each member of (ef,e?) can be decomposed in the
tetrad (e§, eS). These decompositions are worked out in this subsection. For this purpose we shall

consider the functions

pa(T) = ga# (.’ﬂ, Z(T))UN(T)a pg<7—) = ga# (.’E, Z(T))GZ(T),

in which z is a fixed point in a neighbourhood of v, z(7) is an arbitrary point on the world line, and
g%, (z,2) is the parallel propagator on the unique geodesic that links = to 2. We have ef = p®(t),

ed = pe(t), e§ = p°(u), and €2 = pg(u).

We begin with the decomposition of (€5, %) in the tetrad (e, %) associated with the retarded
point z(u). This decomposition will be expressed in the retarded coordinates as an expansion in
powers of 7. As in Section 9.1 we express quantities at z(¢) in terms of quantities at z(u) by
expanding in powers of A :=¢ — u. We have

e = 1" () + 5 (WA + 35 (A2 + O(AY)
with
() = g% gu v + g%ha®
— |a"+ %TRGObOQb +0(r%)es,
P (u) = g”‘a/;ﬁ/,y,ua’uﬁlu“/ + 9% (2a°‘/uﬂ' + ua/aﬁ') + go‘a,da’
= [—do + O(T)] eq + [da + O(r)} es,

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7


http://www.livingreviews.org/lrr-2011-7

The Motion of Point Particles in Curved Spacetime 73

where we have used the expansions of Eq. (6.11) as well as the decompositions of Eq. (10.4).
Collecting these results and substituting Eq. (11.1) for A yields

& = 1_%r2a0(u)+0(r3)] St [r(1_abﬂb)aa(u)+%ﬂaa(u)+%T2Ra0b0(u)9b+0(r3) . (11.7)
Similarly, we have
e = P ) + P WA + S (W)A? 1 O(8%),
with
5 (1) = g% ged u” + (g% u”) (apel)
= {aa + %rRaog,OQb + 0(7‘2)} ey + [—%eraOCQC + O(rz)} ey,
B2 (0) = gt w0 4 g (20 0 ayel + e o) + (g% a) (apel ) + (9% ) (apel)
= [aa + O(r)] eq + [aaab + O(r)] ey,
and all this gives

1 1
ee = [517& + §r2ab(u)aa(u) — §r2Rbaoc(u)Qc + O(r?’)} ey

+ [r(l — 1) aq(u) + %r2da(u) + %7‘2Ra0b0(u)§2b + O(r3)} eq - (11.8)

We now turn to the decomposition of (e§, %) in the tetrad (€§,e%) associated with the simul-

taneous point z(¢). This decomposition will be expressed in the Fermi normal coordinates as an
expansion in powers of s. Here, as in Section 9.2, we shall express quantities at z(u) in terms of
quantities at z(t). We begin with

1.
€5 =p(t) = 5 A + 55" ()A% + O(A?)
and we evaluate the derivatives of p*(r) at 7 = ¢. To accomplish this we rely on our previous

results (replacing primed indices with barred indices), on the expansions of Eq. (6.11), and on the
decomposition of g% (z,Z) in the tetrads at x and Z. This gives

pe(t) = [aa + %SRaoz;oWb + 0(32)} €as
() = [~d0 + O(s)| e + [a" + O(s) e

and we finally obtain

1 1 1 1

el = [1 - 552d0(t) + 0(83)} eq + [—s(l - §sabwb) a®(t) + 58261‘1(25) - 582Ra0b0(t)wb +0(s%)] e2.
(11.9)

Similarly, we write

1.4
€a = Pa(t) = D5 (O)A + 50, (1A% +0(A%),
in which we substitute
1 1
ps(t) = {aa + §sRa0bowb + 0(52)} ey + |:_§5Rba0cwc + 0(32)} €y,

0] [aa + 0(5)} & + [aaab +o(s)] e,
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as well as Eq. (11.4) for A :=¢ — . Our final result is

1 1
o = [5{1 + 557" ()aa(t) + 352 R o (Do + O(s") | &
1 b 1 2. } 2 b 3\ | sa
+ [ s(l i )aa(t) + 55 aq(t) 55 Raopo(uw)w’ + O(s )] €q - (11.10)

11.4 Advanced point

It will prove convenient to introduce on the world line, along with the retarded and simultaneous
points, an advanced point associated with the field point . The advanced point will be denoted
2" := z(v), with v denoting the value of the proper-time parameter at z’; to tensors at this point
we assign indices o/, 8", etc. The advanced point is linked to x by a past-directed null geodesic
(refer back to Figure 8), and it can be located by solving o (z,z"") = 0 together with the requirement
that o (z, ") be a future-directed null vector. The affine-parameter distance between z and z””
along the null geodesic is given by

Tadv = _Ua”ually (1111)
and we shall call this the advanced distance between x and the world line. Notice that r,q, is a
positive quantity.

We wish first to find an expression for v in terms of the retarded coordinates of x. For this
purpose we define A := v — u and re-introduce the function o(7) := o(z, 2(7)) first considered in
Section 11.2. We have that o(v) = o(u) = 0, and A’ can ultimately be obtained by expressing o (v)
as o(u + A') and expanding in powers of A'. Recalling that &(7) = p(7), we have

o(v) = ou) + pW)A + Jp)A? + LA + o p® WA+ O(A7).

Using the expressions for the derivatives of p(7) that were first obtained in Section 11.1, we write
this as

_1 a }2 3 / 1 . ; a /2_i . /3 /4
r=3[1+ra.g + 5725 +00 )}A+6r[ao+aa9 +0()|a? — o+ 0] A%+ o(at),

Solving for A as an expansion in powers of r, we obtain

1 2 1
v=1u+ 2r{1 —raq (u)Q" 417 [ag (u)Q"] P grzdo(u) - grgda(u)ﬂa - grgRa()bo(u)Q“Qb + 0(7"3)}7
(11.12)
in which all frame components are evaluated at the retarded point z(u).
Our next task is to derive an expression for the advanced distance r,q,. For this purpose we

observe that r,qy = —p(v) = —p(u+ A'), which we can expand in powers of A := v —u. This gives
1 1
radv = —p(u) = p()A = Sp(w)A? — 2p@ () A% + O(AY),

which then becomes
_ [ a 1 2 3 / 1 . . a /2_1 . /3 14
Tady = —T+ | 1+71a,0 +3T S+0(r?) A+2r ap+ a2+ 0(r)| A 5 ag+O(r) | A” +O(A%).

After substituting Eq. (11.12) for A’ and witnessing a number of cancellations, we arrive at the
simple expression

Tadv =T {1 + %r%a(u)ﬂ“ + O(r3)] . (11.13)
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From Egs. (10.29), (10.30), and (11.12) we deduce that the gradient of the advanced time v is
given by
OqV = {1 —2ra,Q% + O(rz)} e+ [Qa —2raq, + 0(7"2)] €os (11.14)

where the expansion in powers of r was truncated to a sufficient number of terms. Similarly,
Egs. (10.30), (10.31), and (11.13) imply that the gradient of the advanced distance is given by

4 1 2 1
377 + g?‘QS)Qa 3+ S+ ()] e

1
+ {—raaQa - 57"25' + O(rg)] el (11.15)

OaTadv = Kl +rapQ +

where S, and S were first introduced in Egs. (10.24) and (10.25), respectively. We emphasize that
in Egs. (11.14) and (11.15), all frame components are evaluated at the retarded point z(u).
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Part 11I: Green’s Functions

12 Scalar Green’s functions in flat spacetime

12.1 Green’s equation for a massive scalar field

To prepare the way for our discussion of Green’s functions in curved spacetime, we consider first
the slightly nontrivial case of a massive scalar field ®(x) in flat spacetime. This field satisfies the
wave equation

(O - EH®(z) = —4np(z), (12.1)

where [ = n*8 0,05 is the wave operator, u(z) a prescribed source, and where the parameter k
has a dimension of inverse length. We seek a Green’s function G(z,z’) such that a solution to
Eq. (12.1) can be expressed as

P(z) = /G(m,x’)y(w’)d‘*:ﬂ’, (12.2)

where the integration is over all of Minkowski spacetime. The relevant wave equation for the

Green’s function is
(O - k)G (2,2') = —4mds(z — 2), (12.3)

where d4(x — 2’) = §(t — t')d(x — 2')d(y — y')0(z — 2') is a four-dimensional Dirac distribution in
flat spacetime. Two types of Green’s functions will be of particular interest: the retarded Green’s
function, a solution to Eq. (12.3) with the property that it vanishes when x is in the past of 2/,
and the advanced Green’s function, which vanishes when z is in the future of z’.

To solve Eq. (12.3) we appeal to Lorentz invariance and the fact that the spacetime is homo-
geneous to argue that the retarded and advanced Green’s functions must be given by expressions
of the form

Gret(z7 1‘/) = 9(t - t/)g(()'), Gadv(xv 93/) = 9(15/ - t)g(o')’ (124)

where o = 1n.s(z — 2/)*(z — 2/)? is Synge’s world function in flat spacetime, and where g(o)
is a function to be determined. For the remainder of this section we set 2’ = 0 without loss of
generality.

12.2 Integration over the source

The Dirac functional on the right-hand side of Eq. (12.3) is a highly singular quantity, and we can
avoid dealing with it by integrating the equation over a small four-volume V' that contains z’ = 0.
This volume is bounded by a closed hypersurface V. After using Gauss’ theorem on the first term
of Eq. (12.3), we obtain fav GYdY, — k? fv G dV = —4x, where d¥, is a surface element on 9V
Assuming that the integral of G over V goes to zero in the limit V' — 0, we have

lim ¢ GdL, = —4r. (12.5)
V=0 oV

It should be emphasized that the four-volume V must contain the point z’.
To examine Eq. (12.5) we introduce coordinates (w, x, 8, ¢) defined by

t = wcosx, x = wsin x sin 6 cos ¢, y = wsin x sin # sin ¢, z = wsin x cos 6,
and we let OV be a surface of constant w. The metric of flat spacetime is given by

ds? = — cos 2y dw? + 2w sin 2y dwdy + w? cos 2y dx? + w? sin? y dQ>

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7


http://www.livingreviews.org/lrr-2011-7

The Motion of Point Particles in Curved Spacetime 77

in the new coordinates, where dQ? = d6? + sin?0d¢?. Notice that w is a timelike coordinate
when cos 2y > 0, and that x is then a spacelike coordinate; the roles are reversed when cos2y <

0. Straightforward computations reveal that in these coordinates, o = —%w2 cos2x, /—g =

w?sin? ysin @, ¢g¥% = —cos2y, ¢g¥X = wlsin2y, ¢¥X = w2 cos2y, and the only nonvanishing
component of the surface element is d¥,, = w?sin® y dxdS2, where dQ = sinf dfd¢. To calculate
the gradient of the Green’s function we express it as G = 0(+t)g(c) = (£w cos x)g(—3w? cos 2x),
with the upper (lower) sign belonging to the retarded (advanced) Green’s function. Calculation
gives Gi*dY, = (= cos x)w? sin® x¢' (o) dxdQ, with a prime indicating differentiation with respect
to o; it should be noted that derivatives of the step function do not appear in this expression.
Integration of Gi*d¥,, with respect to df? is immediate, and we find that Eq. (12.5) reduces to

™
lim 0(= cos x)w* sin® xg'(0) dy = —1. (12.6)
w—0 Jq
For the retarded Green’s function, the step function restricts the domain of integration to 0 < x <
7/2, in which ¢ increases from f%wz to %wz. Changing the variable of integration from x to o
transforms Eq. (12.6) into

li_I)I%)E/Z w(o/e) g (o) do = —1, w(é) : 1/%, (12.7)

%wZ. For the advanced Green’s function, the domain of integration is 7/2 < x < m,

where € :=
in which o decreases from fw? to f%wQ. Changing the variable of integration from x to ¢ also

2
produces Eq. (12.7).

12.3 Singular part of g(o)

We have seen that Eq. (12.7) properly encodes the influence of the singular source term on both
the retarded and advanced Green’s function. The function g(o) that enters into the expressions
of Eq. (12.4) must therefore be such that Eq. (12.7) is satisfied. It follows immediately that g(o)
must be a singular function, because for a smooth function the integral of Eq. (12.7) would be of
order € and the left-hand side of Eq. (12.7) could never be made equal to —1. The singularity,
however, must be integrable, and this leads us to assume that ¢’(o) must be made out of Dirac
d-functions and derivatives.
We make the ansatz

g(o) =V (0)0(—0) + Ad(o) + B§' (o) + C§" (o) + -+, (12.8)

where V(o) is a smooth function, and A, B, C, ...are constants. The first term represents a
function supported within the past and future light cones of 2’ = 0; we exclude a term proportional
to 6(o) for reasons of causality. The other terms are supported on the past and future light cones.
It is sufficient to take the coefficients in front of the d-functions to be constants. To see this we
invoke the distributional identities

06(c)=0 — 0d'(0)+d(c)=0 — 08 (0)+25(c)=0 — - (12.9)

from which it follows that 02§’ (o) = 036" (0) = --- = 0. A term like f(o)d(o) is then distribution-
ally equal to f(0)d(c), while a term like f(0)d’(o) is distributionally equal to f(0)d’(o) — f'(0)d (o),
and a term like f(0)d”(0) is distributionally equal to f(0)6” (o) — 2f7(0)d (o) + 2f(0)6(o); here
f (o) is an arbitrary test function. Summing over such terms, we recover an expression of the form
of Eq. (12.9), and there is no need to make A, B, C| ... functions of o.
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Differentiation of Eq. (12.8) and substitution into Eq. (12.7) yields

6/6 w(o/e) g (o) dor = e[/ V(o )w(o/e) do — V(0)w(0) ~ Zu0) + Zib(0) - gw(?’)(O) L

—€ —€

where overdots (or a number within brackets) indicate repeated differentiation with respect to
& := o/e. The limit € — 0 exists if and only if B =C = --- = 0. In the limit we must then have
Aw(0) = 1, which implies A = 1. We conclude that g(c) must have the form of

g(o) =6(0) + V(0)0(—0), (12.10)

with V(o) a smooth function that cannot be determined from Eq. (12.7) alone.

12.4 Smooth part of g(o)

To determine V(o) we must go back to the differential equation of Eq. (12.3). Because the singular
structure of the Green’s function is now under control, we can safely set * # 2’ = 0 in the
forthcoming operations. This means that the equation to solve is in fact (O — k2)g(o) = 0, the
homogeneous version of Eq. (12.3). We have Vo9 = ¢'0n, VoV = ¢"000s + ¢'0ap, Og =
20g” +4¢’, so that Green’s equation reduces to the ordinary differential equation

209" +4¢' — k%9 =0. (12.11)
If we substitute Eq. (12.10) into this we get
—(2V +k2)8(a) + (20V" + 4V’ — k*V)0(—~0) = 0,

where we have used the identities of Eq. (12.9). The left-hand side will vanish as a distribution if
we set

20V" +4V' — k*V =0, V(0) = — k2. (12.12)

These equations determine V(o) uniquely, even in the absence of a second boundary condition at
o = 0, because the differential equation is singular at ¢ = 0 while V' is known to be smooth.
To solve Eq. (12.12) we let V = F(2)/z, with z := kv/—20. This gives rise to Bessel’s equation
for the new function F:
22F,, 4+ 2F, + (2> = 1)F = 0.

The solution that is well behaved near z = 0 is F' = aJ1(z), where a is a constant to be determined.
We have that J;(z) ~ 32 for small values of z, and it follows that V ~ a/2. From Eq. (12.12) we
see that a = —k?. So we have found that the only acceptable solution to Eq. (12.12) is

k
V=20

To summarize, the retarded and advanced solutions to Eq. (12.3) are given by Eq. (12.4) with
g(0) given by Eq. (12.10) and V(o) given by Eq. (12.13).

Vie)=—

Ji (kv —20). (12.13)

12.5 Advanced distributional methods

The techniques developed previously to find Green’s functions for the scalar wave equation are
limited to flat spacetime, and they would not be very useful for curved spacetimes. To pursue
this generalization we must introduce more powerful distributional methods. We do so in this
subsection, and in the next we shall use them to recover our previous results.
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Let 04 (x,X) be a generalized step function, defined to be one when z is in the future of the
spacelike hypersurface ¥ and zero otherwise. Similarly, define §_(z,%) := 1 — 6, (x,X) to be one
when z is in the past of the spacelike hypersurface ¥ and zero otherwise. Then define the light-cone
step functions

Oi(—0) =0,L(z,2)0(—0), ¥ ey, (12.14)

so that 64 (—o) is one if z is within IT(2’), the chronological future of 2/, and zero otherwise, and
0_(—o) is one if x is within I~ (z’), the chronological past of ', and zero otherwise; the choice of
hypersurface is immaterial so long as ¥ is spacelike and contains the reference point z’. Notice
that 64 (—0) +60_(—0) = 0(—0c). Define also the light-cone Dirac functionals

di(0) =04(2,%)0(0), ¥ ey, (12.15)

so that §4 (o), when viewed as a function of z, is supported on the future light cone of 2/, while
0_ (o) is supported on its past light cone. Notice that 6, (c) + d_ (o) = 6(0). In Egs. (12.14) and
(12.15), o is the world function for flat spacetime; it is negative when x and 2’ are timelike related,
and positive when they are spacelike related.

The distributions 61 (—o) and 64 (o) are not defined at x = 2’ and they cannot be differentiated
there. This pathology can be avoided if we shift o by a small positive quantity e. We can therefore
use the distributions 64 (—oc — €) and d1 (0 + €) in some sensitive computations, and then take
the limit ¢ — 0F. Notice that the equation o + ¢ = 0 describes a two-branch hyperboloid that
is located just within the light cone of the reference point a’. The hyperboloid does not include
a’', and 04 (xz,X) is one everywhere on its future branch, while _(z,3) is one everywhere on
its past branch. These factors, therefore, become invisible to differential operators. For example,
0 (—o—€) =0, (x,2)0(—0—€) = —0,(x,%)6(0+€) = —04 (0 +¢€). This manipulation shows that
after the shift from o to o +e¢, the distributions of Egs. (12.14) and (12.15) can be straightforwardly
differentiated with respect to o.

In the next paragraphs we shall establish the distributional identities

EEISI+ €dy(o+¢€) =0, (12.16)
61_1}151+ e’ (o +¢€) =0, (12.17)

lir(gl+ € (o +€) =2mé4(x — 2) (12.18)
e—

in four-dimensional flat spacetime. These will be used in the next subsection to recover the Green’s
functions for the scalar wave equation, and they will be generalized to curved spacetime in Sec-
tion 13.

The derivation of Eqgs. (12.16) - (12.18) relies on a “master” distributional identity, formulated
in three-dimensional flat space:

2
lim — = “Cos(x),  R:=/r2+ 2, (12.19)

e—0+ RP 3

with r = |z| := /22 + y2 + 22. This follows from yet another identity, V?r=! = —4md3(x), in
which we write the left-hand side as lim,_,q+ V2R™!; since R™! is nonsingular at = 0 it can
be straightforwardly differentiated, and the result is V2ZR™! = —6¢/R5, from which Eq. (12.19)
follows.

To prove Eq. (12.16) we must show that e€di(c + €) vanishes as a distribution in the limit
€ — 0T. For this we must prove that a functional of the form

Ail[f] = lim [ eds(o+e€)f(x)d*x,

e—0t

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7


http://www.livingreviews.org/lrr-2011-7

80 Eric Poisson, Adam Pound and Ian Vega

where f(xz) = f(t,«) is a smooth test function, vanishes for all such functions f. Our first task
will be to find a more convenient expression for d4 (o + €). Once more we set 2’ = 0 (without loss
of generality) and we note that 2(c + €) = —t? + 12 + 2¢ = —(t — R)(t + R), where we have used
Eq. (12.19). It follows that

StFR
Su(o+e) = %, (12.20)
and from this we find
:I:R
_el—l>r(I)1+ f z) xzel_i:r(r)l+ %R‘lf(iR:c x——/ég f(&£r, @) d®z =0,

which establishes Eq. (12.16).
The validity of Eq. (12.17) is established by a similar computation. Here we must show that a
functional of the form

Bi[f] = lim [ ed (o +e)f(x)d*z

e—0+

vanishes for all test functions f. We have

f(£R, x) _ o\ s
Balf) = Jip, ez, [ dulo+0s(o x—i%va/ To=tne ) (w0
N E 3 2 3
_el_lgﬂ/RS +R3f — R%f —/53 (£r°f —r*f) d®z =0,

and the identity of Eq. (12.17) is proved. In these manipulations we have let an overdot indicate
partial differentiation with respect to ¢, a