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Abstract

This review is concerned with the motion of a point scalar charge, a point electric charge,
and a point mass in a specified background spacetime. In each of the three cases the particle
produces a field that behaves as outgoing radiation in the wave zone, and therefore removes
energy from the particle. In the near zone the field acts on the particle and gives rise to a
self-force that prevents the particle from moving on a geodesic of the background spacetime.
The self-force contains both conservative and dissipative terms, and the latter are responsible
for the radiation reaction. The work done by the self-force matches the energy radiated away
by the particle.

The field’s action on the particle is difficult to calculate because of its singular nature: the
field diverges at the position of the particle. But it is possible to isolate the field’s singular
part and show that it exerts no force on the particle – its only effect is to contribute to the
particle’s inertia. What remains after subtraction is a regular field that is fully responsible
for the self-force. Because this field satisfies a homogeneous wave equation, it can be thought
of as a free field that interacts with the particle; it is this interaction that gives rise to the
self-force.

The mathematical tools required to derive the equations of motion of a point scalar charge,
a point electric charge, and a point mass in a specified background spacetime are developed here
from scratch. The review begins with a discussion of the basic theory of bitensors (Part I).
It then applies the theory to the construction of convenient coordinate systems to chart a
neighbourhood of the particle’s word line (Part II). It continues with a thorough discussion
of Green’s functions in curved spacetime (Part III). The review presents a detailed derivation
of each of the three equations of motion (Part IV). Because the notion of a point mass is
problematic in general relativity, the review concludes (Part V) with an alternative derivation
of the equations of motion that applies to a small body of arbitrary internal structure.
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The Motion of Point Particles in Curved Spacetime 9

1 Introduction and summary

1.1 Invitation

The motion of a point electric charge in flat spacetime was the subject of active investigation since
the early work of Lorentz, Abrahams, Poincaré, and Dirac [56], until Gralla, Harte, and Wald
produced a definitive derivation of the equations motion [82] with all the rigour that one should
demand, without recourse to postulates and renormalization procedures. (The field’s early history
is well related in Ref. [154].) In 1960 DeWitt and Brehme [54] generalized Dirac’s result to curved
spacetimes, and their calculation was corrected by Hobbs [95] several years later. In 1997 the
motion of a point mass in a curved background spacetime was investigated by Mino, Sasaki, and
Tanaka [130], who derived an expression for the particle’s acceleration (which is not zero unless the
particle is a test mass); the same equations of motion were later obtained by Quinn and Wald [150]
using an axiomatic approach. The case of a point scalar charge was finally considered by Quinn
in 2000 [149], and this led to the realization that the mass of a scalar particle is not necessarily a
constant of the motion.

This article reviews the achievements described in the preceding paragraph; it is concerned with
the motion of a point scalar charge 𝑞, a point electric charge 𝑒, and a point mass 𝑚 in a specified
background spacetime with metric 𝑔𝛼𝛽 . These particles carry with them fields that behave as
outgoing radiation in the wave zone. The radiation removes energy and angular momentum from
the particle, which then undergoes a radiation reaction – its world line cannot be simply a geodesic
of the background spacetime. The particle’s motion is affected by the near-zone field which acts
directly on the particle and produces a self-force. In curved spacetime the self-force contains a
radiation-reaction component that is directly associated with dissipative effects, but it contains
also a conservative component that is not associated with energy or angular-momentum transport.
The self-force is proportional to 𝑞2 in the case of a scalar charge, proportional to 𝑒2 in the case of
an electric charge, and proportional to 𝑚2 in the case of a point mass.

In this review we derive the equations that govern the motion of a point particle in a curved
background spacetime. The presentation is entirely self-contained, and all relevant materials are
developed ab initio. The reader, however, is assumed to have a solid grasp of differential geometry
and a deep understanding of general relativity. The reader is also assumed to have unlimited
stamina, for the road to the equations of motion is a long one. One must first assimilate the basic
theory of bitensors (Part I), then apply the theory to construct convenient coordinate systems to
chart a neighbourhood of the particle’s world line (Part II). One must next formulate a theory of
Green’s functions in curved spacetimes (Part III), and finally calculate the scalar, electromagnetic,
and gravitational fields near the world line and figure out how they should act on the particle
(Part IV). A dedicated reader, correctly skeptical that sense can be made of a point mass in
general relativity, will also want to work through the last portion of the review (Part V), which
provides a derivation of the equations of motion for a small, but physically extended, body; this
reader will be reassured to find that the extended body follows the same motion as the point mass.
The review is very long, but the satisfaction derived, we hope, will be commensurate.

In this introductory section we set the stage and present an impressionistic survey of what the
review contains. This should help the reader get oriented and acquainted with some of the ideas
and some of the notation. Enjoy!

1.2 Radiation reaction in flat spacetime

Let us first consider the relatively simple and well-understood case of a point electric charge 𝑒
moving in flat spacetime [154, 101, 171]. The charge produces an electromagnetic vector potential
𝐴𝛼 that satisfies the wave equation

�𝐴𝛼 = −4𝜋𝑗𝛼 (1.1)
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10 Eric Poisson, Adam Pound and Ian Vega

together with the Lorenz gauge condition 𝜕𝛼𝐴
𝛼 = 0. (On page 294, Jackson [101] explains why

the term “Lorenz gauge” is preferable to “Lorentz gauge”.) The vector 𝑗𝛼 is the charge’s current
density, which is formally written in terms of a four-dimensional Dirac functional supported on
the charge’s world line: the density is zero everywhere, except at the particle’s position where it is
infinite. For concreteness we will imagine that the particle moves around a centre (perhaps another
charge, which is taken to be fixed) and that it emits outgoing radiation. We expect that the charge
will undergo a radiation reaction and that it will spiral down toward the centre. This effect must
be accounted for by the equations of motion, and these must therefore include the action of the
charge’s own field, which is the only available agent that could be responsible for the radiation
reaction. We seek to determine this self-force acting on the particle.

An immediate difficulty presents itself: the vector potential, and also the electromagnetic field
tensor, diverge on the particle’s world line, because the field of a point charge is necessarily infinite
at the charge’s position. This behaviour makes it most difficult to decide how the field is supposed
to act on the particle.

Difficult but not impossible. To find a way around this problem we note first that the situation
considered here, in which the radiation is propagating outward and the charge is spiraling inward,
breaks the time-reversal invariance of Maxwell’s theory. A specific time direction was adopted
when, among all possible solutions to the wave equation, we chose 𝐴𝛼

ret, the retarded solution,
as the physically relevant solution. Choosing instead the advanced solution 𝐴𝛼

adv would produce
a time-reversed picture in which the radiation is propagating inward and the charge is spiraling
outward. Alternatively, choosing the linear superposition

𝐴𝛼
S =

1

2

(︀
𝐴𝛼

ret +𝐴𝛼
adv

)︀
(1.2)

would restore time-reversal invariance: outgoing and incoming radiation would be present in equal
amounts, there would be no net loss nor gain of energy by the system, and the charge would
undergo no radiation reaction. In Eq. (1.2) the subscript ‘S’ stands for ‘symmetric’, as the vector
potential depends symmetrically upon future and past.

Our second key observation is that while the potential of Eq. (1.2) does not exert a force on
the charged particle, it is just as singular as the retarded potential in the vicinity of the world
line. This follows from the fact that 𝐴𝛼

ret, 𝐴
𝛼
adv, and 𝐴

𝛼
S all satisfy Eq. (1.1), whose source term is

infinite on the world line. So while the wave-zone behaviours of these solutions are very different
(with the retarded solution describing outgoing waves, the advanced solution describing incoming
waves, and the symmetric solution describing standing waves), the three vector potentials share
the same singular behaviour near the world line – all three electromagnetic fields are dominated
by the particle’s Coulomb field and the different asymptotic conditions make no difference close to
the particle. This observation gives us an alternative interpretation for the subscript ‘S’: it stands
for ‘singular’ as well as ‘symmetric’.

Because 𝐴𝛼
S is just as singular as 𝐴𝛼

ret, removing it from the retarded solution gives rise to a
potential that is well behaved in a neighbourhood of the world line. And because 𝐴𝛼

S is known not
to affect the motion of the charged particle, this new potential must be entirely responsible for the
radiation reaction. We therefore introduce the new potential

𝐴𝛼
R = 𝐴𝛼

ret −𝐴𝛼
S =

1

2

(︀
𝐴𝛼

ret −𝐴𝛼
adv

)︀
(1.3)

and postulate that it, and it alone, exerts a force on the particle. The subscript ‘R’ stands for
‘regular’, because 𝐴𝛼

R is nonsingular on the world line. This property can be directly inferred from
the fact that the regular potential satisfies the homogeneous version of Eq. (1.1), �𝐴𝛼

R = 0; there
is no singular source to produce a singular behaviour on the world line. Since 𝐴𝛼

R satisfies the
homogeneous wave equation, it can be thought of as a free radiation field, and the subscript ‘R’
could also stand for ‘radiative’.
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The Motion of Point Particles in Curved Spacetime 11

The self-action of the charge’s own field is now clarified: a singular potential 𝐴𝛼
S can be removed

from the retarded potential and shown not to affect the motion of the particle. What remains is
a well-behaved potential 𝐴𝛼

R that must be solely responsible for the radiation reaction. From the
regular potential we form an electromagnetic field tensor 𝐹R

𝛼𝛽 = 𝜕𝛼𝐴
R
𝛽 − 𝜕𝛽𝐴

R
𝛼 and we take the

particle’s equations of motion to be

𝑚𝑎𝜇 = 𝑓 ext𝜇 + 𝑒𝐹R
𝜇𝜈𝑢

𝜈 , (1.4)

where 𝑢𝜇 = 𝑑𝑧𝜇/𝑑𝜏 is the charge’s four-velocity [𝑧𝜇(𝜏) gives the description of the world line and 𝜏
is proper time], 𝑎𝜇 = 𝑑𝑢𝜇/𝑑𝜏 its acceleration, 𝑚 its (renormalized) mass, and 𝑓𝜇ext an external force
also acting on the particle. Calculation of the regular field yields the more concrete expression

𝑚𝑎𝜇 = 𝑓𝜇ext +
2𝑒2

3𝑚

(︀
𝛿𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀𝑑𝑓𝜈ext
𝑑𝜏

, (1.5)

in which the second term is the self-force that is responsible for the radiation reaction. We observe
that the self-force is proportional to 𝑒2, it is orthogonal to the four-velocity, and it depends on
the rate of change of the external force. This is the result that was first derived by Dirac [56].
(Dirac’s original expression actually involved the rate of change of the acceleration vector on the
right-hand side. The resulting equation gives rise to the well-known problem of runaway solutions.
To avoid such unphysical behaviour we have submitted Dirac’s equation to a reduction-of-order
procedure whereby 𝑑𝑎𝜈/𝑑𝜏 is replaced with𝑚−1𝑑𝑓𝜈ext/𝑑𝜏 . This procedure is explained and justified,
for example, in Refs. [112, 70], and further discussed in Section 24 below.)

To establish that the singular field exerts no force on the particle requires a careful analysis
that is presented in the bulk of the paper. What really happens is that, because the particle is
a monopole source for the electromagnetic field, the singular field is locally isotropic around the
particle; it therefore exerts no force, but contributes to the particle’s inertia and renormalizes its
mass. In fact, one could do without a decomposition of the field into singular and regular solutions,
and instead construct the force by using the retarded field and averaging it over a small sphere
around the particle, as was done by Quinn and Wald [150]. In the body of this review we will use
both methods and emphasize the equivalence of the results. We will, however, give some emphasis
to the decomposition because it provides a compelling physical interpretation of the self-force as
an interaction with a free electromagnetic field.

1.3 Green’s functions in flat spacetime

To see how Eq. (1.5) can eventually be generalized to curved spacetimes, we introduce a new layer
of mathematical formalism and show that the decomposition of the retarded potential into singular
and regular pieces can be performed at the level of the Green’s functions associated with Eq. (1.1).
The retarded solution to the wave equation can be expressed as

𝐴𝛼
ret(𝑥) =

∫︁
𝐺 𝛼

+𝛽′(𝑥, 𝑥′)𝑗𝛽
′
(𝑥′) 𝑑𝑉 ′, (1.6)

in terms of the retarded Green’s function 𝐺 𝛼
+𝛽′(𝑥, 𝑥′) = 𝛿𝛼𝛽′𝛿(𝑡 − 𝑡′ − |𝑥 − 𝑥′|)/|𝑥 − 𝑥′|. Here

𝑥 = (𝑡,𝑥) is an arbitrary field point, 𝑥′ = (𝑡′,𝑥′) is a source point, and 𝑑𝑉 ′ := 𝑑4𝑥′; tensors at
𝑥 are identified with unprimed indices, while primed indices refer to tensors at 𝑥′. Similarly, the
advanced solution can be expressed as

𝐴𝛼
adv(𝑥) =

∫︁
𝐺 𝛼

−𝛽′(𝑥, 𝑥′)𝑗𝛽
′
(𝑥′) 𝑑𝑉 ′, (1.7)

in terms of the advanced Green’s function 𝐺 𝛼
−𝛽′(𝑥, 𝑥′) = 𝛿𝛼𝛽′𝛿(𝑡−𝑡′+|𝑥−𝑥′|)/|𝑥−𝑥′|. The retarded

Green’s function is zero whenever 𝑥 lies outside of the future light cone of 𝑥′, and 𝐺 𝛼
+𝛽′(𝑥, 𝑥′) is
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infinite at these points. On the other hand, the advanced Green’s function is zero whenever 𝑥 lies
outside of the past light cone of 𝑥′, and 𝐺 𝛼

−𝛽′(𝑥, 𝑥′) is infinite at these points. The retarded and
advanced Green’s functions satisfy the reciprocity relation

𝐺−
𝛽′𝛼(𝑥

′, 𝑥) = 𝐺+
𝛼𝛽′(𝑥, 𝑥

′); (1.8)

this states that the retarded Green’s function becomes the advanced Green’s function (and vice
versa) when 𝑥 and 𝑥′ are interchanged.

From the retarded and advanced Green’s functions we can define a singular Green’s function
by

𝐺 𝛼
S 𝛽′(𝑥, 𝑥′) =

1

2

[︁
𝐺 𝛼

+𝛽′(𝑥, 𝑥′) +𝐺 𝛼
−𝛽′(𝑥, 𝑥′)

]︁
(1.9)

and a regular two-point function by

𝐺 𝛼
R 𝛽′(𝑥, 𝑥′) = 𝐺 𝛼

+𝛽′(𝑥, 𝑥′)−𝐺 𝛼
S 𝛽′(𝑥, 𝑥′) =

1

2

[︁
𝐺 𝛼

+𝛽′(𝑥, 𝑥′)−𝐺 𝛼
−𝛽′(𝑥, 𝑥′)

]︁
. (1.10)

By virtue of Eq. (1.8) the singular Green’s function is symmetric in its indices and arguments:
𝐺S

𝛽′𝛼(𝑥
′, 𝑥) = 𝐺S

𝛼𝛽′(𝑥, 𝑥′). The regular two-point function, on the other hand, is antisymmetric.
The potential

𝐴𝛼
S (𝑥) =

∫︁
𝐺 𝛼

S 𝛽′(𝑥, 𝑥′)𝑗𝛽
′
(𝑥′) 𝑑𝑉 ′ (1.11)

satisfies the wave equation of Eq. (1.1) and is singular on the world line, while

𝐴𝛼
R(𝑥) =

∫︁
𝐺 𝛼

R 𝛽′(𝑥, 𝑥′)𝑗𝛽
′
(𝑥′) 𝑑𝑉 ′ (1.12)

satisfies the homogeneous equation �𝐴𝛼 = 0 and is well behaved on the world line.
Equation (1.6) implies that the retarded potential at 𝑥 is generated by a single event in space-

time: the intersection of the world line and 𝑥’s past light cone (see Figure 1). We shall call this the
retarded point associated with 𝑥 and denote it 𝑧(𝑢); 𝑢 is the retarded time, the value of the proper-
time parameter at the retarded point. Similarly we find that the advanced potential of Eq. (1.7)
is generated by the intersection of the world line and the future light cone of the field point 𝑥. We
shall call this the advanced point associated with 𝑥 and denote it 𝑧(𝑣); 𝑣 is the advanced time, the
value of the proper-time parameter at the advanced point.

1.4 Green’s functions in curved spacetime

In a curved spacetime with metric 𝑔𝛼𝛽 the wave equation for the vector potential becomes

�𝐴𝛼 −𝑅𝛼
𝛽𝐴

𝛽 = −4𝜋𝑗𝛼, (1.13)

where � = 𝑔𝛼𝛽∇𝛼∇𝛽 is the covariant wave operator and 𝑅𝛼𝛽 is the spacetime’s Ricci tensor; the
Lorenz gauge conditions becomes ∇𝛼𝐴

𝛼 = 0, and ∇𝛼 denotes covariant differentiation. Retarded
and advanced Green’s functions can be defined for this equation, and solutions to Eq. (1.13) take
the same form as in Eqs. (1.6) and (1.7), except that 𝑑𝑉 ′ now stands for

√︀
−𝑔(𝑥′) 𝑑4𝑥′.

The causal structure of the Green’s functions is richer in curved spacetime: While in flat
spacetime the retarded Green’s function has support only on the future light cone of 𝑥′, in curved
spacetime its support extends inside the light cone as well; 𝐺 𝛼

+𝛽′(𝑥, 𝑥′) is therefore nonzero when

𝑥 ∈ 𝐼+(𝑥′), which denotes the chronological future of 𝑥′. This property reflects the fact that
in curved spacetime, electromagnetic waves propagate not just at the speed of light, but at all
speeds smaller than or equal to the speed of light ; the delay is caused by an interaction between the
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x

z(u)

retarded

x

z(v)

advanced

Figure 1: In flat spacetime, the retarded potential at 𝑥 depends on the particle’s state of motion at
the retarded point 𝑧(𝑢) on the world line; the advanced potential depends on the state of motion at the
advanced point 𝑧(𝑣).

radiation and the spacetime curvature. A direct implication of this property is that the retarded
potential at 𝑥 is now generated by the point charge during its entire history prior to the retarded
time 𝑢 associated with 𝑥: the potential depends on the particle’s state of motion for all times 𝜏 ≤ 𝑢
(see Figure 2).

Similar statements can be made about the advanced Green’s function and the advanced solution
to the wave equation. While in flat spacetime the advanced Green’s function has support only
on the past light cone of 𝑥′, in curved spacetime its support extends inside the light cone, and
𝐺 𝛼

−𝛽′(𝑥, 𝑥′) is nonzero when 𝑥 ∈ 𝐼−(𝑥′), which denotes the chronological past of 𝑥′. This implies
that the advanced potential at 𝑥 is generated by the point charge during its entire future history
following the advanced time 𝑣 associated with 𝑥: the potential depends on the particle’s state of
motion for all times 𝜏 ≥ 𝑣.

The physically relevant solution to Eq. (1.13) is obviously the retarded potential 𝐴𝛼
ret(𝑥), and

as in flat spacetime, this diverges on the world line. The cause of this singular behaviour is still
the pointlike nature of the source, and the presence of spacetime curvature does not change the
fact that the potential diverges at the position of the particle. Once more this behaviour makes it
difficult to figure out how the retarded field is supposed to act on the particle and determine its
motion. As in flat spacetime we shall attempt to decompose the retarded solution into a singular
part that exerts no force, and a regular part that produces the entire self-force.

To decompose the retarded Green’s function into singular and regular parts is not a straight-
forward task in curved spacetime. The flat-spacetime definition for the singular Green’s function,
Eq. (1.9), cannot be adopted without modification: While the combination half-retarded plus half-
advanced Green’s functions does have the property of being symmetric, and while the resulting
vector potential would be a solution to Eq. (1.13), this candidate for the singular Green’s function
would produce a self-force with an unacceptable dependence on the particle’s future history. For
suppose that we made this choice. Then the regular two-point function would be given by the
combination half-retarded minus half-advanced Green’s functions, just as in flat spacetime. The
resulting potential would satisfy the homogeneous wave equation, and it would be regular on the
world line, but it would also depend on the particle’s entire history, both past (through the retarded
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x

z(u)

retarded

z(v)

x

advanced

Figure 2: In curved spacetime, the retarded potential at 𝑥 depends on the particle’s history before the
retarded time 𝑢; the advanced potential depends on the particle’s history after the advanced time 𝑣.

Green’s function) and future (through the advanced Green’s function). More precisely stated, we
would find that the regular potential at 𝑥 depends on the particle’s state of motion at all times 𝜏
outside the interval 𝑢 < 𝜏 < 𝑣; in the limit where 𝑥 approaches the world line, this interval shrinks
to nothing, and we would find that the regular potential is generated by the complete history of
the particle. A self-force constructed from this potential would be highly noncausal, and we are
compelled to reject these definitions for the singular and regular Green’s functions.

The proper definitions were identified by Detweiler andWhiting [53], who proposed the following
generalization to Eq. (1.9):

𝐺 𝛼
S 𝛽′(𝑥, 𝑥′) =

1

2

[︁
𝐺 𝛼

+𝛽′(𝑥, 𝑥′) +𝐺 𝛼
−𝛽′(𝑥, 𝑥′)−𝐻𝛼

𝛽′(𝑥, 𝑥′)
]︁
. (1.14)

The two-point function 𝐻𝛼
𝛽′(𝑥, 𝑥′) is introduced specifically to cure the pathology described in the

preceding paragraph. It is symmetric in its indices and arguments, so that 𝐺S
𝛼𝛽′(𝑥, 𝑥′) will be also

(since the retarded and advanced Green’s functions are still linked by a reciprocity relation); and
it is a solution to the homogeneous wave equation, �𝐻𝛼

𝛽′(𝑥, 𝑥′) − 𝑅𝛼
𝛾(𝑥)𝐻

𝛾
𝛽′(𝑥, 𝑥′) = 0, so that

the singular, retarded, and advanced Green’s functions will all satisfy the same wave equation.
Furthermore, and this is its key property, the two-point function is defined to agree with the
advanced Green’s function when 𝑥 is in the chronological past of 𝑥′: 𝐻𝛼

𝛽′(𝑥, 𝑥′) = 𝐺 𝛼
−𝛽′(𝑥, 𝑥′)

when 𝑥 ∈ 𝐼−(𝑥′). This ensures that 𝐺 𝛼
S 𝛽′(𝑥, 𝑥′) vanishes when 𝑥 is in the chronological past of 𝑥′.

In fact, reciprocity implies that 𝐻𝛼
𝛽′(𝑥, 𝑥′) will also agree with the retarded Green’s function when

𝑥 is in the chronological future of 𝑥′, and it follows that the symmetric Green’s function vanishes
also when 𝑥 is in the chronological future of 𝑥′.

The potential 𝐴𝛼
S (𝑥) constructed from the singular Green’s function can now be seen to depend

on the particle’s state of motion at times 𝜏 restricted to the interval 𝑢 ≤ 𝜏 ≤ 𝑣 (see Figure 3).
Because this potential satisfies Eq. (1.13), it is just as singular as the retarded potential in the
vicinity of the world line. And because the singular Green’s function is symmetric in its arguments,
the singular potential can be shown to exert no force on the charged particle. (This requires a
lengthy analysis that will be presented in the bulk of the paper.)
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x

z(u)

singular

x

z(v)

regular

Figure 3: In curved spacetime, the singular potential at 𝑥 depends on the particle’s history during the
interval 𝑢 ≤ 𝜏 ≤ 𝑣; for the regular potential the relevant interval is −∞ < 𝜏 ≤ 𝑣.

The Detweiler–Whiting [53] definition for the regular two-point function is then

𝐺 𝛼
R 𝛽′(𝑥, 𝑥′) = 𝐺 𝛼

+𝛽′(𝑥, 𝑥′)−𝐺 𝛼
S 𝛽′(𝑥, 𝑥′) =

1

2

[︁
𝐺 𝛼

+𝛽′(𝑥, 𝑥′)−𝐺 𝛼
−𝛽′(𝑥, 𝑥′) +𝐻𝛼

𝛽′(𝑥, 𝑥′)
]︁
. (1.15)

The potential 𝐴𝛼
R(𝑥) constructed from this depends on the particle’s state of motion at all times

𝜏 prior to the advanced time 𝑣: 𝜏 ≤ 𝑣. Because this potential satisfies the homogeneous wave
equation, it is well behaved on the world line and its action on the point charge is well defined.
And because the singular potential 𝐴𝛼

S (𝑥) can be shown to exert no force on the particle, we
conclude that 𝐴𝛼

R(𝑥) alone is responsible for the self-force.
From the regular potential we form an electromagnetic field tensor 𝐹R

𝛼𝛽 = ∇𝛼𝐴
R
𝛽 −∇𝛽𝐴

R
𝛼 and

the curved-spacetime generalization to Eq. (1.4) is

𝑚𝑎𝜇 = 𝑓 ext𝜇 + 𝑒𝐹R
𝜇𝜈𝑢

𝜈 , (1.16)

where 𝑢𝜇 = 𝑑𝑧𝜇/𝑑𝜏 is again the charge’s four-velocity, but 𝑎𝜇 = 𝐷𝑢𝜇/𝑑𝜏 is now its covariant
acceleration.

1.5 World line and retarded coordinates

To flesh out the ideas contained in the preceding subsection we add yet another layer of mathe-
matical formalism and construct a convenient coordinate system to chart a neighbourhood of the
particle’s world line. In the next subsection we will display explicit expressions for the retarded,
singular, and regular fields of a point electric charge.

Let 𝛾 be the world line of a point particle in a curved spacetime. It is described by parametric
relations 𝑧𝜇(𝜏) in which 𝜏 is proper time. Its tangent vector is 𝑢𝜇 = 𝑑𝑧𝜇/𝑑𝜏 and its acceleration
is 𝑎𝜇 = 𝐷𝑢𝜇/𝑑𝜏 ; we shall also encounter 𝑎̇𝜇 := 𝐷𝑎𝜇/𝑑𝜏 .

On 𝛾 we erect an orthonormal basis that consists of the four-velocity 𝑢𝜇 and three spatial
vectors 𝑒𝜇𝑎 labelled by a frame index 𝑎 = (1, 2, 3). These vectors satisfy the relations 𝑔𝜇𝜈𝑢

𝜇𝑢𝜈 = −1,
𝑔𝜇𝜈𝑢

𝜇𝑒𝜈𝑎 = 0, and 𝑔𝜇𝜈𝑒
𝜇
𝑎𝑒

𝜈
𝑏 = 𝛿𝑎𝑏. We take the spatial vectors to be Fermi–Walker transported on

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7

http://www.livingreviews.org/lrr-2011-7


16 Eric Poisson, Adam Pound and Ian Vega

the world line: 𝐷𝑒𝜇𝑎/𝑑𝜏 = 𝑎𝑎𝑢
𝜇, where

𝑎𝑎(𝜏) = 𝑎𝜇𝑒
𝜇
𝑎 (1.17)

are frame components of the acceleration vector; it is easy to show that Fermi–Walker transport
preserves the orthonormality of the basis vectors. We shall use the tetrad to decompose various
tensors evaluated on the world line. An example was already given in Eq. (1.17) but we shall also
encounter frame components of the Riemann tensor,

𝑅𝑎0𝑏0(𝜏) = 𝑅𝜇𝜆𝜈𝜌𝑒
𝜇
𝑎𝑢

𝜆𝑒𝜈𝑏𝑢
𝜌, 𝑅𝑎0𝑏𝑐(𝜏) = 𝑅𝜇𝜆𝜈𝜌𝑒

𝜇
𝑎𝑢

𝜆𝑒𝜈𝑏 𝑒
𝜌
𝑐 , 𝑅𝑎𝑏𝑐𝑑(𝜏) = 𝑅𝜇𝜆𝜈𝜌𝑒

𝜇
𝑎𝑒

𝜆
𝑏 𝑒

𝜈
𝑐 𝑒

𝜌
𝑑,

(1.18)
as well as frame components of the Ricci tensor,

𝑅00(𝜏) = 𝑅𝜇𝜈𝑢
𝜇𝑢𝜈 , 𝑅𝑎0(𝜏) = 𝑅𝜇𝜈𝑒

𝜇
𝑎𝑢

𝜈 , 𝑅𝑎𝑏(𝜏) = 𝑅𝜇𝜈𝑒
𝜇
𝑎𝑒

𝜈
𝑏 . (1.19)

We shall use 𝛿𝑎𝑏 = diag(1, 1, 1) and its inverse 𝛿𝑎𝑏 = diag(1, 1, 1) to lower and raise frame indices,
respectively.

Consider a point 𝑥 in a neighbourhood of the world line 𝛾. We assume that 𝑥 is sufficiently close
to the world line that a unique geodesic links 𝑥 to any neighbouring point 𝑧 on 𝛾. The two-point
function 𝜎(𝑥, 𝑧), known as Synge’s world function [169], is numerically equal to half the squared
geodesic distance between 𝑧 and 𝑥; it is positive if 𝑥 and 𝑧 are spacelike related, negative if they
are timelike related, and 𝜎(𝑥, 𝑧) is zero if 𝑥 and 𝑧 are linked by a null geodesic. We denote its
gradient 𝜕𝜎/𝜕𝑧𝜇 by 𝜎𝜇(𝑥, 𝑧), and −𝜎𝜇 gives a meaningful notion of a separation vector (pointing
from 𝑧 to 𝑥).

To construct a coordinate system in this neighbourhood we locate the unique point 𝑥′ := 𝑧(𝑢)
on 𝛾 which is linked to 𝑥 by a future-directed null geodesic (this geodesic is directed from 𝑥′ to 𝑥);
we shall refer to 𝑥′ as the retarded point associated with 𝑥, and 𝑢 will be called the retarded time.
To tensors at 𝑥′ we assign indices 𝛼′, 𝛽′, . . . ; this will distinguish them from tensors at a generic
point 𝑧(𝜏) on the world line, to which we have assigned indices 𝜇, 𝜈, . . . . We have 𝜎(𝑥, 𝑥′) = 0
and −𝜎𝛼′

(𝑥, 𝑥′) is a null vector that can be interpreted as the separation between 𝑥′ and 𝑥.
The retarded coordinates of the point 𝑥 are (𝑢, 𝑥̂𝑎), where 𝑥̂𝑎 = −𝑒𝑎𝛼′𝜎𝛼′

are the frame com-
ponents of the separation vector. They come with a straightforward interpretation (see Figure 4).
The invariant quantity

𝑟 :=
√︀
𝛿𝑎𝑏𝑥̂𝑎𝑥̂𝑏 = 𝑢𝛼′𝜎𝛼′

(1.20)

is an affine parameter on the null geodesic that links 𝑥 to 𝑥′; it can be loosely interpreted as the
time delay between 𝑥 and 𝑥′ as measured by an observer moving with the particle. This therefore
gives a meaningful notion of distance between 𝑥 and the retarded point, and we shall call 𝑟 the
retarded distance between 𝑥 and the world line. The unit vector

Ω𝑎 = 𝑥̂𝑎/𝑟 (1.21)

is constant on the null geodesic that links 𝑥 to 𝑥′. Because Ω𝑎 is a different constant on each
null geodesic that emanates from 𝑥′, keeping 𝑢 fixed and varying Ω𝑎 produces a congruence of
null geodesics that generate the future light cone of the point 𝑥′ (the congruence is hypersurface
orthogonal). Each light cone can thus be labelled by its retarded time 𝑢, each generator on a given
light cone can be labelled by its direction vector Ω𝑎, and each point on a given generator can be
labelled by its retarded distance 𝑟. We therefore have a good coordinate system in a neighbourhood
of 𝛾.

To tensors at 𝑥 we assign indices 𝛼, 𝛽, . . . . These tensors will be decomposed in a tetrad
(𝑒𝛼0 , 𝑒

𝛼
𝑎 ) that is constructed as follows: Given 𝑥 we locate its associated retarded point 𝑥′ on the

world line, as well as the null geodesic that links these two points; we then take the tetrad (𝑢𝛼
′
, 𝑒𝛼

′

𝑎 )
at 𝑥′ and parallel transport it to 𝑥 along the null geodesic to obtain (𝑒𝛼0 , 𝑒

𝛼
𝑎 ).
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a r

x

z(u)

Figure 4: Retarded coordinates of a point 𝑥 relative to a world line 𝛾. The retarded time 𝑢 selects a
particular null cone, the unit vector Ω𝑎 := 𝑥̂𝑎/𝑟 selects a particular generator of this null cone, and the
retarded distance 𝑟 selects a particular point on this generator.

1.6 Retarded, singular, and regular electromagnetic fields of a point
electric charge

The retarded solution to Eq. (1.13) is

𝐴𝛼(𝑥) = 𝑒

∫︁
𝛾

𝐺 𝛼
+𝜇(𝑥, 𝑧)𝑢

𝜇 𝑑𝜏, (1.22)

where the integration is over the world line of the point electric charge. Because the retarded
solution is the physically relevant solution to the wave equation, it will not be necessary to put a
label ‘ret’ on the vector potential.

From the vector potential we form the electromagnetic field tensor 𝐹𝛼𝛽 , which we decompose
in the tetrad (𝑒𝛼0 , 𝑒

𝛼
𝑎 ) introduced at the end of Section 1.5. We then express the frame components

of the field tensor in retarded coordinates, in the form of an expansion in powers of 𝑟. This gives

𝐹𝑎0(𝑢, 𝑟,Ω
𝑎) := 𝐹𝛼𝛽(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
0 (𝑥)

=
𝑒

𝑟2
Ω𝑎 −

𝑒

𝑟

(︀
𝑎𝑎 − 𝑎𝑏Ω

𝑏Ω𝑎

)︀
+

1

3
𝑒𝑅𝑏0𝑐0Ω

𝑏Ω𝑐Ω𝑎 −
1

6
𝑒
(︀
5𝑅𝑎0𝑏0Ω

𝑏 +𝑅𝑎𝑏0𝑐Ω
𝑏Ω𝑐
)︀

+
1

12
𝑒
(︀
5𝑅00 +𝑅𝑏𝑐Ω

𝑏Ω𝑐 +𝑅
)︀
Ω𝑎 +

1

3
𝑒𝑅𝑎0 −

1

6
𝑒𝑅𝑎𝑏Ω

𝑏 + 𝐹 tail
𝑎0 +𝑂(𝑟), (1.23)

𝐹𝑎𝑏(𝑢, 𝑟,Ω
𝑎) := 𝐹𝛼𝛽(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
𝑏 (𝑥)

=
𝑒

𝑟

(︀
𝑎𝑎Ω𝑏 − Ω𝑎𝑎𝑏

)︀
+

1

2
𝑒
(︀
𝑅𝑎0𝑏𝑐 −𝑅𝑏0𝑎𝑐 +𝑅𝑎0𝑐0Ω𝑏 − Ω𝑎𝑅𝑏0𝑐0

)︀
Ω𝑐

− 1

2
𝑒
(︀
𝑅𝑎0Ω𝑏 − Ω𝑎𝑅𝑏0

)︀
+ 𝐹 tail

𝑎𝑏 +𝑂(𝑟), (1.24)

where
𝐹 tail
𝑎0 = 𝐹 tail

𝛼′𝛽′(𝑥′)𝑒𝛼
′

𝑎 𝑢
𝛽′
, 𝐹 tail

𝑎𝑏 = 𝐹 tail
𝛼′𝛽′(𝑥′)𝑒𝛼

′

𝑎 𝑒
𝛽′

𝑏 (1.25)
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are the frame components of the “tail part” of the field, which is given by

𝐹 tail
𝛼′𝛽′(𝑥′) = 2𝑒

∫︁ 𝑢−

−∞
∇[𝛼′𝐺+𝛽′]𝜇(𝑥

′, 𝑧)𝑢𝜇 𝑑𝜏. (1.26)

In these expressions, all tensors (or their frame components) are evaluated at the retarded point
𝑥′ := 𝑧(𝑢) associated with 𝑥; for example, 𝑎𝑎 := 𝑎𝑎(𝑢) := 𝑎𝛼′𝑒𝛼

′

𝑎 . The tail part of the electro-
magnetic field tensor is written as an integral over the portion of the world line that corresponds
to the interval −∞ < 𝜏 ≤ 𝑢− := 𝑢 − 0+; this represents the past history of the particle. The
integral is cut short at 𝑢− to avoid the singular behaviour of the retarded Green’s function when
𝑧(𝜏) coincides with 𝑥′; the portion of the Green’s function involved in the tail integral is smooth,
and the singularity at coincidence is completely accounted for by the other terms in Eqs. (1.23)
and (1.24).

The expansion of 𝐹𝛼𝛽(𝑥) near the world line does indeed reveal many singular terms. We first
recognize terms that diverge when 𝑟 → 0; for example the Coulomb field 𝐹𝑎0 diverges as 𝑟−2 when
we approach the world line. But there are also terms that, though they stay bounded in the limit,
possess a directional ambiguity at 𝑟 = 0; for example 𝐹𝑎𝑏 contains a term proportional to 𝑅𝑎0𝑏𝑐Ω

𝑐

whose limit depends on the direction of approach.
This singularity structure is perfectly reproduced by the singular field 𝐹 S

𝛼𝛽 obtained from the
potential

𝐴𝛼
S (𝑥) = 𝑒

∫︁
𝛾

𝐺 𝛼
S𝜇(𝑥, 𝑧)𝑢

𝜇 𝑑𝜏, (1.27)

where 𝐺 𝛼
S𝜇(𝑥, 𝑧) is the singular Green’s function of Eq. (1.14). Near the world line the singular

field is given by

𝐹 S
𝑎0(𝑢, 𝑟,Ω

𝑎) := 𝐹 S
𝛼𝛽(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
0 (𝑥)

=
𝑒

𝑟2
Ω𝑎 −

𝑒

𝑟

(︀
𝑎𝑎 − 𝑎𝑏Ω

𝑏Ω𝑎

)︀
− 2

3
𝑒𝑎̇𝑎 +

1

3
𝑒𝑅𝑏0𝑐0Ω

𝑏Ω𝑐Ω𝑎 −
1

6
𝑒
(︀
5𝑅𝑎0𝑏0Ω

𝑏 +𝑅𝑎𝑏0𝑐Ω
𝑏Ω𝑐
)︀

+
1

12
𝑒
(︀
5𝑅00 +𝑅𝑏𝑐Ω

𝑏Ω𝑐 +𝑅
)︀
Ω𝑎 −

1

6
𝑒𝑅𝑎𝑏Ω

𝑏 +𝑂(𝑟), (1.28)

𝐹 S
𝑎𝑏(𝑢, 𝑟,Ω

𝑎) := 𝐹 S
𝛼𝛽(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
𝑏 (𝑥)

=
𝑒

𝑟

(︀
𝑎𝑎Ω𝑏 − Ω𝑎𝑎𝑏

)︀
+

1

2
𝑒
(︀
𝑅𝑎0𝑏𝑐 −𝑅𝑏0𝑎𝑐 +𝑅𝑎0𝑐0Ω𝑏 − Ω𝑎𝑅𝑏0𝑐0

)︀
Ω𝑐

− 1

2
𝑒
(︀
𝑅𝑎0Ω𝑏 − Ω𝑎𝑅𝑏0

)︀
+𝑂(𝑟). (1.29)

Comparison of these expressions with Eqs. (1.23) and (1.24) does indeed reveal that all singular
terms are shared by both fields.

The difference between the retarded and singular fields defines the regular field 𝐹R
𝛼𝛽(𝑥). Its

frame components are

𝐹R
𝑎0 =

2

3
𝑒𝑎̇𝑎 +

1

3
𝑒𝑅𝑎0 + 𝐹 tail

𝑎0 +𝑂(𝑟), (1.30)

𝐹R
𝑎𝑏 = 𝐹 tail

𝑎𝑏 +𝑂(𝑟), (1.31)

and at 𝑥′ the regular field becomes

𝐹R
𝛼′𝛽′ = 2𝑒𝑢[𝛼′

(︀
𝑔𝛽′]𝛾′ + 𝑢𝛽′]𝑢𝛾′

)︀(︂2

3
𝑎̇𝛾

′
+

1

3
𝑅𝛾′

𝛿′𝑢
𝛿′
)︂
+ 𝐹 tail

𝛼′𝛽′ , (1.32)

where 𝑎̇𝛾
′
= 𝐷𝑎𝛾

′
/𝑑𝜏 is the rate of change of the acceleration vector, and where the tail term was

given by Eq. (1.26). We see that 𝐹R
𝛼𝛽(𝑥) is a regular tensor field, even on the world line.
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1.7 Motion of an electric charge in curved spacetime

We have argued in Section 1.4 that the self-force acting on a point electric charge is produced
by the regular field, and that the charge’s equations of motion should take the form of 𝑚𝑎𝜇 =
𝑓 ext𝜇 + 𝑒𝐹R

𝜇𝜈𝑢
𝜈 , where 𝑓 ext𝜇 is an external force also acting on the particle. Substituting Eq. (1.32)

gives

𝑚𝑎𝜇 = 𝑓𝜇ext + 𝑒2
(︀
𝛿𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀(︂ 2

3𝑚

𝐷𝑓𝜈ext
𝑑𝜏

+
1

3
𝑅𝜈

𝜆𝑢
𝜆

)︂
+ 2𝑒2𝑢𝜈

∫︁ 𝜏−

−∞
∇[𝜇𝐺

𝜈]
+𝜆′

(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑢𝜆

′
𝑑𝜏 ′,

(1.33)
in which all tensors are evaluated at 𝑧(𝜏), the current position of the particle on the world line.
The primed indices in the tail integral refer to a point 𝑧(𝜏 ′) which represents a prior position;
the integration is cut short at 𝜏 ′ = 𝜏− := 𝜏 − 0+ to avoid the singular behaviour of the retarded
Green’s function at coincidence. To get Eq. (1.33) we have reduced the order of the differential
equation by replacing 𝑎̇𝜈 with 𝑚−1𝑓𝜈ext on the right-hand side; this procedure was explained at the
end of Section 1.2.

Equation (1.33) is the result that was first derived by DeWitt and Brehme [54] and later
corrected by Hobbs [95]. (The original version of the equation did not include the Ricci-tensor
term.) In flat spacetime the Ricci tensor is zero, the tail integral disappears (because the Green’s
function vanishes everywhere within the domain of integration), and Eq. (1.33) reduces to Dirac’s
result of Eq. (1.5). In curved spacetime the self-force does not vanish even when the electric charge
is moving freely, in the absence of an external force: it is then given by the tail integral, which
represents radiation emitted earlier and coming back to the particle after interacting with the
spacetime curvature. This delayed action implies that in general, the self-force is nonlocal in time:
it depends not only on the current state of motion of the particle, but also on its past history. Lest
this behaviour should seem mysterious, it may help to keep in mind that the physical process that
leads to Eq. (1.33) is simply an interaction between the charge and a free electromagnetic field
𝐹R
𝛼𝛽 ; it is this field that carries the information about the charge’s past.

1.8 Motion of a scalar charge in curved spacetime

The dynamics of a point scalar charge can be formulated in a way that stays fairly close to the
electromagnetic theory. The particle’s charge 𝑞 produces a scalar field Φ(𝑥) which satisfies a wave
equation (︀

�− 𝜉𝑅
)︀
Φ = −4𝜋𝜇 (1.34)

that is very similar to Eq. (1.13). Here, 𝑅 is the spacetime’s Ricci scalar, and 𝜉 is an arbitrary
coupling constant; the scalar charge density 𝜇(𝑥) is given by a four-dimensional Dirac functional
supported on the particle’s world line 𝛾. The retarded solution to the wave equation is

Φ(𝑥) = 𝑞

∫︁
𝛾

𝐺+(𝑥, 𝑧) 𝑑𝜏, (1.35)

where 𝐺+(𝑥, 𝑧) is the retarded Green’s function associated with Eq. (1.34). The field exerts a force
on the particle, whose equations of motion are

𝑚𝑎𝜇 = 𝑞
(︀
𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀
∇𝜈Φ, (1.36)

where 𝑚 is the particle’s mass; this equation is very similar to the Lorentz-force law. But the
dynamics of a scalar charge comes with a twist: If Eqs. (1.34) and (1.36) are to follow from a
variational principle, the particle’s mass should not be expected to be a constant of the motion. It
is found instead to satisfy the differential equation

𝑑𝑚

𝑑𝜏
= −𝑞𝑢𝜇∇𝜇Φ, (1.37)
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and in general 𝑚 will vary with proper time. This phenomenon is linked to the fact that a scalar
field has zero spin: the particle can radiate monopole waves and the radiated energy can come at
the expense of the rest mass.

The scalar field of Eq. (1.35) diverges on the world line and its singular part ΦS(𝑥) must be
removed before Eqs. (1.36) and (1.37) can be evaluated. This procedure produces the regular field
ΦR(𝑥), and it is this field (which satisfies the homogeneous wave equation) that gives rise to a
self-force. The gradient of the regular field takes the form of

∇𝜇ΦR = − 1

12
(1− 6𝜉)𝑞𝑅𝑢𝜇 + 𝑞

(︀
𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀(︂1

3
𝑎̇𝜈 +

1

6
𝑅𝜈

𝜆𝑢
𝜆

)︂
+Φtail

𝜇 (1.38)

when it is evaluated on the world line. The last term is the tail integral

Φtail
𝜇 = 𝑞

∫︁ 𝜏−

−∞
∇𝜇𝐺+

(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑑𝜏 ′, (1.39)

and this brings the dependence on the particle’s past.
Substitution of Eq. (1.38) into Eqs. (1.36) and (1.37) gives the equations of motion of a point

scalar charge. (At this stage we introduce an external force 𝑓𝜇ext and reduce the order of the
differential equation.) The acceleration is given by

𝑚𝑎𝜇 = 𝑓𝜇ext + 𝑞2
(︀
𝛿𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀[︃ 1

3𝑚

𝐷𝑓𝜈ext
𝑑𝜏

+
1

6
𝑅𝜈

𝜆𝑢
𝜆 +

∫︁ 𝜏−

−∞
∇𝜈𝐺+

(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑑𝜏 ′

]︃
(1.40)

and the mass changes according to

𝑑𝑚

𝑑𝜏
= − 1

12
(1− 6𝜉)𝑞2𝑅− 𝑞2𝑢𝜇

∫︁ 𝜏−

−∞
∇𝜇𝐺+

(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑑𝜏 ′. (1.41)

These equations were first derived by Quinn [149]. (His analysis was restricted to a minimally
coupled scalar field, so that 𝜉 = 0 in his expressions. We extended Quinn’s results to an arbitrary
coupling counstant for this review.)

In flat spacetime the Ricci-tensor term and the tail integral disappear and Eq. (1.40) takes the
form of Eq. (1.5) with 𝑞2/(3𝑚) replacing the factor of 2𝑒2/(3𝑚). In this simple case Eq. (1.41)
reduces to 𝑑𝑚/𝑑𝜏 = 0 and the mass is in fact a constant. This property remains true in a
conformally flat spacetime when the wave equation is conformally invariant (𝜉 = 1/6): in this case
the Green’s function possesses only a light-cone part and the right-hand side of Eq. (1.41) vanishes.
In generic situations the mass of a point scalar charge will vary with proper time.

1.9 Motion of a point mass, or a small body, in a background spacetime

The case of a point mass moving in a specified background spacetime presents itself with a serious
conceptual challenge, as the fundamental equations of the theory are nonlinear and the very notion
of a “point mass” is somewhat misguided. Nevertheless, to the extent that the perturbation ℎ𝛼𝛽(𝑥)
created by the point mass can be considered to be “small”, the problem can be formulated in close
analogy with what was presented before.

We take the metric 𝑔𝛼𝛽 of the background spacetime to be a solution of the Einstein field equa-
tions in vacuum. (We impose this condition globally.) We describe the gravitational perturbation
produced by a point particle of mass 𝑚 in terms of trace-reversed potentials 𝛾𝛼𝛽 defined by

𝛾𝛼𝛽 = ℎ𝛼𝛽 − 1

2

(︀
𝑔𝛾𝛿ℎ𝛾𝛿

)︀
𝑔𝛼𝛽 , (1.42)
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where ℎ𝛼𝛽 is the difference between g𝛼𝛽 , the actual metric of the perturbed spacetime, and 𝑔𝛼𝛽 .
The potentials satisfy the wave equation

�𝛾𝛼𝛽 + 2𝑅 𝛼 𝛽
𝛾 𝛿 𝛾𝛾𝛿 = −16𝜋𝑇𝛼𝛽 +𝑂(𝑚2) (1.43)

together with the Lorenz gauge condition 𝛾𝛼𝛽;𝛽 = 0. Here and below, covariant differentiation

refers to a connection that is compatible with the background metric, � = 𝑔𝛼𝛽∇𝛼∇𝛽 is the wave
operator for the background spacetime, and 𝑇𝛼𝛽 is the energy-momentum tensor of the point mass;
this is given by a Dirac distribution supported on the particle’s world line 𝛾. The retarded solution
is

𝛾𝛼𝛽(𝑥) = 4𝑚

∫︁
𝛾

𝐺 𝛼𝛽
+ 𝜇𝜈(𝑥, 𝑧)𝑢

𝜇𝑢𝜈 𝑑𝜏 +𝑂(𝑚2), (1.44)

where 𝐺 𝛼𝛽
+ 𝜇𝜈(𝑥, 𝑧) is the retarded Green’s function associated with Eq. (1.43). The perturbation

ℎ𝛼𝛽(𝑥) can be recovered by inverting Eq. (1.42).
Equations of motion for the point mass can be obtained by formally demanding that the

motion be geodesic in the perturbed spacetime with metric g𝛼𝛽 = 𝑔𝛼𝛽 + ℎ𝛼𝛽 . After a mapping to
the background spacetime, the equations of motion take the form of

𝑎𝜇 = −1

2

(︀
𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀(︀
2ℎ𝜈𝜆;𝜌 − ℎ𝜆𝜌;𝜈

)︀
𝑢𝜆𝑢𝜌 +𝑂(𝑚2). (1.45)

The acceleration is thus proportional to 𝑚; in the test-mass limit the world line of the particle is
a geodesic of the background spacetime.

We now remove ℎS𝛼𝛽(𝑥) from the retarded perturbation and postulate that it is the regular field

ℎR𝛼𝛽(𝑥) that should act on the particle. (Note that 𝛾S𝛼𝛽 satisfies the same wave equation as the

retarded potentials, but that 𝛾R𝛼𝛽 is a free gravitational field that satisfies the homogeneous wave
equation.) On the world line we have

ℎR𝜇𝜈;𝜆 = −4𝑚
(︁
𝑢(𝜇𝑅𝜈)𝜌𝜆𝜉 +𝑅𝜇𝜌𝜈𝜉𝑢𝜆

)︁
𝑢𝜌𝑢𝜉 + ℎtail𝜇𝜈𝜆, (1.46)

where the tail term is given by

ℎtail𝜇𝜈𝜆 = 4𝑚

∫︁ 𝜏−

−∞
∇𝜆

(︂
𝐺+𝜇𝜈𝜇′𝜈′ − 1

2
𝑔𝜇𝜈𝐺

𝜌
+ 𝜌𝜇′𝜈′

)︂(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑢𝜇

′
𝑢𝜈

′
𝑑𝜏 ′. (1.47)

When Eq. (1.46) is substituted into Eq. (1.45) we find that the terms that involve the Riemann
tensor cancel out, and we are left with

𝑎𝜇 = −1

2

(︀
𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀(︀
2ℎtail𝜈𝜆𝜌 − ℎtail𝜆𝜌𝜈

)︀
𝑢𝜆𝑢𝜌 +𝑂(𝑚2). (1.48)

Only the tail integral appears in the final form of the equations of motion. It involves the current
position 𝑧(𝜏) of the particle, at which all tensors with unprimed indices are evaluated, as well as
all prior positions 𝑧(𝜏 ′), at which tensors with primed indices are evaluated. As before the integral
is cut short at 𝜏 ′ = 𝜏− := 𝜏 − 0+ to avoid the singular behaviour of the retarded Green’s function
at coincidence.

The equations of motion of Eq. (1.48) were first derived by Mino, Sasaki, and Tanaka [130], and
then reproduced with a different analysis by Quinn and Wald [150]. They are now known as the
MiSaTaQuWa equations of motion. As noted by these authors, the MiSaTaQuWa equation has
the appearance of the geodesic equation in a metric 𝑔𝛼𝛽 + ℎtail𝛼𝛽 . Detweiler and Whiting [53] have
contributed the more compelling interpretation that the motion is actually geodesic in a spacetime
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with metric 𝑔𝛼𝛽 + ℎR𝛼𝛽 . The distinction is important: Unlike the first version of the metric, the
Detweiler-Whiting metric is regular on the world line and satisfies the Einstein field equations in
vacuum; and because it is a solution to the field equations, it can be viewed as a physical metric
— specifically, the metric of the background spacetime perturbed by a free field produced by the
particle at an earlier stage of its history.

While Eq. (1.48) does indeed give the correct equations of motion for a small mass 𝑚 moving
in a background spacetime with metric 𝑔𝛼𝛽 , the derivation outlined here leaves much to be desired
– to what extent should we trust an analysis based on the existence of a point mass? As a partial
answer to this question, Mino, Sasaki, and Tanaka [130] produced an alternative derivation of their
result, which involved a small nonrotating black hole instead of a point mass. In this alternative
derivation, the metric of the black hole perturbed by the tidal gravitational field of the external
universe is matched to the metric of the background spacetime perturbed by the moving black hole.
Demanding that this metric be a solution to the vacuum field equations determines the motion of
the black hole: it must move according to Eq. (1.48). This alternative derivation (which was given
a different implementation in Ref. [142]) is entirely free of singularities (except deep within the
black hole), and it suggests that that the MiSaTaQuWa equations can be trusted to describe the
motion of any gravitating body in a curved background spacetime (so long as the body’s internal
structure can be ignored). This derivation, however, was limited to the case of a non-rotating black
hole, and it relied on a number of unjustified and sometimes unstated assumptions [83, 144, 145].
The conclusion was made firm by the more rigorous analysis of Gralla and Wald [83] (as extended
by Pound [144]), who showed that the MiSaTaQuWa equations apply to any sufficiently compact
body of arbitrary internal structure.

It is important to understand that unlike Eqs. (1.33) and (1.40), which are true tensorial
equations, Eq. (1.48) reflects a specific choice of coordinate system and its form would not be
preserved under a coordinate transformation. In other words, the MiSaTaQuWa equations are not
gauge invariant, and they depend upon the Lorenz gauge condition 𝛾𝛼𝛽;𝛽 = 𝑂(𝑚2). Barack and
Ori [17] have shown that under a coordinate transformation of the form 𝑥𝛼 → 𝑥𝛼 + 𝜉𝛼, where 𝑥𝛼

are the coordinates of the background spacetime and 𝜉𝛼 is a smooth vector field of order 𝑚, the
particle’s acceleration changes according to 𝑎𝜇 → 𝑎𝜇 + 𝑎[𝜉]𝜇, where

𝑎[𝜉]𝜇 =
(︀
𝛿𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀(︂𝐷2𝜉𝜈

𝑑𝜏2
+𝑅𝜈

𝜌𝜔𝜆𝑢
𝜌𝜉𝜔𝑢𝜆

)︂
(1.49)

is the “gauge acceleration”; 𝐷2𝜉𝜈/𝑑𝜏2 = (𝜉𝜈;𝜇𝑢
𝜇);𝜌𝑢

𝜌 is the second covariant derivative of 𝜉𝜈 in
the direction of the world line. This implies that the particle’s acceleration can be altered at will
by a gauge transformation; 𝜉𝛼 could even be chosen so as to produce 𝑎𝜇 = 0, making the motion
geodesic after all. This observation provides a dramatic illustration of the following point: The
MiSaTaQuWa equations of motion are not gauge invariant and they cannot by themselves produce
a meaningful answer to a well-posed physical question; to obtain such answers it is necessary to
combine the equations of motion with the metric perturbation ℎ𝛼𝛽 so as to form gauge-invariant
quantities that will correspond to direct observables. This point is very important and cannot be
over-emphasized.

The gravitational self-force possesses a physical significance that is not shared by its scalar and
electromagnetic analogues, because the motion of a small body in the strong gravitational field
of a much larger body is a problem of direct relevance to gravitational-wave astronomy. Indeed,
extreme-mass-ratio inspirals, involving solar-mass compact objects moving around massive black
holes of the sort found in galactic cores, have been identified as promising sources of low-frequency
gravitational waves for space-based interferometric detectors such as the proposed Laser Interfer-
ometer Space Antenna (LISA [115]). These systems involve highly eccentric, nonequatorial, and
relativistic orbits around rapidly rotating black holes, and the waves produced by such orbital
motions are rich in information concerning the strongest gravitational fields in the Universe. This
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information will be extractable from the LISA data stream, but the extraction depends on so-
phisticated data-analysis strategies that require a detailed and accurate modeling of the source.
This modeling involves formulating the equations of motion for the small body in the field of the
rotating black hole, as well as a consistent incorporation of the motion into a wave-generation
formalism. In short, the extraction of this wealth of information relies on a successful evaluation
of the gravitational self-force.

The finite-mass corrections to the orbital motion are important. For concreteness, let us assume
that the orbiting body is a black hole of mass 𝑚 = 10 𝑀⊙ and that the central black hole has a
mass 𝑀 = 106 𝑀⊙. Let us also assume that the small black hole is in the deep field of the large
hole, near the innermost stable circular orbit, so that its orbital period 𝑃 is of the order of minutes.
The gravitational waves produced by the orbital motion have frequencies 𝑓 of the order of the mHz,
which is well within LISA’s frequency band. The radiative losses drive the orbital motion toward
a final plunge into the large black hole; this occurs over a radiation-reaction timescale (𝑀/𝑚)𝑃 of
the order of a year, during which the system will go through a number of wave cycles of the order
of 𝑀/𝑚 = 105. The role of the gravitational self-force is precisely to describe this orbital evolution
toward the final plunge. While at any given time the self-force provides fractional corrections of
order 𝑚/𝑀 = 10−5 to the motion of the small black hole, these build up over a number of orbital
cycles of order𝑀/𝑚 = 105 to produce a large cumulative effect. As will be discussed in some detail
in Section 2.6, the gravitational self-force is important, because it drives large secular changes in
the orbital motion of an extreme-mass-ratio binary.

1.10 Case study: static electric charge in Schwarzschild spacetime

One of the first self-force calculations ever performed for a curved spacetime was presented by
Smith and Will [163]. They considered an electric charge 𝑒 held in place at position 𝑟 = 𝑟0 outside
a Schwarzschild black hole of mass 𝑀 . Such a static particle must be maintained in position with
an external force that compensates for the black hole’s attraction. For a particle without electric
charge this force is directed outward, and its radial component in Schwarzschild coordinates is
given by 𝑓𝑟ext =

1
2𝑚𝑓

′, where 𝑚 is the particle’s mass, 𝑓 := 1 − 2𝑀/𝑟0 is the usual metric factor,
and a prime indicates differentiation with respect to 𝑟0, so that 𝑓 ′ = 2𝑀/𝑟20. Smith and Will found
that for a particle of charge 𝑒, the external force is given instead by 𝑓𝑟ext =

1
2𝑚𝑓

′ − 𝑒2𝑀𝑓1/2/𝑟30.
The second term is contributed by the electromagnetic self-force, and implies that the external
force is smaller for a charged particle. This means that the electromagnetic self-force acting on
the particle is directed outward and given by

𝑓𝑟self =
𝑒2𝑀

𝑟30
𝑓1/2. (1.50)

This is a repulsive force. It was shown by Zel’nikov and Frolov [186] that the same expression
applies to a static charge outside a Reissner–Nordström black hole of mass 𝑀 and charge 𝑄,
provided that 𝑓 is replaced by the more general expression 𝑓 = 1− 2𝑀/𝑟0 +𝑄2/𝑟20.

The repulsive nature of the electromagnetic self-force acting on a static charge outside a black
hole is unexpected. In an attempt to gain some intuition about this result, it is useful to recall that
a black-hole horizon always acts as perfect conductor, because the electrostatic potential 𝜙 := −𝐴𝑡

is necessarily uniform across its surface. It is then tempting to imagine that the self-force should
result from a fictitious distribution of induced charge on the horizon, and that it could be estimated
on the basis of an elementary model involving a spherical conductor. Let us, therefore, calculate
the electric field produced by a point charge 𝑒 situated outside a spherical conductor of radius
𝑅. The charge is placed at a distance 𝑟0 from the centre of the conductor, which is taken at first
to be grounded. The electrostatic potential produced by the charge can easily be obtained with
the method of images. It is found that an image charge 𝑒′ = −𝑒𝑅/𝑟0 is situated at a distance
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𝑟′0 = 𝑅2/𝑟0 from the centre of the conductor, and the potential is given by 𝜙 = 𝑒/𝑠 + 𝑒′/𝑠′,
where 𝑠 is the distance to the charge, while 𝑠′ is the distance to the image charge. The first term
can be identified with the singular potential 𝜙S, and the associated electric field exerts no force
on the point charge. The second term is the regular potential 𝜙R, and the associated field is
entirely responsible for the self-force. The regular electric field is 𝐸𝑟

R = −𝜕𝑟𝜙R, and the self-force
is 𝑓𝑟self = 𝑒𝐸𝑟

R. A simple computation returns

𝑓𝑟self = − 𝑒2𝑅

𝑟30(1−𝑅2/𝑟20)
. (1.51)

This is an attractive self-force, because the total induced charge on the conducting surface is equal
to 𝑒′, which is opposite in sign to 𝑒. With 𝑅 identified with 𝑀 up to a numerical factor, we find
that our intuition has produced the expected factor of 𝑒2𝑀/𝑟30, but that it gives rise to the wrong
sign for the self-force. An attempt to refine this computation by removing the net charge 𝑒′ on
the conductor (to mimic more closely the black-hole horizon, which cannot support a net charge)
produces a wrong dependence on 𝑟0 in addition to the same wrong sign. In this case the conductor
is maintained at a constant potential 𝜑0 = −𝑒′/𝑅, and the situation involves a second image charge
−𝑒′ situated at 𝑟 = 0. It is easy to see that in this case,

𝑓𝑟self = − 𝑒2𝑅3

𝑟50(1−𝑅2/𝑟20)
. (1.52)

This is still an attractive force, which is weaker than the force of Eq. (1.51) by a factor of (𝑅/𝑟0)
2;

the force is now exerted by an image dipole instead of a single image charge.
The computation of the self-force in the black-hole case is almost as straightforward. The exact

solution to Maxwell’s equations that describes a point charge 𝑒 situated 𝑟 = 𝑟0 and 𝜃 = 0 in the
Schwarzschild spacetime is given by

𝜙 = 𝜙S + 𝜙R, (1.53)

where

𝜙S =
𝑒

𝑟0𝑟

(𝑟 −𝑀)(𝑟0 −𝑀)−𝑀2 cos 𝜃[︀
(𝑟 −𝑀)2 − 2(𝑟 −𝑀)(𝑟0 −𝑀) cos 𝜃 + (𝑟0 −𝑀)2 −𝑀2 sin2 𝜃

]︀1/2 , (1.54)

is the solution first discovered by Copson in 1928 [43], while

𝜙R =
𝑒𝑀/𝑟0
𝑟

(1.55)

is the monopole field that was added by Linet [114] to obtain the correct asymptotic behaviour
𝜙 ∼ 𝑒/𝑟 when 𝑟 is much larger than 𝑟0. It is easy to see that Copson’s potential behaves as
𝑒(1−𝑀/𝑟0)/𝑟 at large distances, which reveals that in addition to 𝑒, 𝜙S comes with an additional
(and unphysical) charge −𝑒𝑀/𝑟0 situated at 𝑟 = 0. This charge must be removed by adding to 𝜙S

a potential that (i) is a solution to the vacuum Maxwell equations, (ii) is regular everywhere except
at 𝑟 = 0, and (iii) carries the opposite charge +𝑒𝑀/𝑟0; this potential must be a pure monopole,
because higher multipoles would produce a singularity on the horizon, and it is given uniquely by
𝜙R. The Copson solution was generalized to Reissner–Nordström spacetime by Léauté and Linet
[113], who also showed that the regular potential of Eq. (1.55) requires no modification.

The identification of Copson’s potential with the singular potential 𝜙S is dictated by the fact
that its associated electric field 𝐹 S

𝑡𝑟 = 𝜕𝑟𝜙
S is isotropic around the charge 𝑒 and therefore exerts

no force. The self-force comes entirely from the monopole potential, which describes a (fictitious)
charge +𝑒𝑀/𝑟0 situated at 𝑟 = 0. Because this charge is of the same sign as the original charge 𝑒,
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the self-force is repulsive. More precisely stated, we find that the regular piece of the electric field
is given by

𝐹R
𝑡𝑟 = −𝑒𝑀/𝑟0

𝑟2
, (1.56)

and that it produces the self-force of Eq. (1.50). The simple picture described here, in which the
electromagnetic self-force is produced by a fictitious charge 𝑒𝑀/𝑟0 situated at the centre of the
black hole, is not easily extracted from the derivation presented originally by Smith and Will [163].
To the best of our knowledge, the monopolar origin of the self-force was first noticed by Alan
Wiseman [185]. (In his paper, Wiseman computed the scalar self-force acting on a static particle
in Schwarzschild spacetime, and found a zero answer. In this case, the analogue of the Copson
solution for the scalar potential happens to satisfy the correct asymptotic conditions, and there is
no need to add another solution to it. Because the scalar potential is precisely equal to the singular
potential, the self-force vanishes.)

We should remark that the identification of 𝜙𝑆 and 𝜙𝑅 with the Detweiler–Whiting singular
and regular fields, respectively, is a matter of conjecture. Although 𝜙𝑆 and 𝜙𝑅 satisfy the essential
properties of the Detweiler–Whiting decomposition – being, respectively, a regular homogenous
solution and a singular solution sourced by the particle – one should accept the possibility that
they may not be the actual Detweiler–Whiting fields. It is a topic for future research to investigate
the precise relation between the Copson field and the Detweiler–Whiting singular field.

It is instructive to compare the electromagnetic self-force produced by the presence of a
grounded conductor to the self-force produced by the presence of a black hole. In the case of
a conductor, the total induced charge on the conducting surface is 𝑒′ = −𝑒𝑅/𝑟0, and it is this
charge that is responsible for the attractive self-force; the induced charge is supplied by the elec-
trodes that keep the conductor grounded. In the case of a black hole, there is no external apparatus
that can supply such a charge, and the total induced charge on the horizon necessarily vanishes.
The origin of the self-force is therefore very different in this case. As we have seen, the self-force is
produced by a fictitious charge 𝑒𝑀/𝑟0 situated at the centre of black hole; and because this charge
is positive, the self-force is repulsive.

1.11 Organization of this review

After a detailed review of the literature in Section 2, the main body of the review begins in
Part I (Sections 3 to 7) with a description of the general theory of bitensors, the name designating
tensorial functions of two points in spacetime. We introduce Synge’s world function 𝜎(𝑥, 𝑥′) and
its derivatives in Section 3, the parallel propagator 𝑔𝛼𝛼′(𝑥, 𝑥′) in Section 5, and the van Vleck
determinant Δ(𝑥, 𝑥′) in Section 7. An important portion of the theory (covered in Sections 4
and 6) is concerned with the expansion of bitensors when 𝑥 is very close to 𝑥′; expansions such as
those displayed in Eqs. (1.23) and (1.24) are based on these techniques. The presentation in Part I
borrows heavily from Synge’s book [169] and the article by DeWitt and Brehme [54]. These two
sources use different conventions for the Riemann tensor, and we have adopted Synge’s conventions
(which agree with those of Misner, Thorne, and Wheeler [131]). The reader is therefore warned
that formulae derived in Part I may look superficially different from those found in DeWitt and
Brehme.

In Part II (Sections 8 to 11) we introduce a number of coordinate systems that play an important
role in later parts of the review. As a warmup exercise we first construct (in Section 8) Riemann
normal coordinates in a neighbourhood of a reference point 𝑥′. We then move on (in Section 9)
to Fermi normal coordinates [122], which are defined in a neighbourhood of a world line 𝛾. The
retarded coordinates, which are also based at a world line and which were briefly introduced in
Section 1.5, are covered systematically in Section 10. The relationship between Fermi and retarded
coordinates is worked out in Section 11, which also locates the advanced point 𝑧(𝑣) associated with
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a field point 𝑥. The presentation in Part II borrows heavily from Synge’s book [169]. In fact, we are
much indebted to Synge for initiating the construction of retarded coordinates in a neighbourhood
of a world line. We have implemented his program quite differently (Synge was interested in a
large neighbourhood of the world line in a weakly curved spacetime, while we are interested in a
small neighbourhood in a strongly curved spacetime), but the idea is originally his.

In Part III (Sections 12 to 16) we review the theory of Green’s functions for (scalar, vectorial,
and tensorial) wave equations in curved spacetime. We begin in Section 12 with a pedagogi-
cal introduction to the retarded and advanced Green’s functions for a massive scalar field in flat
spacetime; in this simple context the all-important Hadamard decomposition [88] of the Green’s
function into “light-cone” and “tail” parts can be displayed explicitly. The invariant Dirac func-
tional is defined in Section 13 along with its restrictions on the past and future null cones of a
reference point 𝑥′. The retarded, advanced, singular, and regular Green’s functions for the scalar
wave equation are introduced in Section 14. In Sections 15 and 16 we cover the vectorial and
tensorial wave equations, respectively. The presentation in Part III is based partly on the paper by
DeWitt and Brehme [54], but it is inspired mostly by Friedlander’s book [71]. The reader should
be warned that in one important aspect, our notation differs from the notation of DeWitt and
Brehme: While they denote the tail part of the Green’s function by −𝑣(𝑥, 𝑥′), we have taken the
liberty of eliminating the silly minus sign and call it instead +𝑉 (𝑥, 𝑥′). The reader should also note
that all our Green’s functions are normalized in the same way, with a factor of −4𝜋 multiplying a
four-dimensional Dirac functional of the right-hand side of the wave equation. (The gravitational
Green’s function is sometimes normalized with a −16𝜋 on the right-hand side.)

In Part IV (Sections 17 to 19) we compute the retarded, singular, and regular fields associated
with a point scalar charge (Section 17), a point electric charge (Section 18), and a point mass
(Section 19). We provide two different derivations for each of the equations of motion. The first
type of derivation was outlined previously: We follow Detweiler and Whiting [53] and postulate
that only the regular field exerts a force on the particle. In the second type of derivation we take
guidance from Quinn and Wald [150] and postulate that the net force exerted on a point particle
is given by an average of the retarded field over a surface of constant proper distance orthogonal
to the world line — this rest-frame average is easily carried out in Fermi normal coordinates. The
averaged field is still infinite on the world line, but the divergence points in the direction of the
acceleration vector and it can thus be removed by mass renormalization. Such calculations show
that while the singular field does not affect the motion of the particle, it nonetheless contributes
to its inertia.

In Part V (Sections 20 to 23), we show that at linear order in the body’s mass 𝑚, an extended
body behaves just as a point mass, and except for the effects of the body’s spin, the world line
representing its mean motion is governed by the MiSaTaQuWa equation. At this order, therefore,
the picture of a point particle interacting with its own field, and the results obtained from this
picture, is justified. Our derivation utilizes the method of matched asymptotic expansions, with
an inner expansion accurate near the body and an outer expansion accurate everywhere else. The
equation of motion of the body’s world line, suitably defined, is calculated by solving the Einstein
equation in a buffer region around the body, where both expansions are accurate.

Concluding remarks are presented in Section 24, and technical developments that are required
in Part V are relegated to Appendices. Throughout this review we use geometrized units and
adopt the notations and conventions of Misner, Thorne, and Wheeler [131].
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2 Computing the self-force: a 2010 literature survey

Much progress has been achieved in the development of practical methods for computing the
self-force. We briefly summarize these efforts in this section, with the goal of introducing the
main ideas and some key issues. A more detailed coverage of the various implementations can be
found in Barack’s excellent review [9]. The 2005 collection of reviews published in Classical and
Quantum Gravity [118] is also recommended for an introduction to the various aspects of self-force
theory and numerics. Among our favourites in this collection are the reviews by Detweiler [49] and
Whiting [183].

An important point to bear in mind is that all the methods covered here mainly compute the
self-force on a particle moving on a fixed world line of the background spacetime. A few numerical
codes based on the radiative approximation have allowed orbits to evolve according to energy and
angular-momentum balance. As will be emphasized below, however, these calculations miss out on
important conservative effects that are only accounted for by the full self-force. Work is currently
underway to develop methods to let the self-force alter the motion of the particle in a self-consistent
manner.

2.1 Early work: DeWitt and DeWitt; Smith and Will

The first evaluation of the electromagnetic self-force in curved spacetime was carried out by DeWitt
and DeWitt [132] for a charge moving freely in a weakly curved spacetime characterized by a
Newtonian potential Φ ≪ 1. In this context the right-hand side of Eq. (1.33) reduces to the tail
integral, because the particle moves in a vacuum region of the spacetime, and there is no external
force acting on the charge. They found that the spatial components of the self-force are given by

𝑓em = 𝑒2
𝑀

𝑟3
𝑟 +

2

3
𝑒2
𝑑𝑔

𝑑𝑡
, (2.1)

where 𝑀 is the total mass contained in the spacetime, 𝑟 = |𝑥| is the distance from the centre of
mass, 𝑟 = 𝑥/𝑟, and 𝑔 = −∇Φ is the Newtonian gravitational field. (In these expressions the bold-
faced symbols represent vectors in three-dimensional flat space.) The first term on the right-hand
side of Eq. (2.1) is a conservative correction to the Newtonian force 𝑚𝑔. The second term is the
standard radiation-reaction force; although it comes from the tail integral, this is the same result
that would be obtained in flat spacetime if an external force 𝑚𝑔 were acting on the particle. This
agreement is necessary, but remarkable!

A similar expression was obtained by Pfenning and Poisson [141] for the case of a scalar charge.
Here

𝑓scalar = 2𝜉𝑞2
𝑀

𝑟3
𝑟 +

1

3
𝑞2
𝑑𝑔

𝑑𝑡
, (2.2)

where 𝜉 is the coupling of the scalar field to the spacetime curvature; the conservative term disap-
pears when the field is minimally coupled. Pfenning and Poisson also computed the gravitational
self-force acting on a point mass moving in a weakly curved spacetime. The expression they ob-
tained is in complete agreement (within its domain of validity) with the standard post-Newtonian
equations of motion.

The force required to hold an electric charge in place in a Schwarzschild spacetime was com-
puted, without approximations, by Smith andWill [163]. As we reviewed previously in Section 1.10,
the self-force contribution to the total force is given by

𝑓𝑟self = 𝑒2
𝑀

𝑟3
𝑓1/2, (2.3)

where 𝑀 is the black-hole mass, 𝑟 the position of the charge (in Schwarzschild coordinates), and
𝑓 := 1 − 2𝑀/𝑟. When 𝑟 ≫ 𝑀 , this expression agrees with the conservative term in Eq. (2.1).
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This result was generalized to Reissner–Nordström spacetime by Zel’nikov and Frolov [186]. Wise-
man [185] calculated the self-force acting on a static scalar charge in Schwarzschild spacetime. He
found that in this case the self-force vanishes. This result is not incompatible with Eq. (2.2), even
for nonminimal coupling, because the computation of the weak-field self-force requires the presence
of matter, while Wiseman’s scalar charge lives in a purely vacuum spacetime.

2.2 Mode-sum method

Self-force calculations involving a sum over modes were pioneered by Barack and Ori [16, 7], and the
method was further developed by Barack, Ori, Mino, Nakano, and Sasaki [15, 8, 18, 20, 19, 127];
a somewhat related approach was also considered by Lousto [117]. It has now emerged as the
method of choice for self-force calculations in spacetimes such as Schwarzschild and Kerr. Our
understanding of the method was greatly improved by the Detweiler–Whiting decomposition [53]
of the retarded field into singular and regular pieces, as outlined in Sections 1.4 and 1.8, and
subsequent work by Detweiler, Whiting, and their collaborators [51].

Detweiler–Whiting decomposition; mode decomposition; regularization parameters

For simplicity we consider the problem of computing the self-force acting on a particle with a
scalar charge 𝑞 moving on a world line 𝛾. (The electromagnetic and gravitational problems are
conceptually similar, and they will be discussed below.) The potential Φ produced by the particle
satisfies Eq. (1.34), which we rewrite schematically as

�Φ = 𝑞𝛿(𝑥, 𝑧), (2.4)

where � is the wave operator in curved spacetime, and 𝛿(𝑥, 𝑧) represents a distributional source
that depends on the world line 𝛾 through its coordinate representation 𝑧(𝜏). From the perspective
of the Detweiler–Whiting decomposition, the scalar self-force is given by

𝐹𝛼 = 𝑞∇𝛼ΦR := 𝑞
(︀
∇𝛼Φ−∇𝛼ΦS

)︀
, (2.5)

where Φ, ΦS, and ΦR are the retarded, singular, and regular potentials, respectively. To evaluate
the self-force, then, is to compute the gradient of the regular potential.

From the point of view of Eq. (2.5), the task of computing the self-force appears conceptually
straightforward: Either (i) compute the retarded and singular potentials, subtract them, and take
a gradient of the difference; or (ii) compute the gradients of the retarded and singular potentials,
and then subtract the gradients. Indeed, this is the basic idea for most methods of self-force
computations. However, the apparent simplicity of this sequence of steps is complicated by the
following facts: (i) except for a very limited number of cases, the retarded potential of a point
particle cannot be computed analytically and must therefore be obtained by numerical means; and
(ii) both the retarded and singular potential diverge at the particle’s position. Thus, any sort
of subtraction will generally have to be performed numerically, and for this to be possible, one
requires representations of the retarded and singular potentials (and/or their gradients) in terms
of finite quantities.

In a mode-sum method, these difficulties are overcome with a decomposition of the potential
in spherical-harmonic functions:

Φ =
∑︁
𝑙𝑚

Φ𝑙𝑚(𝑡, 𝑟)𝑌 𝑙𝑚(𝜃, 𝜑). (2.6)

When the background spacetime is spherically symmetric, Eq. (2.4) gives rise to a fully decoupled
set of reduced wave equations for the mode coefficients Φ𝑙𝑚(𝑡, 𝑟), and these are easily integrated
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with simple numerical methods. The dimensional reduction of the wave equation implies that each
Φ𝑙𝑚(𝑡, 𝑟) is finite and continuous (though nondifferentiable) at the position of the particle. There
is, therefore, no obstacle to evaluating each 𝑙-mode of the field, defined by

(∇𝛼Φ)𝑙 := lim
𝑥→𝑧

𝑙∑︁
𝑚=−𝑙

∇𝛼[Φ
𝑙𝑚(𝑡, 𝑟)𝑌 𝑙𝑚(𝜃, 𝜑)]. (2.7)

The sum over modes, however, must reproduce the singular field evaluated at the particle’s position,
and this is infinite; the mode sum, therefore, does not converge.

Fortunately, there is a piece of each 𝑙-mode that does not contribute to the self-force, and that
can be subtracted out; this piece is the corresponding 𝑙-mode of the singular field ∇𝛼ΦS. Because
the retarded and singular fields share the same singularity structure near the particle’s world line
(as described in Section 1.6), the subtraction produces a mode decomposition of the regular field
∇𝛼ΦR. And because this field is regular at the particle’s position, the sum over all modes 𝑞(∇𝛼ΦR)𝑙
is guaranteed to converge to the correct value for the self-force. The key to the mode-sum method,
therefore, is the ability to express the singular field as a mode decomposition.

This can be done because the singular field, unlike the retarded field, can always be expressed
as a local expansion in powers of the distance to the particle; such an expansion was displayed in
Eqs. (1.28) and (1.29). (In a few special cases the singular field is actually known exactly [43, 114,
33, 86, 162].) This local expansion can then be turned into a multipole decomposition. Barack
and Ori [18, 15, 20, 19, 9], and then Mino, Nakano, and Sasaki [127], were the first to show that
this produces the following generic structure:

(∇𝛼ΦS)𝑙 = (𝑙 + 1
2 )𝐴𝛼 +𝐵𝛼 +

𝐶𝛼

𝑙 + 1
2

+
𝐷𝛼

(𝑙 − 1
2 )(𝑙 +

3
2 )

+
𝐸𝛼

(𝑙 − 3
2 )(𝑙 − 1

2 )(𝑙 +
3
2 )(𝑙 +

5
2 )

+ · · · , (2.8)

where 𝐴𝛼, 𝐵𝛼, 𝐶𝛼, and so on are 𝑙-independent functions that depend on the choice of field
(i.e., scalar, electromagnetic, or gravitational), the choice of spacetime, and the particle’s state of
motion. These so-called regularization parameters are now ubiquitous in the self-force literature,
and they can all be determined from the local expansion for the singular field. The number
of regularization parameters that can be obtained depends on the accuracy of the expansion.
For example, expansions accurate through order 𝑟0 such as Eqs. (1.28) and (1.29) permit the
determination of 𝐴𝛼, 𝐵𝛼, and 𝐶𝛼; to obtain 𝐷𝛼 one requires the terms of order 𝑟, and to get 𝐸𝛼 the
expansion must be carried out through order 𝑟2. The particular polynomials in 𝑙 that accompany
the regularization parameters were first identified by Detweiler and his collaborators [51]. Because
the 𝐷𝛼 term is generated by terms of order 𝑟 in the local expansion of the singular field, the sum
of [(𝑙 − 1

2 )(𝑙 +
3
2 )]

−1 from 𝑙 = 0 to 𝑙 = ∞ evaluates to zero. The sum of the polynomial in front of
𝐸𝛼 also evaluates to zero, and this property is shared by all remaining terms in Eq. (2.8).

Mode sum

With these elements in place, the self-force is finally computed by implementing the mode-sum
formula

𝐹𝛼 = 𝑞
𝐿∑︁

𝑙=0

[︂
(∇𝛼Φ)𝑙 − (𝑙 + 1

2 )𝐴𝛼 −𝐵𝛼 − 𝐶𝛼

𝑙 + 1
2

− 𝐷𝛼

(𝑙 − 1
2 )(𝑙 +

3
2 )

− 𝐸𝛼

(𝑙 − 3
2 )(𝑙 − 1

2 )(𝑙 +
3
2 )(𝑙 +

5
2 )

− · · ·
]︂
+ remainder, (2.9)

where the infinite sum over 𝑙 is truncated to a maximum mode number 𝐿. (This truncation
is necessary in practice, because in general the modes must be determined numerically.) The
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remainder consists of the remaining terms in the sum, from 𝑙 = 𝐿 + 1 to 𝑙 = ∞; it is easy to see
that since the next regularization term would scale as 𝑙−6 for large 𝑙, the remainder scales as 𝐿−5,
and can be made negligible by summing to a suitably large value of 𝑙. This observation motivates
the inclusion of the 𝐷𝛼 and 𝐸𝛼 terms within the mode sum, even though their complete sums
evaluate to zero. These terms are useful because the sum must necessarily be truncated, and they
permit a more rapid convergence of the mode sum. For example, exclusion of the 𝐷𝛼 and 𝐸𝛼 terms
in Eq. (2.9) would produce a remainder that scales as 𝐿−1 instead of 𝐿−5; while this is sufficient
for convergence, the rate of convergence is too slow to permit high-accuracy computations. Rapid
convergence therefore relies on a knowledge of as many regularization parameters as possible, but
unfortunately these parameters are not easy to calculate. To date, only 𝐴𝛼, 𝐵𝛼, 𝐶𝛼, and 𝐷𝛼

have been calculated for general orbits in Schwarzschild spacetime [51, 87], and only 𝐴𝛼, 𝐵𝛼,
𝐶𝛼 have been calculated for orbits in Kerr spacetime [19]. It is possible, however, to estimate a
few additional regularization parameters by fitting numerical results to the structure of Eq. (2.8);
this clever trick was first exploited by Detweiler and his collaborators [51] to achieve extremely
high numerical accuracies. This trick is now applied routinely in mode-sum computations of the
self-force.

Case study: static electric charge in extreme Reissner–Nordström spacetime

The practical use of the mode-sum method can be illustrated with the help of a specific example
that can be worked out fully and exactly. We consider, as in Section 1.10, an electric charge 𝑒 held
in place at position 𝑟 = 𝑟0 in the spacetime of an extreme Reissner–Nordström black hole of mass
𝑀 and charge 𝑄 = 𝑀 . The reason for selecting this spacetime resides in the resulting simplicity
of the spherical-harmonic modes for the electromagnetic field.

The metric of the extreme Reissner–Nordström spacetime is given by

𝑑𝑠2 = −𝑓 𝑑𝑡2 + 𝑓−1𝑑𝑟2 + 𝑟2𝑑Ω2, (2.10)

where 𝑓 = (1 −𝑀/𝑟)2. The only nonzero component of the electromagnetic field tensor is 𝐹𝑡𝑟 =
−𝐸𝑟, and this is decomposed as

𝐹𝑡𝑟 =
∑︁
𝑙𝑚

𝐹 𝑙𝑚
𝑡𝑟 (𝑟)𝑌 𝑙𝑚(𝜃, 𝜑). (2.11)

This field diverges at 𝑟 = 𝑟0, but the modes 𝐹 𝑙𝑚
𝑡𝑟 (𝑟) are finite, though discontinuous. The multipole

coefficients of the field are defined to be

(𝐹𝑡𝑟)𝑙 = lim

𝑙∑︁
𝑚=−𝑙

𝐹 𝑙𝑚
𝑡𝑟 𝑌

𝑙𝑚, (2.12)

where the limit is taken in the direction of the particle’s position. The charge can be placed on the
axis 𝜃 = 0, and this choice produces an axisymmetric field with contributions from 𝑚 = 0 only.
Because 𝑌 𝑙0 = [(2𝑙 + 1)/4𝜋]1/2𝑃𝑙(cos 𝜃) and 𝑃𝑙(1) = 1, we have

(𝐹𝑡𝑟)𝑙 =

√︂
2𝑙 + 1

4𝜋
lim
Δ→0

𝐹 𝑙0
𝑡𝑟 (𝑟0 +Δ). (2.13)

The sign of Δ is arbitrary, and (𝐹𝑡𝑟)𝑙 depends on the direction in which 𝑟0 is approached.
The charge density of a static particle can also be decomposed in spherical harmonics, and the

mode coefficients are given by

𝑟2𝑗𝑙0𝑡 = 𝑒

√︂
2𝑙 + 1

4𝜋
𝑓0𝛿(𝑟 − 𝑟0), (2.14)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7

http://www.livingreviews.org/lrr-2011-7


The Motion of Point Particles in Curved Spacetime 31

where 𝑓0 = (1−𝑀/𝑟0)
2. If we let

Φ𝑙 := −𝑟2𝐹 𝑙0
𝑡𝑟 , (2.15)

then Gauss’s law in the extreme Reissner–Nordström spacetime can be shown to reduce to

(𝑓Φ′)′ − 𝑙(𝑙 + 1)

𝑟2
Φ = 4𝜋𝑒

√︂
2𝑙 + 1

4𝜋
𝑓0𝛿

′(𝑟 − 𝑟0), (2.16)

in which a prime indicates differentiation with respect to 𝑟, and the index 𝑙 on Φ is omitted to
simplify the expressions. The solution to Eq. (2.16) can be expressed as Φ(𝑟) = Φ>(𝑟)Θ(𝑟 −
𝑟0) + Φ<(𝑟)Θ(𝑟0 − 𝑟), where Φ> and Φ< are each required to satisfy the homogeneous equation
(𝑓Φ′)′ − 𝑙(𝑙 + 1)Φ/𝑟2 = 0, as well as the junction conditions

[Φ] = 4𝜋𝑒

√︂
2𝑙 + 1

4𝜋
, [Φ′] = 0, (2.17)

with [Φ] := Φ>(𝑟0)− Φ<(𝑟0) denoting the jump across 𝑟 = 𝑟0.
For 𝑙 = 0 the general solution to the homogeneous equation is 𝑐1𝑟

* + 𝑐2, where 𝑐1 and 𝑐2 are
constants and 𝑟* =

∫︀
𝑓−1 𝑑𝑟. The solution for 𝑟 < 𝑟0 must be regular at 𝑟 = 𝑀 , and we select

Φ< = constant. The solution for 𝑟 > 𝑟0 must produce a field that decays as 𝑟−2 at large 𝑟, and
we again select Φ> = constant. Since each constant is proportional to the total charge enclosed
within a sphere of radius 𝑟, we arrive at

Φ< = 0, Φ> =
√
4𝜋𝑒, (𝑙 = 0). (2.18)

For 𝑙 ̸= 0 the solutions to the homogeneous equation are

Φ< = 𝑐1𝑒

(︂
𝑟 −𝑀

𝑟0 −𝑀

)︂𝑙(︀
𝑙𝑟 +𝑀

)︀
(2.19)

and

Φ> = 𝑐2𝑒

(︂
𝑟0 −𝑀

𝑟 −𝑀

)︂𝑙+1[︀
(𝑙 + 1)𝑟 −𝑀

]︀
. (2.20)

The constants 𝑐1 and 𝑐2 are determined by the junction conditions, and we get

𝑐1 = −
√︂

4𝜋

2𝑙 + 1

1

𝑟0
, 𝑐2 =

√︂
4𝜋

2𝑙 + 1

1

𝑟0
. (2.21)

The modes of the electromagnetic field are now completely determined.
According to the foregoing results, and recalling the definition of Eq. (2.13), the multipole

coefficients of the electromagnetic field at 𝑟 = 𝑟0 + 0+ are given by

(︀
𝐹>
𝑡𝑟

)︀
0
= − 𝑒

𝑟20
,

(︀
𝐹>
𝑡𝑟

)︀
𝑙
= 𝑒
(︀
𝑙 + 1

2

)︀(︂
− 1

𝑟20

)︂
− 𝑒

2𝑟30
(𝑟0 − 2𝑀). (2.22)

For 𝑟 = 𝑟0 + 0− we have instead

(︀
𝐹<
𝑡𝑟

)︀
0
= 0,

(︀
𝐹<
𝑡𝑟

)︀
𝑙
= 𝑒
(︀
𝑙 + 1

2

)︀(︂
+

1

𝑟20

)︂
− 𝑒

2𝑟30
(𝑟0 − 2𝑀). (2.23)

We observe that the multipole coefficients lead to a diverging mode sum. We also observe, however,
that the multipole structure is identical to the decomposition of the singular field displayed in

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7

http://www.livingreviews.org/lrr-2011-7


32 Eric Poisson, Adam Pound and Ian Vega

Eq. (2.8). Comparison of the two expressions allows us to determine the regularization parameters
for the given situation, and we obtain

𝐴 = ∓ 𝑒

𝑟20
, 𝐵 = − 𝑒

2𝑟30
(𝑟0 − 2𝑀), 𝐶 = 𝐷 = 𝐸 = · · · = 0. (2.24)

Regularization of the mode sum via Eq. (2.9) reveals that the modes 𝑙 ̸= 0 give rise to the singular
field, while the regular field comes entirely from the mode 𝑙 = 0. In this case, therefore, we can
state that the exact expression for the regular field evaluated at the position of the particle is
𝐹R
𝑡𝑟 = (𝐹𝑡𝑟)0 − 1

2𝐴 − 𝐵, or 𝐹R
𝑡𝑟(𝑟0) = −𝑒𝑀/𝑟30. Because the regular field must be a solution to

the vacuum Maxwell equations, its monopole structure guarantees that its value at any position is
given by

𝐹R
𝑡𝑟(𝑟) = −𝑒𝑀/𝑟0

𝑟2
. (2.25)

This is the field of an image charge 𝑒′ = +𝑒𝑀/𝑟0 situated at the centre of the black hole.
The self-force acting on the static charge is then

𝑓𝑟 = −𝑒
√︀
𝑓0𝐹

R
𝑡𝑟(𝑟0) =

𝑒2𝑀

𝑟30

√︀
𝑓0 =

𝑒2𝑀

𝑟30
(1−𝑀/𝑟0). (2.26)

This expression agrees with the Smith-Will force of Eq. (1.50). The interpretation of the result in
terms of an interaction between 𝑒 and the image charge 𝑒′ was elaborated in Sec. 1.10.

Computations in Schwarzschild spacetime

The mode-sum method was successfully implemented in Schwarzschild spacetime to compute the
scalar and electromagnetic self-forces on a static particle [31, 36] . It was used to calculate the
scalar self-force on a particle moving on a radial trajectory [10], circular orbit [30, 51, 87, 37], and
a generic bound orbit [84]. It was also developed to compute the electromagnetic self-force on a
particle moving on a generic bound orbit [85], as well as the gravitational self-force on a point
mass moving on circular [21, 1] and eccentric orbits [22]. The mode-sum method was also used to
compute unambiguous physical effects associated with the gravitational self-force [50, 157, 11], and
these results were involved in detailed comparisons with post-Newtonian theory [50, 29, 28, 44, 11].
These achievements will be described in more detail in Section 2.6.

An issue that arises in computations of the electromagnetic and gravitational self-forces is the
choice of gauge. While the self-force formalism is solidly grounded in the Lorenz gauge (which
allows the formulation of a wave equation for the potentials, the decomposition of the retarded
field into singular and regular pieces, and the computation of regularization parameters), it is
often convenient to carry out the numerical computations in other gauges, such as the popular
Regge–Wheeler gauge and the Chrzanowski radiation gauge described below. Compatibility of
calculations carried out in different gauges has been debated in the literature. It is clear that
the singular field is gauge invariant when the transformation between the Lorenz gauge and the
adopted gauge is smooth on the particle’s world line; in such cases the regularization parameters
also are gauge invariant [17], the transformation affects the regular field only, and the self-force
changes according to Eq. (1.49). The transformations between the Lorenz gauge and the Regge–
Wheeler and radiation gauges are not regular on the world line, however, and in such cases the
regularization of the retarded field must be handled with extreme care.

Computations in Kerr spacetime; metric reconstruction

The reliance of the mode-sum method on a spherical-harmonic decomposition makes it generally
impractical to apply to self-force computations in Kerr spacetime. Wave equations in this spacetime
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are better analyzed in terms of a spheroidal -harmonic decomposition, which simultaneously requires
a Fourier decomposition of the field’s time dependence. (The eigenvalue equation for the angular
functions depends on the mode’s frequency.) For a static particle, however, the situation simplifies,
and Burko and Liu [35] were able to apply the method to calculate the self-force on a static scalar
charge in Kerr spacetime. More recently, Warburton and Barack [181] carried out a mode-sum
calculations of the scalar self-force on a particle moving on equatorial orbits of a Kerr black hole.
They first solve for the spheroidal multipoles of the retarded potential, and then re-express them in
terms of spherical-harmonic multipoles. Fortunately, they find that a spheroidal multipole is well
represented by summing over a limited number of spherical multipoles. The Warburton–Barack
work represents the first successful computations of the self-force in Kerr spacetime, and it reveals
the interesting effect of the black hole’s spin on the behaviour of the self-force.

The analysis of the scalar wave equation in terms of spheroidal functions and a Fourier decom-
position permits a complete separation of the variables. For decoupling and separation to occur in
the case of a gravitational perturbation, it is necessary to formulate the perturbation equations in
terms of Newman–Penrose (NP) quantities [172], and to work with the Teukolsky equation that
governs their behaviour. Several computer codes are now available that are capable of integrating
the Teukolsky equation when the source is a point mass moving on an arbitrary geodesic of the Kerr
spacetime. (A survey of these codes is given below.) Once a solution to the Teukolsky equation
is at hand, however, there still remains the additional task of recovering the metric perturbation
from this solution, a problem referred to as metric reconstruction.

Reconstruction of the metric perturbation from solutions to the Teukolsky equation was tackled
in the past in the pioneering efforts of Chrzanowski [41], Cohen and Kegeles [42, 105], Stewart [166],
and Wald [179]. These works have established a procedure, typically attributed to Chrzanowski,
that returns the metric perturbation in a so-called radiation gauge. An important limitation of
this method, however, is that it applies only to vacuum solutions to the Teukolsky equation. This
makes the standard Chrzanowski procedure inapplicable in the self-force context, because a point
particle must necessarily act as a source of the perturbation. Some methods were devised to extend
the Chrzanowski procedure to accommodate point sources in specific circumstances [121, 134], but
these were not developed sufficiently to permit the computation of a self-force. See Ref. [184] for
a review of metric reconstruction from the perspective of self-force calculations.

A remarkable breakthrough in the application of metric-reconstruction methods in self-force
calculations was achieved by Keidl, Wiseman, and Friedman [107, 106, 108], who were able to com-
pute a self-force starting from a Teukolsky equation sourced by a point particle. They did it first
for the case of an electric charge and a point mass held at a fixed position in a Schwarzschild space-
time [107], and then for the case of a point mass moving on a circular orbit around a Schwarzschild
black hole [108]. The key conceptual advance is the realization that, according to the Detweiler–
Whiting perspective, the self-force is produced by a regularized field that satisfies vacuum field
equations in a neighbourhood of the particle. The regular field can therefore be submitted to the
Chrzanowski procedure and reconstructed from a source-free solution to the Teukolsky equation.

More concretely, suppose that we have access to the Weyl scalar 𝜓0 produced by a point mass
moving on a geodesic of a Kerr spacetime. To compute the self-force from this, one first calculates
the singular Weyl scalar 𝜓S

0 from the Detweiler–Whiting singular field ℎS𝛼𝛽 , and subtracts it from

𝜓0. The result is a regularized Weyl scalar 𝜓R
0 , which is a solution to the homogeneous Teukolsky

equation. This sets the stage for the metric-reconstruction procedure, which returns (a piece of)
the regular field ℎR𝛼𝛽 in the radiation gauge selected by Chrzanowski. The computation must be
completed by adding the pieces of the metric perturbation that are not contained in 𝜓0; these
are referred to either as the nonradiative degrees of freedom (since 𝜓0 is purely radiative), or as
the 𝑙 = 0 and 𝑙 = 1 field multipoles (because the sum over multipoles that make up 𝜓0 begins
at 𝑙 = 2). A method to complete the Chrzanowski reconstruction of ℎR𝛼𝛽 was devised by Keidl et
al. [107, 108], and the end result leads directly to the gravitational self-force. The relevance of the
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𝑙 = 0 and 𝑙 = 1 modes to the gravitational self-force was emphasized by Detweiler and Poisson [52].

Time-domain versus frequency-domain methods

When calculating the spherical-harmonic components Φ𝑙𝑚(𝑡, 𝑟) of the retarded potential Φ – refer
back to Eq. (2.6) – one can choose to work either directly in the time domain, or perform a
Fourier decomposition of the time dependence and work instead in the frequency domain. While
the time-domain method requires the integration of a partial differential equation in 𝑡 and 𝑟,
the frequency-domain method gives rise to set of ordinary differential equations in 𝑟, one for
each frequency 𝜔. For particles moving on circular or slightly eccentric orbits in Schwarzschild
spacetime, the frequency spectrum is limited to a small number of discrete frequencies, and a
frequency-domain method is easy to implement and yields highly accurate results. As the orbital
eccentricity increases, however, the frequency spectrum broadens, and the computational burden
of summing over all frequency components becomes more significant. Frequency-domain methods
are less efficient for large eccentricities, the case of most relevance for extreme-mass-ratio inspirals,
and it becomes advantageous to replace them with time-domain methods. (See Ref. [25] for a
quantitative study of this claim.) This observation has motivated the development of accurate
evolution codes for wave equations in 1+1 dimensions.

Such codes must be able to accommodate point-particle sources, and various strategies have
been pursued to represent a Dirac distribution on a numerical grid, including the use of very narrow
Gaussian pulses [116, 110, 34] and of “finite impulse representations” [168]. These methods do a
good job with waveform and radiative flux calculations far away from the particle, but are of very
limited accuracy when computing the potential in a neighborhood of the particle. A numerical
method designed to provide an exact representation of a Dirac distribution in a time-domain
computation was devised by Lousto and Price [120] (see also Ref. [123]). It was implemented
by Haas [84, 85] for the specific purpose of evaluating Φ𝑙𝑚(𝑡, 𝑟) at the position of particle and
computing the self-force. Similar codes were developed by other workers for scalar [176] and
gravitational [21, 22] self-force calculations.

Most extant time-domain codes are based on finite-difference techniques, but codes based on
pseudo-spectral methods have also been developed [67, 68, 37, 38]. Spectral codes are a powerful
alternative to finite-difference codes, especially when dealing with smooth functions, because they
produce much faster convergence. The fact that self-force calculations deal with point sources
and field modes that are not differentiable might suggest that spectral convergence should not
be expected in this case. This objection can be countered, however, by placing the particle at
the boundary between two spectral domains. Functions are then smooth in each domain, and
discontinuities are handled by formulating appropriate boundary conditions; spectral convergence
is thereby achieved.

2.3 Effective-source method

The mode-sum methods reviewed in the preceding subsection have been developed and applied
extensively, but they do not exhaust the range of approaches that may be exploited to compute
a self-force. Another set of methods, devised by Barack and his collaborators [12, 13, 60] as well
as Vega and his collaborators [176, 177, 175], begin by recognizing that an approximation to the
exact singular potential can be used to regularize the delta-function source term of the original
field equation. We shall explain this idea in the simple context of a scalar potential Φ.

We continue to write the wave equation for the retarded potential Φ in the schematic form

�Φ = 𝑞𝛿(𝑥, 𝑧), (2.27)

where � is the wave operator in curved spacetime, and 𝛿(𝑥, 𝑧) is a distributional source term that
depends on the particle’s world line 𝛾 through its coordinate representation 𝑧(𝜏). By construction,
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the exact singular potential ΦS satisfies the same equation, and an approximation to the singular
potential, denoted Φ̃S, will generally satisfy an equation of the form

�Φ̃S = 𝑞𝛿(𝑥, 𝑥0) +𝑂(𝑟𝑛) (2.28)

for some integer 𝑛 > 0, where 𝑟 is a measure of distance to the world line. A “better” approximation
to the singular potential is one with a higher value of 𝑛. From the approximated singular potential
we form an approximation to the regular potential by writing

Φ̃R := Φ−𝑊 Φ̃S, (2.29)

where 𝑊 is a window function whose properties will be specified below. The approximated regular
potential is governed by the wave equation

�Φ̃R = 𝑞𝛿(𝑥, 𝑧)−�
(︀
𝑊 Φ̃S

)︀
:= 𝑆(𝑥, 𝑧), (2.30)

and the right-hand side of this equation defines the effective source term 𝑆(𝑥, 𝑧). This equation is
much less singular than Eq. (2.27), and it can be integrated using numerical methods designed to
handle smooth functions.

To see this, we write the effective source more specifically as

𝑆(𝑥, 𝑧) = −Φ̃S�𝑊 − 2∇𝛼𝑊∇𝛼Φ̃S −𝑊�Φ̃S + 𝑞𝛿(𝑥, 𝑧). (2.31)

With the window function 𝑊 designed to approach unity as 𝑥→ 𝑧, we find that the delta function
that arises from the third term on the right-hand side precisely cancels out the fourth term. To
keep the other terms in 𝑆 well behaved on the world line, we further restrict the window function
to satisfy ∇𝛼𝑊 = 𝑂(𝑟𝑝) with 𝑝 ≥ 2; this ensures that multiplication by ∇𝛼Φ̃S = 𝑂(𝑟−2) leaves
behind a bounded quantity. In addition, we demand that �𝑊 = 𝑂(𝑟𝑞) with 𝑞 ≥ 1, so that
multiplication by Φ̃S = 𝑂(𝑟−1) again produces a bounded quantity. It is also useful to require
that 𝑊 (𝑥) have compact (spatial) support, to ensure that the effective source term 𝑆(𝑥, 𝑧) does
not extend beyond a reasonably small neighbourhood of the world line; this property also has the
virtue of making Φ̃R precisely equal to the retarded potential Φ outside the support of the window
function. This implies, in particular, that Φ̃R can be used directly to compute radiative fluxes at
infinity. Another considerable virtue of these specifications for the window function is that they
guarantee that the gradient of Φ̃R is directly tied to the self-force. We indeed see that

lim
𝑥→𝑧

∇𝛼Φ̃R = lim
𝑥→𝑧

(︀
∇𝛼Φ−𝑊∇𝛼Φ̃S

)︀
− lim

𝑥→𝑧
Φ̃S∇𝛼𝑊

= lim
𝑥→𝑧

(︀
∇𝛼Φ−∇𝛼Φ̃S

)︀
= 𝑞−1𝐹𝛼, (2.32)

with the second line following by virtue of the imposed conditions on 𝑊 , and the third line from
the properties of the approximated singular field.

The effective-source method therefore consists of integrating the wave equation

�Φ̃R = 𝑆(𝑥, 𝑧), (2.33)

for the approximated regular potential Φ̃R, with a source term 𝑆(𝑥, 𝑧) that has become a regular
function (of limited differentiability) of the spacetime coordinates 𝑥. The method is also known
as a “puncture approach,” in reference to a similar regularization strategy employed in numerical
relativity. It is well suited to a 3+1 integration of the wave equation, which can be implemented
on mature codes already in circulation within the numerical-relativity community. An important
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advantage of a 3+1 implementation is that it is largely indifferent to the choice of background
spacetime, and largely insensitive to the symmetries possessed by this spacetime; a self-force in
Kerr spacetime is in principle just as easy to obtain as a self-force in Schwarzschild spacetime.

The method is also well suited to a self-consistent implementation of the self-force, in which
the motion of the particle is not fixed in advance, but determined by the action of the computed
self-force. This amounts to combining Eq. (2.33) with the self-force equation

𝑚
𝐷𝑢𝜇

𝑑𝜏
= 𝑞
(︀
𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀
∇𝜈Φ̃R, (2.34)

in which the field is evaluated on the dynamically determined world line. The system of equations is
integrated jointly, and self-consistently. The 3+1 version of the effective-source approach presents
a unique opportunity for the numerical-relativity community to get involved in self-force compu-
tations, with only a minimal amount of infrastructure development. This was advocated by Vega
and Detweiler [176], who first demonstrated the viability of the approach with a 1+1 time-domain
code for a scalar charge on a circular orbit around a Schwarzschild black hole. An implementation
with two separate 3+1 codes imported from numerical relativity was also accomplished [177].

The work of Barack and collaborators [12, 13] is a particular implementation of the effective-
source approach in a 2+1 numerical calculation of the scalar self-force in Kerr spacetime. (See also
the independent implementation by Lousto and Nakano [119].) Instead of starting with Eq. (2.27),
they first decompose Φ according to

Φ(𝑥) =
∑︁
𝑚

Φ𝑚(𝑡, 𝑟, 𝜃) exp(𝑖𝑚𝜑) (2.35)

and formulate reduced wave equations for the Fourier coefficients Φ𝑚. Each coefficient is then regu-
larized with an appropriate singular field Φ̃𝑚

S , which eliminates the delta-function from Eq. (2.27).
This gives rise to regularized source terms for the reduced wave equations, which can then be
integrated with a 2+1 evolution code. In the final stage of the computation, the self-force is re-
covered by summing over the regularized Fourier coefficients. This strategy, known as the 𝑚-mode
regularization scheme, is currently under active development. Recently it was successfully applied
by Dolan and Barack [60] to compute the self-force on a scalar charge in circular orbit around a
Schwarzschild black hole.

2.4 Quasilocal approach with “matched expansions”

As was seen in Eqs. (1.33), (1.40), and (1.47), the self-force can be expressed as an integral over the
past world line of the particle, the integrand involving the Green’s function for the appropriate wave
equation. Attempts have been made to compute the Green’s function directly [132, 141, 33, 86],
and to evaluate the world-line integral. The quasilocal approach, first introduced by Anderson
and his collaborators [4, 3, 6, 5], is based on the expectation that the world-line integral might
be dominated by the particle’s recent past, so that the Green’s function can be represented by
its Hadamard expansion, which is restricted to the normal convex neighbourhood of the particle’s
current position. To help with this enterprise, Ottewill and his collaborators [136, 182, 137, 39]
have pushed the Hadamard expansion to a very high order of accuracy, building on earlier work
by Décanini and Folacci [48].

The weak-field calculations performed by DeWitt and DeWitt [132] and Pfenning and Pois-
son [141] suggest that the world-line integral is not, in fact, dominated by the recent past. Instead,
most of the self-force is produced by signals that leave the particle at some time in the past, scatter
off the central mass, and reconnect with the particle at the current time; such signals mark the
boundary of the normal convex neighbourhood. The quasilocal evaluation of the world-line inte-
gral must therefore be supplemented with contributions from the distant past, and this requires
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a representation of the Green’s function that is not limited to the normal convex neighbourhood.
In some spacetimes it is possible to express the Green’s function as an expansion in quasi-normal
modes, as was demonstrated by Casals and his collaborators for a static scalar charge in the Nariai
spacetime [40]. Their study provided significant insights into the geometrical structure of Green’s
functions in curved spacetime, and increased our understanding of the non-local character of the
self-force.

2.5 Adiabatic approximations

The accurate computation of long-term waveforms from extreme-mass-ratio inspirals (EMRIs)
involves a lengthy sequence of calculations that include the calculation of the self-force. One can
already imagine the difficulty of numerically integrating the coupled linearized Einstein equation
for durations much longer than has ever been attempted by existing numerical codes. While doing
so, the code would also have to evaluate the self-force reasonably often (if not at each time step) in
order to remain close to the true dynamics of the point mass. Moreover, gravitational-wave data
analysis via matched filtering require full evolutions of the sort just described for a large sample
of systems parameters. All these considerations underlie the desire for simplified approximations
to fully self-consistent self-force EMRI models.

The adiabatic approximation refers to one such class of potentially useful approximations. The
basic assumption is that the secular effects of the self-force occur on a timescale that is much
longer than the orbital period. In an extreme-mass-ratio binary, this assumption is valid during
the early stage of inspiral; it breaks down in the final moments, when the orbit transitions to a
quasi-radial infall called the plunge. From the adiabaticity assumption, numerous approximations
have been formulated: For example, (i) since the particle’s orbit deviates only slowly from geodesic
motion, the self-force can be calculated from a field sourced by a geodesic; (ii) since the radiation-
reaction timescale 𝑡𝑟𝑟, over which a significant shrinking of the orbit occurs due to the self-force,
is much longer than the orbital period, periodic effects of the self-force can be neglected; and (iii)
conservative effects of the self-force can be neglected (the radiative approximation).

A seminal example of an adiabatic approximation is the Peters–Mathews formalism [140, 139],
which determines the long-term evolution of a binary orbit by equating the time-averaged rate of
change of the orbital energy 𝐸 and angular momentum 𝐿 to, respectively, the flux of gravitational-
wave energy and angular momentum at infinity. This formalism was used to successfully predict the
decreasing orbital period of the Hulse–Taylor pulsar, before more sophisticated methods, based on
post-Newtonian equations of motion expanded to 2.5pn order, were incorporated in times-of-arrival
formulae.

In the hope of achieving similar success in the context of the self-force, considerable work has
been done to formulate a similar approximation for the case of an extreme-mass-ratio inspiral [124,
125, 126, 98, 61, 62, 159, 158, 78, 128, 94]. Bound geodesics in Kerr spacetime are specified by
three constants of motion – the energy 𝐸, angular momentum 𝐿, and Carter constant 𝐶. If one
could easily calculate the rates of change of these quantities, using a method analogous to the
Peters–Mathews formalism, then one could determine an approximation to the long-term orbital
evolution of the small body in an EMRI, avoiding the lengthy process of regularization involved in
the direct integration of the self-forced equation of motion. In the early 1980s, Gal’tsov [77] showed
that the average rates of change of 𝐸 and 𝐿, as calculated from balance equations that assume
geodesic source motion, agree with the averaged rates of change induced by a self-force constructed
from a radiative Green’s function defined as 𝐺rad := 1

2 (𝐺− − 𝐺+). As discussed in Section 1.4,
this is equal to the regular two-point function 𝐺R in flat spacetime, but 𝐺rad ̸= 𝐺R in curved
spacetime; because of its time-asymmetry, it is purely dissipative. Mino [124], building on the work
of Gal’tsov, was able to show that the true self-force and the dissipative force constructed from
𝐺rad cause the same averaged rates of change of all three constants of motion, lending credence
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to the radiative approximation. Since then, the radiative Green’s function was used to derive
explicit expressions for the rates of change of 𝐸, 𝐿, and 𝐶 in terms of the particle’s orbit and wave
amplitudes at infinity [159, 158, 78], and radiative approximations based on such expressions have
been concretely implemented by Drasco, Hughes and their collaborators [99, 61, 62].

The relevance of the conservative part of the self-force – the part left out when using 𝐺rad – was
analyzed in numerous recent publications [32, 148, 146, 147, 94, 97]. As was shown by Pound et
al. [148, 146, 147], neglect of the conservative effects of the self-force generically leads to long-term
errors in the phase of an orbit and the gravitational wave it produces. These phasing errors are
due to orbital precession and a direct shift in orbital frequency. This shift can be understood by
considering a conservative force acting on a circular orbit: the force is radial, it alters the centripetal
acceleration, and the frequency associated with a given orbital radius is affected. Despite these
errors, a radiative approximation may still suffice for gravitational-wave detection [94]; for circular
orbits, which have minimal conservative effects, radiative approximations may suffice even for
parameter-estimation [97]. However, at this point in time, these analyses remain inconclusive
because they all rely on extrapolations from post-Newtonian results for the conservative part
of the self-force. For a more comprehensive discussion of these issues, the reader is referred to
Ref. [94, 143].

Hinderer and Flanagan performed the most comprehensive study of these issues [69], utilizing
a two-timescale expansion [109, 145] of the field equations and self-forced equations of motion in
an EMRI. In this method, all dynamical variables are written in terms of two time coordinates:
a fast time 𝑡 and a slow time 𝑡 := (𝑚/𝑀)𝑡. In the case of an EMRI, the dynamical variables are
the metric and the phase-space variables of the world line. The fast-time dependence captures
evolution on the orbital timescale ∼𝑀 , while the slow-time dependence captures evolution on the
radiation-reaction timescale ∼𝑀2/𝑚. One obtains a sequence of fast-time and slow-time equations
by expanding the full equations in the limit of small 𝑚 while treating the two time coordinates as
independent. Solving the leading-order fast-time equation, in which 𝑡 is held fixed, yields a metric
perturbation sourced by a geodesic, as one would expect from the linearized field equations for a
point particle. The leading-order effects of the self-force are incorporated by solving the slow-time
equation and letting 𝑡 vary. (Solving the next-higher-order slow-time equation determines similar
effects, but also the backreaction that causes the parameters of the large black hole to change
slowly.)

Using this method, Hinderer and Flanagan identified the effects of the various pieces of the
self-force. To describe this we write the self-force as

𝑓𝜇 =
𝑚

𝑀

(︁
𝑓𝜇(1)rr + 𝑓𝜇(1)c

)︁
+
𝑚2

𝑀2

(︁
𝑓𝜇(2)rr + 𝑓𝜇(2)c

)︁
+ · · · , (2.36)

where ‘rr’ denotes a radiation-reaction, or dissipative, piece of the force, and ‘c’ denotes a conser-
vative piece. Hinderer and Flanagan’s principal result is a formula for the orbital phase (which
directly determines the phase of the emitted gravitational waves) in terms of these quantities:

𝜑 =
𝑀2

𝑚

(︁
𝜑(0)(𝑡) +

𝑚

𝑀
𝜑(1)(𝑡) + · · ·

)︁
, (2.37)

where 𝜑(0) depends on an averaged piece of 𝑓𝜇(1)rr, while 𝜑
(1) depends on 𝑓𝜇(1)c, the oscillatory piece

of 𝑓𝜇(1)rr, and the averaged piece of 𝑓𝜇(2)rr. From this result, we see that the radiative approximation

yields the leading-order phase, but fails to determine the first subleading correction. We also see
that the approximations (i) – (iii) mentioned above are consistent (so long as the parameters of the
‘geodesic’ source are allowed to vary slowly) at leading order in the two-timescale expansion, but
diverge from one another beyond that order. Hence, we see that an adiabatic approximation is
generically insufficient to extract parameters from a waveform, since doing so requires a description
of the inspiral accurate up to small (i.e., smaller than order-1) errors. But we also see that an
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adiabatic approximation based on the radiative Green’s function may be an excellent approximation
for other purposes, such as detection.

To understand this result, consider the following naive analysis of a quasicircular EMRI — that
is, an orbit that would be circular were it not for the action of the self-force, and which is slowly spi-

raling into the large central body. We write the orbital frequency as 𝜔(0)(𝐸)+(𝑚/𝑀)𝜔
(1)
1 (𝐸)+ · · · ,

where 𝜔(0)(𝐸) is the frequency as a function of energy on a circular geodesic, and (𝑚/𝑀)𝜔
(1)
1 (𝐸) is

the correction to this due to the conservative part of the first-order self-force (part of the correction
also arises due to oscillatory zeroth-order effects combining with oscillatory first-order effects, but
for simplicity we ignore this contribution). Neglecting oscillatory effects, we write the energy in
terms only of its slow-time dependence: 𝐸 = 𝐸(0)(𝑡)+(𝑚/𝑀)𝐸(1)(𝑡)+ · · · . The leading-order term
𝐸(0) is determined by the dissipative part of first-order self-force, while 𝐸(1) is determined by both
the dissipative part of the second-order force and a combination of conservative and dissipative
parts of the first-order force. Substituting this into the frequency, we arrive at

𝜔 = 𝜔(0)(𝐸(0)) +
𝑚

𝑀

[︁
𝜔
(1)
1 (𝐸(0)) + 𝜔

(1)
2 (𝐸(0), 𝐸(1))

]︁
+ · · · , (2.38)

where 𝜔
(1)
2 = 𝐸(1)𝜕𝜔(0)/𝜕𝐸, in which the partial derivative is evaluated at 𝐸 = 𝐸(0). Integrating

this over a radiation-reaction time, we arrive at the orbital phase of Eq. (2.37). (In a complete
description, 𝐸(𝑡) will have oscillatory pieces, which are functions of 𝑡 rather than 𝑡, and one must
know these in order to correctly determine 𝜑(1).) Such a result remains valid even for generic orbits,
where, for example, orbital precession due to the conservative force contributes to the analogue of

𝜔
(1)
1 .

2.6 Physical consequences of the self-force

To be of relevance to gravitational-wave astronomy, the paramount goal of the self-force community
remains the computation of waveforms that properly encode the long-term dynamical evolution
of an extreme-mass-ratio binary. This requires a fully consistent orbital evolution fed to a wave-
generation formalism, and to this day the completion of this program remains as a future challenge.
In the meantime, a somewhat less ambitious, though no less compelling, undertaking is that of
probing the physical consequences of the self-force on the motion of point particles.

Scalar charge in cosmological spacetimes

The intriguing phenomenon of a scalar charge changing its rest mass because of an interaction
with its self-field was studied by Burko, Harte, and Poisson [33] and Haas and Poisson [86] in the
simple context of a particle at rest in an expanding universe. The scalar Green’s function could
be computed explicitly for a wide class of cosmological spacetimes, and the action of the field on
the particle determined without approximations. It is found that for certain cosmological models,
the mass decreases and then increases back to its original value. For other models, the mass is
restored only to a fraction of its original value. For de Sitter spacetime, the particle radiates all of
its rest mass into monopole scalar waves.

Physical consequences of the gravitational self-force

The earliest calculation of a gravitational self-force was performed by Barack and Lousto for the
case of a point mass plunging radially into a Schwarzschild black hole [14]. The calculation,
however, depended on a specific choice of gauge and did not identify unambiguous physical con-
sequences of the self-force. To obtain such consequences, it is necessary to combine the self-force
(computed in whatever gauge) with the metric perturbation (computed in the same gauge) in the
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calculation of a well-defined observable that could in principle be measured. For example, the con-
servative pieces of the self-force and metric perturbation can be combined to calculate the shifts in
orbital frequencies that originate from the gravitational effects of the small body; an application of
such a calculation would be to determine the shift (as measured by frequency) in the innermost sta-
ble circular orbit of an extreme-mass-ratio binary, or the shift in the rate of periastron advance for
eccentric orbits. Such calculations, however, must exclude all dissipative aspects of the self-force,
because these introduce an inherent ambiguity in the determination of orbital frequencies.

A calculation of this kind was recently achieved by Barack and Sago [22, 23], who computed the
shift in the innermost stable circular orbit of a Schwarzschild black hole caused by the conservative
piece of the gravitational self-force. The shift in orbital radius is gauge dependent (and was reported
in the Lorenz gauge by Barack and Sago), but the shift in orbital frequency is measurable and
therefore gauge invariant. Their main result – a genuine milestone in self-force computations – is
that the fractional shift in frequency is equal to 0.4870𝑚/𝑀 ; the frequency is driven upward by
the gravitational self-force. Barack and Sago compare this shift to the ambiguity created by the
dissipative piece of the self-force, which was previously investigated by Ori and Thorne [135] and
Sundararajan [167]; they find that the conservative shift is very small compared with the dissipative
ambiguity. In a follow-up analysis, Barack, Damour, and Sago [11] computed the conservative shift
in the rate of periastron advance of slightly eccentric orbits in Schwarzschild spacetime.

Conservative shifts in the innermost stable circular orbit of a Schwarzschild black hole were
first obtained in the context of the scalar self-force by Diaz-Rivera et al. [55]; in this case they
obtain a fractional shift of 0.0291657𝑞2/(𝑚𝑀), and here also the frequency is driven upward.

Detweiler’s redshift factor

In another effort to extract physical consequences from the gravitational self-force on a particle in
circular motion in Schwarzschild spacetime, Detweiler discovered [50] that 𝑢𝑡, the time component
of the velocity vector in Schwarzschild coordinates, is invariant with respect to a class of gauge
transformations that preserve the helical symmetry of the perturbed spacetime. Detweiler further
showed that 1/𝑢𝑡 is an observable: it is the redshift that a photon suffers when it propagates
from the orbiting body to an observer situated at a large distance on the orbital axis. This gauge-
invariant quantity can be calculated together with the orbital frequency Ω, which is a second gauge-
invariant quantity that can be constructed for circular orbits in Schwarzschild spacetime. Both 𝑢𝑡

and Ω acquire corrections of fractional order 𝑚/𝑀 from the self-force and the metric perturbation.
While the functions 𝑢𝑡(𝑟) and Ω(𝑟) are still gauge dependent, because of the dependence on the
radial coordinate 𝑟, elimination of 𝑟 from these relations permits the construction of 𝑢𝑡(Ω), which
is gauge invariant. A plot of 𝑢𝑡 as a function of Ω therefore contains physically unambiguous
information about the gravitational self-force.

The computation of the gauge-invariant relation 𝑢𝑡(Ω) opened the door to a detailed com-
parison between the predictions of the self-force formalism to those of post-Newtonian theory.
This was first pursued by Detweiler [50], who compared 𝑢𝑡(Ω) as determined accurately through
second post-Newtonian order, to self-force results obtained numerically; he reported full consis-
tency at the expected level of accuracy. This comparison was pushed to the third post-Newtonian
order [29, 28, 44, 11]. Agreement is remarkable, and it conveys a rather deep point about the
methods of calculation. The computation of 𝑢𝑡(Ω), in the context of both the self-force and post-
Newtonian theory, requires regularization of the metric perturbation created by the point mass. In
the self-force calculation, removal of the singular field is achieved with the Detweiler–Whiting pre-
scription, while in post-Newtonian theory it is performed with a very different prescription based
on dimensional regularization. Each prescription could have returned a different regularized field,
and therefore a different expression for 𝑢𝑡(Ω). This, remarkably, does not happen; the singular
fields are “physically the same” in the self-force and post-Newtonian calculations.
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A generalization of Detweiler’s redshift invariant to eccentric orbits was recently proposed and
computed by Barack and Sago [24], who report consistency with corresponding post-Newtonian
results in the weak-field regime. They also computed the influence of the conservative gravitational
self-force on the periastron advance of slightly eccentric orbits, and compared their results with full
numerical relativity simulations for modest mass-ratio binaries. Thus, in spite of the unavailability
of self-consistent waveforms, it is becoming clear that self-force calculations are already proving
to be of value: they inform post-Newtonian calculations and serve as benchmarks for numerical
relativity.
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Part I: General Theory of Bitensors

3 Synge’s world function

3.1 Definition

In this and the following sections we will construct a number of bitensors, tensorial functions of
two points in spacetime. The first is 𝑥′, which we call the “base point”, and to which we assign
indices 𝛼′, 𝛽′, etc. The second is 𝑥, which we call the “field point”, and to which we assign indices
𝛼, 𝛽, etc. We assume that 𝑥 belongs to 𝒩 (𝑥′), the normal convex neighbourhood of 𝑥′; this is the
set of points that are linked to 𝑥′ by a unique geodesic. The geodesic segment 𝛽 that links 𝑥 to
𝑥′ is described by relations 𝑧𝜇(𝜆) in which 𝜆 is an affine parameter that ranges from 𝜆0 to 𝜆1;
we have 𝑧(𝜆0) := 𝑥′ and 𝑧(𝜆1) := 𝑥. To an arbitrary point 𝑧 on the geodesic we assign indices
𝜇, 𝜈, etc. The vector 𝑡𝜇 = 𝑑𝑧𝜇/𝑑𝜆 is tangent to the geodesic, and it obeys the geodesic equation
𝐷𝑡𝜇/𝑑𝜆 = 0. The situation is illustrated in Figure 5.

z

tµ

x

x’

Figure 5: The base point 𝑥′, the field point 𝑥, and the geodesic segment 𝛽 that links them. The geodesic
is described by parametric relations 𝑧𝜇(𝜆) and 𝑡𝜇 = 𝑑𝑧𝜇/𝑑𝜆 is its tangent vector.

Synge’s world function is a scalar function of the base point 𝑥′ and the field point 𝑥. It is
defined by

𝜎(𝑥, 𝑥′) =
1

2
(𝜆1 − 𝜆0)

∫︁ 𝜆1

𝜆0

𝑔𝜇𝜈(𝑧)𝑡
𝜇𝑡𝜈 𝑑𝜆, (3.1)

and the integral is evaluated on the geodesic 𝛽 that links 𝑥 to 𝑥′. You may notice that 𝜎 is invariant
under a constant rescaling of the affine parameter, 𝜆→ 𝜆̄ = 𝑎𝜆+ 𝑏, where 𝑎 and 𝑏 are constants.

By virtue of the geodesic equation, the quantity 𝜀 := 𝑔𝜇𝜈𝑡
𝜇𝑡𝜈 is constant on the geodesic. The

world function is therefore numerically equal to 1
2𝜀(𝜆1 − 𝜆0)

2. If the geodesic is timelike, then
𝜆 can be set equal to the proper time 𝜏 , which implies that 𝜀 = −1 and 𝜎 = − 1

2 (Δ𝜏)
2. If the

geodesic is spacelike, then 𝜆 can be set equal to the proper distance 𝑠, which implies that 𝜀 = 1
and 𝜎 = 1

2 (Δ𝑠)
2. If the geodesic is null, then 𝜎 = 0. Quite generally, therefore, the world function

is half the squared geodesic distance between the points 𝑥′ and 𝑥.

In flat spacetime, the geodesic linking 𝑥 to 𝑥′ is a straight line, and 𝜎 = 1
2𝜂𝛼𝛽(𝑥−𝑥′)𝛼(𝑥−𝑥′)𝛽

in Lorentzian coordinates.
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3.2 Differentiation of the world function

The world function 𝜎(𝑥, 𝑥′) can be differentiated with respect to either argument. We let 𝜎𝛼 =
𝜕𝜎/𝜕𝑥𝛼 be its partial derivative with respect to 𝑥, and 𝜎𝛼′ = 𝜕𝜎/𝜕𝑥𝛼

′
its partial derivative with

respect to 𝑥′. It is clear that 𝜎𝛼 behaves as a dual vector with respect to tensorial operations
carried out at 𝑥, but as a scalar with respect to operations carried out 𝑥′. Similarly, 𝜎𝛼′ is a scalar
at 𝑥 but a dual vector at 𝑥′.

We let 𝜎𝛼𝛽 := ∇𝛽𝜎𝛼 be the covariant derivative of 𝜎𝛼 with respect to 𝑥; this is a rank-2 tensor
at 𝑥 and a scalar at 𝑥′. Because 𝜎 is a scalar at 𝑥, we have that this tensor is symmetric: 𝜎𝛽𝛼 = 𝜎𝛼𝛽 .

Similarly, we let 𝜎𝛼𝛽′ := 𝜕𝛽′𝜎𝛼 = 𝜕2𝜎/𝜕𝑥𝛽
′
𝜕𝑥𝛼 be the partial derivative of 𝜎𝛼 with respect to 𝑥′;

this is a dual vector both at 𝑥 and 𝑥′. We can also define 𝜎𝛼′𝛽 := 𝜕𝛽𝜎𝛼′ = 𝜕2𝜎/𝜕𝑥𝛽𝜕𝑥𝛼
′
to be the

partial derivative of 𝜎𝛼′ with respect to 𝑥. Because partial derivatives commute, these bitensors
are equal: 𝜎𝛽′𝛼 = 𝜎𝛼𝛽′ . Finally, we let 𝜎𝛼′𝛽′ := ∇𝛽′𝜎𝛼′ be the covariant derivative of 𝜎𝛼′ with
respect to 𝑥′; this is a symmetric rank-2 tensor at 𝑥′ and a scalar at 𝑥.

The notation is easily extended to any number of derivatives. For example, we let 𝜎𝛼𝛽𝛾𝛿′ :=
∇𝛿′∇𝛾∇𝛽∇𝛼𝜎, which is a rank-3 tensor at 𝑥 and a dual vector at 𝑥′. This bitensor is symmetric
in the pair of indices 𝛼 and 𝛽, but not in the pairs 𝛼 and 𝛾, nor 𝛽 and 𝛾. Because ∇𝛿′ is
here an ordinary partial derivative with respect to 𝑥′, the bitensor is symmetric in any pair of
indices involving 𝛿′. The ordering of the primed index relative to the unprimed indices is therefore
irrelevant: the same bitensor can be written as 𝜎𝛿′𝛼𝛽𝛾 or 𝜎𝛼𝛿′𝛽𝛾 or 𝜎𝛼𝛽𝛿′𝛾 , making sure that the
ordering of the unprimed indices is not altered.

More generally, we can show that derivatives of any bitensor Ω···(𝑥, 𝑥
′) satisfy the property

Ω··· ;𝛽𝛼′··· = Ω··· ;𝛼′𝛽···, (3.2)

in which “· · · ” stands for any combination of primed and unprimed indices. We start by establishing
the symmetry of Ω··· ;𝛼𝛽′ with respect to the pair 𝛼 and 𝛽′. This is most easily done by adopting
Fermi normal coordinates (see Section 9) adapted to the geodesic 𝛽 and setting the connection
to zero both at 𝑥 and 𝑥′. In these coordinates, the bitensor Ω··· ;𝛼 is the partial derivative of Ω···
with respect to 𝑥𝛼, and Ω··· ;𝛼𝛽′ is obtained by taking an additional partial derivative with respect

to 𝑥𝛽
′
. These two operations commute, and Ω··· ;𝛽′𝛼 = Ω··· ;𝛼𝛽′ follows as a bitensorial identity.

Equation (3.2) then follows by further differentiation with respect to either 𝑥 or 𝑥′.
The message of Eq. (3.2), when applied to derivatives of the world function, is that while the

ordering of the primed and unprimed indices relative to themselves is important, their ordering
with respect to each other is arbitrary. For example, 𝜎𝛼′𝛽′𝛾𝛿′𝜖 = 𝜎𝛼′𝛽′𝛿′𝛾𝜖 = 𝜎𝛾𝜖𝛼′𝛽′𝛿′ .

3.3 Evaluation of first derivatives

We can compute 𝜎𝛼 by examining how 𝜎 varies when the field point 𝑥 moves. We let the new
field point be 𝑥+ 𝛿𝑥, and 𝛿𝜎 := 𝜎(𝑥+ 𝛿𝑥, 𝑥′)− 𝜎(𝑥, 𝑥′) is the corresponding variation of the world
function. We let 𝛽 + 𝛿𝛽 be the unique geodesic segment that links 𝑥+ 𝛿𝑥 to 𝑥′; it is described by
relations 𝑧𝜇(𝜆) + 𝛿𝑧𝜇(𝜆), in which the affine parameter is scaled in such a way that it runs from
𝜆0 to 𝜆1 also on the new geodesic. We note that 𝛿𝑧(𝜆0) = 𝛿𝑥′ = 0 and 𝛿𝑧(𝜆1) = 𝛿𝑥.

Working to first order in the variations, Eq. (3.1) implies

𝛿𝜎 = Δ𝜆

∫︁ 𝜆1

𝜆0

(︂
𝑔𝜇𝜈 𝑧̇

𝜇 𝛿𝑧̇𝜈 +
1

2
𝑔𝜇𝜈,𝜆𝑧̇

𝜇𝑧̇𝜈 𝛿𝑧𝜆
)︂
𝑑𝜆,

where Δ𝜆 = 𝜆1 − 𝜆0, an overdot indicates differentiation with respect to 𝜆, and the metric and its
derivatives are evaluated on 𝛽. Integrating the first term by parts gives

𝛿𝜎 = Δ𝜆
[︁
𝑔𝜇𝜈 𝑧̇

𝜇 𝛿𝑧𝜈
]︁𝜆1

𝜆0

−Δ𝜆

∫︁ 𝜆1

𝜆0

(︁
𝑔𝜇𝜈𝑧

𝜈 + Γ𝜇𝜈𝜆𝑧̇
𝜈 𝑧̇𝜆
)︁
𝛿𝑧𝜇 𝑑𝜆.
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The integral vanishes because 𝑧𝜇(𝜆) satisfies the geodesic equation. The boundary term at 𝜆0 is
zero because the variation 𝛿𝑧𝜇 vanishes there. We are left with 𝛿𝜎 = Δ𝜆𝑔𝛼𝛽𝑡

𝛼𝛿𝑥𝛽 , or

𝜎𝛼(𝑥, 𝑥
′) = (𝜆1 − 𝜆0) 𝑔𝛼𝛽𝑡

𝛽 , (3.3)

in which the metric and the tangent vector are both evaluated at 𝑥. Apart from a factor Δ𝜆, we
see that 𝜎𝛼(𝑥, 𝑥′) is equal to the geodesic’s tangent vector at 𝑥. If in Eq. (3.3) we replace 𝑥 by a
generic point 𝑧(𝜆) on 𝛽, and if we correspondingly replace 𝜆1 by 𝜆, we obtain 𝜎

𝜇(𝑧, 𝑥′) = (𝜆−𝜆0)𝑡𝜇;
we therefore see that 𝜎𝜇(𝑧, 𝑥′) is a rescaled tangent vector on the geodesic.

A virtually identical calculation reveals how 𝜎 varies under a change of base point 𝑥′. Here
the variation of the geodesic is such that 𝛿𝑧(𝜆0) = 𝛿𝑥′ and 𝛿𝑧(𝜆1) = 𝛿𝑥 = 0, and we obtain
𝛿𝜎 = −Δ𝜆𝑔𝛼′𝛽′𝑡𝛼

′
𝛿𝑥𝛽

′
. This shows that

𝜎𝛼′(𝑥, 𝑥′) = −(𝜆1 − 𝜆0) 𝑔𝛼′𝛽′𝑡𝛽
′
, (3.4)

in which the metric and the tangent vector are both evaluated at 𝑥′. Apart from a factor Δ𝜆, we
see that 𝜎𝛼′

(𝑥, 𝑥′) is minus the geodesic’s tangent vector at 𝑥′.
It is interesting to compute the norm of 𝜎𝛼. According to Eq. (3.3) we have 𝑔𝛼𝛽𝜎

𝛼𝜎𝛽 =
(Δ𝜆)2𝑔𝛼𝛽𝑡

𝛼𝑡𝛽 = (Δ𝜆)2𝜀. According to Eq. (3.1), this is equal to 2𝜎. We have obtained

𝑔𝛼𝛽𝜎𝛼𝜎𝛽 = 2𝜎, (3.5)

and similarly,
𝑔𝛼

′𝛽′
𝜎𝛼′𝜎𝛽′ = 2𝜎. (3.6)

These important relations will be the starting point of many computations to be described below.
We note that in flat spacetime, 𝜎𝛼 = 𝜂𝛼𝛽(𝑥 − 𝑥′)𝛽 and 𝜎𝛼′ = −𝜂𝛼𝛽(𝑥 − 𝑥′)𝛽 in Lorentzian

coordinates. From this it follows that 𝜎𝛼𝛽 = 𝜎𝛼′𝛽′ = −𝜎𝛼𝛽′ = −𝜎𝛼′𝛽 = 𝜂𝛼𝛽 , and finally, 𝑔𝛼𝛽𝜎𝛼𝛽 =

4 = 𝑔𝛼
′𝛽′
𝜎𝛼′𝛽′ .

3.4 Congruence of geodesics emanating from 𝑥′

If the base point 𝑥′ is kept fixed, 𝜎 can be considered to be an ordinary scalar function of 𝑥.
According to Eq. (3.5), this function is a solution to the nonlinear differential equation 1

2𝑔
𝛼𝛽𝜎𝛼𝜎𝛽 =

𝜎. Suppose that we are presented with such a scalar field. What can we say about it?
An additional differentiation of the defining equation reveals that the vector 𝜎𝛼 := 𝜎;𝛼 satisfies

𝜎𝛼
;𝛽𝜎

𝛽 = 𝜎𝛼, (3.7)

which is the geodesic equation in a non-affine parameterization. The vector field is therefore
tangent to a congruence of geodesics. The geodesics are timelike where 𝜎 < 0, they are spacelike
where 𝜎 > 0, and they are null where 𝜎 = 0. Here, for concreteness, we shall consider only the
timelike subset of the congruence.

The vector

𝑢𝛼 =
𝜎𝛼

|2𝜎|1/2 (3.8)

is a normalized tangent vector that satisfies the geodesic equation in affine-parameter form: 𝑢𝛼;𝛽𝑢
𝛽 =

0. The parameter 𝜆 is then proper time 𝜏 . If 𝜆* denotes the original parameterization of the
geodesics, we have that 𝑑𝜆*/𝑑𝜏 = |2𝜎|−1/2, and we see that the original parameterization is sin-
gular at 𝜎 = 0.

In the affine parameterization, the expansion of the congruence is calculated to be

𝜃 =
𝜃*

|2𝜎|1/2 , 𝜃* := 𝜎𝛼
;𝛼 − 1, (3.9)
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where 𝜃* = (𝛿𝑉 )−1(𝑑/𝑑𝜆*)(𝛿𝑉 ) is the expansion in the original parameterization (𝛿𝑉 is the con-
gruence’s cross-sectional volume). While 𝜃* is well behaved in the limit 𝜎 → 0 (we shall see below
that 𝜃* → 3), we have that 𝜃 → ∞. This means that the point 𝑥′ at which 𝜎 = 0 is a caustic of
the congruence: all geodesics emanate from this point.

These considerations, which all follow from a postulated relation 1
2𝑔

𝛼𝛽𝜎𝛼𝜎𝛽 = 𝜎, are clearly
compatible with our preceding explicit construction of the world function.

4 Coincidence limits

It is useful to determine the limiting behaviour of the bitensors 𝜎··· as 𝑥 approaches 𝑥′. We
introduce the notation [︀

Ω···
]︀
= lim

𝑥→𝑥′
Ω···(𝑥, 𝑥

′) = a tensor at 𝑥′

to designate the limit of any bitensor Ω···(𝑥, 𝑥
′) as 𝑥 approaches 𝑥′; this is called the coincidence

limit of the bitensor. We assume that the coincidence limit is a unique tensorial function of the
base point 𝑥′, independent of the direction in which the limit is taken. In other words, if the limit
is computed by letting 𝜆→ 𝜆0 after evaluating Ω···(𝑧, 𝑥

′) as a function of 𝜆 on a specified geodesic
𝛽, it is assumed that the answer does not depend on the choice of geodesic.

4.1 Computation of coincidence limits

From Eqs. (3.1), (3.3), and (3.4) we already have[︀
𝜎
]︀
= 0,

[︀
𝜎𝛼
]︀
=
[︀
𝜎𝛼′
]︀
= 0. (4.1)

Additional results are obtained by repeated differentiation of the relations (3.5) and (3.6). For
example, Eq. (3.5) implies 𝜎𝛾 = 𝑔𝛼𝛽𝜎𝛼𝜎𝛽𝛾 = 𝜎𝛽𝜎𝛽𝛾 , or (𝑔𝛽𝛾 − 𝜎𝛽𝛾)𝑡

𝛽 = 0 after using Eq. (3.3).
From the assumption stated in the preceding paragraph, 𝜎𝛽𝛾 becomes independent of 𝑡𝛽 in the
limit 𝑥 → 𝑥′, and we arrive at [𝜎𝛼𝛽 ] = 𝑔𝛼′𝛽′ . By very similar calculations we obtain all other
coincidence limits for the second derivatives of the world function. The results are[︀

𝜎𝛼𝛽
]︀
=
[︀
𝜎𝛼′𝛽′

]︀
= 𝑔𝛼′𝛽′ ,

[︀
𝜎𝛼𝛽′

]︀
=
[︀
𝜎𝛼′𝛽

]︀
= −𝑔𝛼′𝛽′ . (4.2)

From these relations we infer that [𝜎𝛼
𝛼] = 4, so that [𝜃*] = 3, where 𝜃* was defined in Eq. (3.9).

To generate coincidence limits of bitensors involving primed indices, it is efficient to invoke
Synge’s rule, [︀

𝜎···𝛼′
]︀
=
[︀
𝜎···
]︀
;𝛼′ −

[︀
𝜎···𝛼

]︀
, (4.3)

in which “· · · ” designates any combination of primed and unprimed indices; this rule will be
established below. For example, according to Synge’s rule we have [𝜎𝛼𝛽′ ] = [𝜎𝛼];𝛽′ − [𝜎𝛼𝛽 ], and
since the coincidence limit of 𝜎𝛼 is zero, this gives us [𝜎𝛼𝛽′ ] = −[𝜎𝛼𝛽 ] = −𝑔𝛼′𝛽′ , as was stated in
Eq. (4.2). Similarly, [𝜎𝛼′𝛽′ ] = [𝜎𝛼′ ];𝛽′ − [𝜎𝛼′𝛽 ] = −[𝜎𝛽𝛼′ ] = 𝑔𝛼′𝛽′ . The results of Eq. (4.2) can thus
all be generated from the known result for [𝜎𝛼𝛽 ].

The coincidence limits of Eq. (4.2) were derived from the relation 𝜎𝛼 = 𝜎𝛿
𝛼𝜎𝛿. We now

differentiate this twice more and obtain 𝜎𝛼𝛽𝛾 = 𝜎𝛿
𝛼𝛽𝛾𝜎𝛿 + 𝜎𝛿

𝛼𝛽𝜎𝛿𝛾 + 𝜎𝛿
𝛼𝛾𝜎𝛿𝛽 + 𝜎𝛿

𝛼𝜎𝛿𝛽𝛾 . At
coincidence we have [︀

𝜎𝛼𝛽𝛾
]︀
=
[︀
𝜎𝛿

𝛼𝛽

]︀
𝑔𝛿′𝛾′ +

[︀
𝜎𝛿

𝛼𝛾

]︀
𝑔𝛿′𝛽′ + 𝛿𝛿

′

𝛼′

[︀
𝜎𝛿𝛽𝛾

]︀
,

or [𝜎𝛾𝛼𝛽 ] + [𝜎𝛽𝛼𝛾 ] = 0 if we recognize that the operations of raising or lowering indices and taking
the limit 𝑥 → 𝑥′ commute. Noting the symmetries of 𝜎𝛼𝛽 , this gives us [𝜎𝛼𝛾𝛽 ] + [𝜎𝛼𝛽𝛾 ] = 0, or

2[𝜎𝛼𝛽𝛾 ]− [𝑅𝛿
𝛼𝛽𝛾𝜎𝛿] = 0, or 2[𝜎𝛼𝛽𝛾 ] = 𝑅𝛿′

𝛼′𝛽′𝛾′ [𝜎𝛿′ ]. Since the last factor is zero, we arrive at[︀
𝜎𝛼𝛽𝛾

]︀
=
[︀
𝜎𝛼𝛽𝛾′

]︀
=
[︀
𝜎𝛼𝛽′𝛾′

]︀
=
[︀
𝜎𝛼′𝛽′𝛾′

]︀
= 0. (4.4)
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The last three results were derived from [𝜎𝛼𝛽𝛾 ] = 0 by employing Synge’s rule.
We now differentiate the relation 𝜎𝛼 = 𝜎𝛿

𝛼𝜎𝛿 three times and obtain

𝜎𝛼𝛽𝛾𝛿 = 𝜎𝜖
𝛼𝛽𝛾𝛿𝜎𝜖 + 𝜎𝜖

𝛼𝛽𝛾𝜎𝜖𝛿 + 𝜎𝜖
𝛼𝛽𝛿𝜎𝜖𝛾 + 𝜎𝜖

𝛼𝛾𝛿𝜎𝜖𝛽 + 𝜎𝜖
𝛼𝛽𝜎𝜖𝛾𝛿 + 𝜎𝜖

𝛼𝛾𝜎𝜖𝛽𝛿 + 𝜎𝜖
𝛼𝛿𝜎𝜖𝛽𝛾 + 𝜎𝜖

𝛼𝜎𝜖𝛽𝛾𝛿.

At coincidence this reduces to [𝜎𝛼𝛽𝛾𝛿] + [𝜎𝛼𝛿𝛽𝛾 ] + [𝜎𝛼𝛾𝛽𝛿] = 0. To simplify the third term we
differentiate Ricci’s identity 𝜎𝛼𝛾𝛽 = 𝜎𝛼𝛽𝛾−𝑅𝜖

𝛼𝛽𝛾𝜎𝜖 with respect to 𝑥𝛿 and then take the coincidence
limit. This gives us [𝜎𝛼𝛾𝛽𝛿] = [𝜎𝛼𝛽𝛾𝛿] + 𝑅𝛼′𝛿′𝛽′𝛾′ . The same manipulations on the second term
give [𝜎𝛼𝛿𝛽𝛾 ] = [𝜎𝛼𝛽𝛿𝛾 ] + 𝑅𝛼′𝛾′𝛽′𝛿′ . Using the identity 𝜎𝛼𝛽𝛿𝛾 = 𝜎𝛼𝛽𝛾𝛿 − 𝑅𝜖

𝛼𝛾𝛿𝜎𝜖𝛽 − 𝑅𝜖
𝛽𝛾𝛿𝜎𝛼𝜖 and

the symmetries of the Riemann tensor, it is then easy to show that [𝜎𝛼𝛽𝛿𝛾 ] = [𝜎𝛼𝛽𝛾𝛿]. Gathering
the results, we obtain 3[𝜎𝛼𝛽𝛾𝛿] +𝑅𝛼′𝛾′𝛽′𝛿′ +𝑅𝛼′𝛿′𝛽′𝛾′ = 0, and Synge’s rule allows us to generalize
this to any combination of primed and unprimed indices. Our final results are[︀

𝜎𝛼𝛽𝛾𝛿
]︀
= −1

3

(︀
𝑅𝛼′𝛾′𝛽′𝛿′ +𝑅𝛼′𝛿′𝛽′𝛾′

)︀
,

[︀
𝜎𝛼𝛽𝛾𝛿′

]︀
=

1

3

(︀
𝑅𝛼′𝛾′𝛽′𝛿′ +𝑅𝛼′𝛿′𝛽′𝛾′

)︀
,[︀

𝜎𝛼𝛽𝛾′𝛿′
]︀
= −1

3

(︀
𝑅𝛼′𝛾′𝛽′𝛿′ +𝑅𝛼′𝛿′𝛽′𝛾′

)︀
,

[︀
𝜎𝛼𝛽′𝛾′𝛿′

]︀
= −1

3

(︀
𝑅𝛼′𝛽′𝛾′𝛿′ +𝑅𝛼′𝛾′𝛽′𝛿′

)︀
,[︀

𝜎𝛼′𝛽′𝛾′𝛿′
]︀
= −1

3

(︀
𝑅𝛼′𝛾′𝛽′𝛿′ +𝑅𝛼′𝛿′𝛽′𝛾′

)︀
. (4.5)

4.2 Derivation of Synge’s rule

We begin with any bitensor Ω𝐴𝐵′(𝑥, 𝑥′) in which 𝐴 = 𝛼 · · ·𝛽 is a multi-index that represents any
number of unprimed indices, and 𝐵′ = 𝛾′ · · · 𝛿′ a multi-index that represents any number of primed
indices. (It does not matter whether the primed and unprimed indices are segregated or mixed.)
On the geodesic 𝛽 that links 𝑥 to 𝑥′ we introduce an ordinary tensor 𝑃𝑀 (𝑧) where 𝑀 is a multi-
index that contains the same number of indices as 𝐴. This tensor is arbitrary, but we assume that
it is parallel transported on 𝛽; this means that it satisfies 𝑃𝐴

;𝛼𝑡
𝛼 = 0 at 𝑥. Similarly, we introduce

an ordinary tensor 𝑄𝑁 (𝑧) in which 𝑁 contains the same number of indices as 𝐵′. This tensor is
arbitrary, but we assume that it is parallel transported on 𝛽; at 𝑥′ it satisfies 𝑄𝐵′

;𝛼′𝑡𝛼
′
= 0. With

Ω, 𝑃 , and 𝑄 we form a biscalar 𝐻(𝑥, 𝑥′) defined by

𝐻(𝑥, 𝑥′) = Ω𝐴𝐵′(𝑥, 𝑥′)𝑃𝐴(𝑥)𝑄𝐵′
(𝑥′).

Having specified the geodesic that links 𝑥 to 𝑥′, we can consider 𝐻 to be a function of 𝜆0 and 𝜆1.
If 𝜆1 is not much larger than 𝜆0 (so that 𝑥 is not far from 𝑥′), we can express 𝐻(𝜆1, 𝜆0) as

𝐻(𝜆1, 𝜆0) = 𝐻(𝜆0, 𝜆0) + (𝜆1 − 𝜆0)
𝜕𝐻

𝜕𝜆1

⃒⃒⃒⃒
𝜆1=𝜆0

+ · · · .

Alternatively,

𝐻(𝜆1, 𝜆0) = 𝐻(𝜆1, 𝜆1)− (𝜆1 − 𝜆0)
𝜕𝐻

𝜕𝜆0

⃒⃒⃒⃒
𝜆0=𝜆1

+ · · · ,

and these two expressions give

𝑑

𝑑𝜆0
𝐻(𝜆0, 𝜆0) =

𝜕𝐻

𝜕𝜆0

⃒⃒⃒⃒
𝜆0=𝜆1

+
𝜕𝐻

𝜕𝜆1

⃒⃒⃒⃒
𝜆1=𝜆0

,

because the left-hand side is the limit of [𝐻(𝜆1, 𝜆1) − 𝐻(𝜆0, 𝜆0)]/(𝜆1 − 𝜆0) when 𝜆1 → 𝜆0. The
partial derivative of𝐻 with respect to 𝜆0 is equal to Ω𝐴𝐵′;𝛼′𝑡𝛼

′
𝑃𝐴𝑄𝐵′

, and in the limit this becomes

[Ω𝐴𝐵′;𝛼′ ]𝑡𝛼
′
𝑃𝐴′

𝑄𝐵′
. Similarly, the partial derivative of 𝐻 with respect to 𝜆1 is Ω𝐴𝐵′;𝛼𝑡

𝛼𝑃𝐴𝑄𝐵′
,
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and in the limit 𝜆1 → 𝜆0 this becomes [Ω𝐴𝐵′;𝛼]𝑡
𝛼′
𝑃𝐴′

𝑄𝐵′
. Finally, 𝐻(𝜆0, 𝜆0) = [Ω𝐴𝐵′ ]𝑃𝐴′

𝑄𝐵′
,

and its derivative with respect to 𝜆0 is [Ω𝐴𝐵′ ];𝛼′𝑡𝛼
′
𝑃𝐴′

𝑄𝐵′
. Gathering the results we find that{︁[︀

Ω𝐴𝐵′
]︀
;𝛼′ −

[︀
Ω𝐴𝐵′;𝛼′

]︀
−
[︀
Ω𝐴𝐵′;𝛼

]︀}︁
𝑡𝛼

′
𝑃𝐴′

𝑄𝐵′
= 0,

and the final statement of Synge’s rule,[︀
Ω𝐴𝐵′

]︀
;𝛼′ =

[︀
Ω𝐴𝐵′;𝛼′

]︀
+
[︀
Ω𝐴𝐵′;𝛼

]︀
, (4.6)

follows from the fact that the tensors 𝑃𝑀 and 𝑄𝑁 , and the direction of the selected geodesic 𝛽,
are all arbitrary. Equation (4.6) reduces to Eq. (4.3) when 𝜎··· is substituted in place of Ω𝐴𝐵′ .

5 Parallel propagator

5.1 Tetrad on 𝛽

On the geodesic segment 𝛽 that links 𝑥 to 𝑥′ we introduce an orthonormal basis 𝑒𝜇a (𝑧) that is
parallel transported on the geodesic. The frame indices a, b, . . . , run from 0 to 3 and the basis
vectors satisfy

𝑔𝜇𝜈 𝑒
𝜇
a 𝑒

𝜈
b = 𝜂ab,

𝐷𝑒𝜇a
𝑑𝜆

= 0, (5.1)

where 𝜂ab = diag(−1, 1, 1, 1) is the Minkowski metric (which we shall use to raise and lower frame
indices). We have the completeness relations

𝑔𝜇𝜈 = 𝜂ab 𝑒𝜇a 𝑒
𝜈
b , (5.2)

and we define a dual tetrad 𝑒a𝜇(𝑧) by

𝑒a𝜇 := 𝜂ab𝑔𝜇𝜈 𝑒
𝜈
b ; (5.3)

this is also parallel transported on 𝛽. In terms of the dual tetrad the completeness relations take
the form

𝑔𝜇𝜈 = 𝜂ab 𝑒
a
𝜇𝑒

b
𝜈 , (5.4)

and it is easy to show that the tetrad and its dual satisfy 𝑒a𝜇𝑒
𝜇
b = 𝛿ab and 𝑒a𝜈𝑒

𝜇
a = 𝛿𝜇𝜈 . Equa-

tions (5.1) – (5.4) hold everywhere on 𝛽. In particular, with an appropriate change of notation
they hold at 𝑥′ and 𝑥; for example, 𝑔𝛼𝛽 = 𝜂ab 𝑒

a
𝛼𝑒

b
𝛽 is the metric at 𝑥.

(You will have noticed that we use sans-serif symbols for the frame indices. This is to distinguish
them from another set of frame indices that will appear below. The frame indices introduced here
run from 0 to 3; those to be introduced later will run from 1 to 3.)

5.2 Definition and properties of the parallel propagator

Any vector field 𝐴𝜇(𝑧) on 𝛽 can be decomposed in the basis 𝑒𝜇a : 𝐴
𝜇 = 𝐴a 𝑒𝜇a , and the vector’s

frame components are given by 𝐴a = 𝐴𝜇 𝑒a𝜇. If 𝐴𝜇 is parallel transported on the geodesic, then

the coefficients 𝐴a are constants. The vector at 𝑥 can then be expressed as 𝐴𝛼 = (𝐴𝛼′
𝑒a𝛼′)𝑒𝛼a , or

𝐴𝛼(𝑥) = 𝑔𝛼𝛼′(𝑥, 𝑥′)𝐴𝛼′
(𝑥′), 𝑔𝛼𝛼′(𝑥, 𝑥′) := 𝑒𝛼a (𝑥) 𝑒

a
𝛼′(𝑥′). (5.5)

The object 𝑔𝛼𝛼′ = 𝑒𝛼a 𝑒
a
𝛼′ is the parallel propagator : it takes a vector at 𝑥′ and parallel-transports

it to 𝑥 along the unique geodesic that links these points.
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Similarly, we find that

𝐴𝛼′
(𝑥′) = 𝑔𝛼

′

𝛼(𝑥
′, 𝑥)𝐴𝛼(𝑥), 𝑔𝛼

′

𝛼(𝑥
′, 𝑥) := 𝑒𝛼

′

a (𝑥′) 𝑒a𝛼(𝑥), (5.6)

and we see that 𝑔𝛼
′

𝛼 = 𝑒𝛼
′

a 𝑒
a
𝛼 performs the inverse operation: it takes a vector at 𝑥 and parallel-

transports it back to 𝑥′. Clearly,

𝑔𝛼𝛼′𝑔𝛼
′

𝛽 = 𝛿𝛼𝛽 , 𝑔𝛼
′

𝛼𝑔
𝛼
𝛽′ = 𝛿𝛼

′

𝛽′ , (5.7)

and these relations formally express the fact that 𝑔𝛼
′

𝛼 is the inverse of 𝑔𝛼𝛼′ .

The relation 𝑔𝛼𝛼′ = 𝑒𝛼a 𝑒
a
𝛼′ can also be expressed as 𝑔 𝛼′

𝛼 = 𝑒a𝛼𝑒
𝛼′

a , and this reveals that

𝑔 𝛼′

𝛼 (𝑥, 𝑥′) = 𝑔𝛼
′

𝛼(𝑥
′, 𝑥), 𝑔 𝛼

𝛼′ (𝑥′, 𝑥) = 𝑔𝛼𝛼′(𝑥, 𝑥′). (5.8)

The ordering of the indices, and the ordering of the arguments, are arbitrary.
The action of the parallel propagator on tensors of arbitrary rank is easy to figure out. For

example, suppose that the dual vector 𝑝𝜇 = 𝑝𝑎 𝑒
𝑎
𝜇 is parallel transported on 𝛽. Then the frame

components 𝑝a = 𝑝𝜇 𝑒
𝜇
a are constants, and the dual vector at 𝑥 can be expressed as 𝑝𝛼 = (𝑝𝛼′𝑒𝛼

′

a )𝑒𝛼a ,
or

𝑝𝛼(𝑥) = 𝑔𝛼
′

𝛼(𝑥
′, 𝑥) 𝑝𝛼′(𝑥′). (5.9)

It is therefore the inverse propagator 𝑔𝛼
′

𝛼 that takes a dual vector at 𝑥′ and parallel-transports it
to 𝑥. As another example, it is easy to show that a tensor 𝐴𝛼𝛽 at 𝑥 obtained by parallel transport
from 𝑥′ must be given by

𝐴𝛼𝛽(𝑥) = 𝑔𝛼𝛼′(𝑥, 𝑥′)𝑔
𝛽
𝛽′(𝑥, 𝑥

′)𝐴𝛼′𝛽′
(𝑥′). (5.10)

Here we need two occurrences of the parallel propagator, one for each tensorial index. Because the
metric tensor is covariantly constant, it is automatically parallel transported on 𝛽, and a special

case of Eq. (5.10) is 𝑔𝛼𝛽 = 𝑔𝛼
′

𝛼𝑔
𝛽′

𝛽 𝑔𝛼′𝛽′ .

Because the basis vectors are parallel transported on 𝛽, they satisfy 𝑒𝛼a;𝛽𝜎
𝛽 = 0 at 𝑥 and

𝑒𝛼
′

a;𝛽′𝜎𝛽′
= 0 at 𝑥′. This immediately implies that the parallel propagators must satisfy

𝑔𝛼𝛼′;𝛽𝜎
𝛽 = 𝑔𝛼𝛼′;𝛽′𝜎𝛽′

= 0, 𝑔𝛼
′

𝛼;𝛽𝜎
𝛽 = 𝑔𝛼

′

𝛼;𝛽′𝜎𝛽′
= 0. (5.11)

Another useful property of the parallel propagator follows from the fact that if 𝑡𝜇 = 𝑑𝑧𝜇/𝑑𝜆 is
tangent to the geodesic connecting 𝑥 to 𝑥′, then 𝑡𝛼 = 𝑔𝛼𝛼′𝑡𝛼

′
. Using Eqs. (3.3) and (3.4), this

observation gives us the relations

𝜎𝛼 = −𝑔𝛼′

𝛼𝜎𝛼′ , 𝜎𝛼′ = −𝑔𝛼𝛼′𝜎𝛼. (5.12)

5.3 Coincidence limits

Eq. (5.5) and the completeness relations of Eqs. (5.2) or (5.4) imply that[︀
𝑔𝛼𝛽′

]︀
= 𝛿𝛼

′

𝛽′ . (5.13)

Other coincidence limits are obtained by differentiation of Eqs. (5.11). For example, the relation
𝑔𝛼𝛽′;𝛾𝜎

𝛾 = 0 implies 𝑔𝛼𝛽′;𝛾𝛿𝜎
𝛾 + 𝑔𝛼𝛽′;𝛾𝜎

𝛾
𝛿 = 0, and at coincidence we have[︀
𝑔𝛼𝛽′;𝛾

]︀
=
[︀
𝑔𝛼𝛽′;𝛾′

]︀
= 0; (5.14)
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the second result was obtained by applying Synge’s rule on the first result. Further differentiation
gives

𝑔𝛼𝛽′;𝛾𝛿𝜖𝜎
𝛾 + 𝑔𝛼𝛽′;𝛾𝛿𝜎

𝛾
𝜖 + 𝑔𝛼𝛽′;𝛾𝜖𝜎

𝛾
𝛿 + 𝑔𝛼𝛽′;𝛾𝜎

𝛾
𝛿𝜖 = 0,

and at coincidence we have [𝑔𝛼𝛽′;𝛾𝛿] + [𝑔𝛼𝛽′;𝛿𝛾 ] = 0, or 2[𝑔𝛼𝛽′;𝛾𝛿] + 𝑅𝛼′

𝛽′𝛾′𝛿′ = 0. The coincidence
limit for 𝑔𝛼𝛽′;𝛾𝛿′ = 𝑔𝛼𝛽′;𝛿′𝛾 can then be obtained from Synge’s rule, and an additional application
of the rule gives [𝑔𝛼𝛽′;𝛾′𝛿′ ]. Our results are

[︀
𝑔𝛼𝛽′;𝛾𝛿

]︀
= −1

2
𝑅𝛼′

𝛽′𝛾′𝛿′ ,
[︀
𝑔𝛼𝛽′;𝛾𝛿′

]︀
=

1

2
𝑅𝛼′

𝛽′𝛾′𝛿′ ,

(5.15)[︀
𝑔𝛼𝛽′;𝛾′𝛿

]︀
= −1

2
𝑅𝛼′

𝛽′𝛾′𝛿′ ,
[︀
𝑔𝛼𝛽′;𝛾′𝛿′

]︀
=

1

2
𝑅𝛼′

𝛽′𝛾′𝛿′ .

6 Expansion of bitensors near coincidence

6.1 General method

We would like to express a bitensor Ω𝛼′𝛽′(𝑥, 𝑥′) near coincidence as an expansion in powers of

−𝜎𝛼′
(𝑥, 𝑥′), the closest analogue in curved spacetime to the flat-spacetime quantity (𝑥−𝑥′)𝛼. For

concreteness we shall consider the case of rank-2 bitensor, and for the moment we will assume that
the tensorial indices all refer to the base point 𝑥′.

The expansion we seek is of the form

Ω𝛼′𝛽′(𝑥, 𝑥′) = 𝐴𝛼′𝛽′ +𝐴𝛼′𝛽′𝛾′ 𝜎𝛾′
+

1

2
𝐴𝛼′𝛽′𝛾′𝛿′ 𝜎

𝛾′
𝜎𝛿′ +𝑂(𝜖3), (6.1)

in which the “expansion coefficients” 𝐴𝛼′𝛽′ , 𝐴𝛼′𝛽′𝛾′ , and 𝐴𝛼′𝛽′𝛾′𝛿′ are all ordinary tensors at 𝑥′;
this last tensor is symmetric in the pair of indices 𝛾′ and 𝛿′, and 𝜖 measures the size of a typical
component of 𝜎𝛼′

.
To find the expansion coefficients we differentiate Eq. (6.1) repeatedly and take coincidence

limits. Equation (6.1) immediately implies [Ω𝛼′𝛽′ ] = 𝐴𝛼′𝛽′ . After one differentiation we obtain

Ω𝛼′𝛽′;𝛾′ = 𝐴𝛼′𝛽′;𝛾′ +𝐴𝛼′𝛽′𝜖′;𝛾′𝜎𝜖′ +𝐴𝛼′𝛽′𝜖′𝜎
𝜖′

𝛾′ + 1
2 𝐴𝛼′𝛽′𝜖′𝜄′;𝛾′𝜎𝜖′𝜎𝜄′ +𝐴𝛼′𝛽′𝜖′𝜄′𝜎

𝜖′𝜎𝜄′

𝛾′ +𝑂(𝜖2), and
at coincidence this reduces to [Ω𝛼′𝛽′;𝛾′ ] = 𝐴𝛼′𝛽′;𝛾′ +𝐴𝛼′𝛽′𝛾′ . Taking the coincidence limit after two
differentiations yields [Ω𝛼′𝛽′;𝛾′𝛿′ ] = 𝐴𝛼′𝛽′;𝛾′𝛿′ + 𝐴𝛼′𝛽′𝛾′;𝛿′ + 𝐴𝛼′𝛽′𝛿′;𝛾′ + 𝐴𝛼′𝛽′𝛾′𝛿′ . The expansion
coefficients are therefore

𝐴𝛼′𝛽′ =
[︀
Ω𝛼′𝛽′

]︀
,

𝐴𝛼′𝛽′𝛾′ =
[︀
Ω𝛼′𝛽′;𝛾′

]︀
−𝐴𝛼′𝛽′;𝛾′ ,

𝐴𝛼′𝛽′𝛾′𝛿′ =
[︀
Ω𝛼′𝛽′;𝛾′𝛿′

]︀
−𝐴𝛼′𝛽′;𝛾′𝛿′ −𝐴𝛼′𝛽′𝛾′;𝛿′ −𝐴𝛼′𝛽′𝛿′;𝛾′ . (6.2)

These results are to be substituted into Eq. (6.1), and this gives us Ω𝛼′𝛽′(𝑥, 𝑥′) to second order in
𝜖.

Suppose now that the bitensor is Ω𝛼′𝛽 , with one index referring to 𝑥′ and the other to 𝑥. The

previous procedure can be applied directly if we introduce an auxiliary bitensor Ω̃𝛼′𝛽′ := 𝑔𝛽𝛽′Ω𝛼′𝛽

whose indices all refer to the point 𝑥′. Then Ω̃𝛼′𝛽′ can be expanded as in Eq. (6.1), and the original

bitensor is reconstructed as Ω𝛼′𝛽 = 𝑔𝛽
′

𝛽Ω̃𝛼′𝛽′ , or

Ω𝛼′𝛽(𝑥, 𝑥
′) = 𝑔𝛽

′

𝛽

(︂
𝐵𝛼′𝛽′ +𝐵𝛼′𝛽′𝛾′ 𝜎𝛾′

+
1

2
𝐵𝛼′𝛽′𝛾′𝛿′ 𝜎

𝛾′
𝜎𝛿′
)︂
+𝑂(𝜖3). (6.3)
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The expansion coefficients can be obtained from the coincidence limits of Ω̃𝛼′𝛽′ and its derivatives.
It is convenient, however, to express them directly in terms of the original bitensor Ω𝛼′𝛽 by substi-

tuting the relation Ω̃𝛼′𝛽′ = 𝑔𝛽𝛽′Ω𝛼′𝛽 and its derivatives. After using the results of Eq. (5.13) – (5.15)
we find

𝐵𝛼′𝛽′ =
[︀
Ω𝛼′𝛽

]︀
,

𝐵𝛼′𝛽′𝛾′ =
[︀
Ω𝛼′𝛽;𝛾′

]︀
−𝐵𝛼′𝛽′;𝛾′ ,

𝐵𝛼′𝛽′𝛾′𝛿′ =
[︀
Ω𝛼′𝛽;𝛾′𝛿′

]︀
+

1

2
𝐵𝛼′𝜖′𝑅

𝜖′

𝛽′𝛾′𝛿′ −𝐵𝛼′𝛽′;𝛾′𝛿′ −𝐵𝛼′𝛽′𝛾′;𝛿′ −𝐵𝛼′𝛽′𝛿′;𝛾′ . (6.4)

The only difference with respect to Eq. (6.3) is the presence of a Riemann-tensor term in 𝐵𝛼′𝛽′𝛾′𝛿′ .
Suppose finally that the bitensor to be expanded is Ω𝛼𝛽 , whose indices all refer to 𝑥. Much as

we did before, we introduce an auxiliary bitensor Ω̃𝛼′𝛽′ = 𝑔𝛼𝛼′𝑔
𝛽
𝛽′Ω𝛼𝛽 whose indices all refer to 𝑥′,

we expand Ω̃𝛼′𝛽′ as in Eq. (6.1), and we then reconstruct the original bitensor. This gives us

Ω𝛼𝛽(𝑥, 𝑥
′) = 𝑔𝛼

′

𝛼𝑔
𝛽′

𝛽

(︂
𝐶𝛼′𝛽′ + 𝐶𝛼′𝛽′𝛾′ 𝜎𝛾′

+
1

2
𝐶𝛼′𝛽′𝛾′𝛿′ 𝜎

𝛾′
𝜎𝛿′
)︂
+𝑂(𝜖3), (6.5)

and the expansion coefficients are now

𝐶𝛼′𝛽′ =
[︀
Ω𝛼𝛽

]︀
,

𝐶𝛼′𝛽′𝛾′ =
[︀
Ω𝛼𝛽;𝛾′

]︀
− 𝐶𝛼′𝛽′;𝛾′ ,

𝐶𝛼′𝛽′𝛾′𝛿′ =
[︀
Ω𝛼𝛽;𝛾′𝛿′

]︀
+

1

2
𝐶𝛼′𝜖′𝑅

𝜖′

𝛽′𝛾′𝛿′ +
1

2
𝐶𝜖′𝛽′𝑅𝜖′

𝛼′𝛾′𝛿′ − 𝐶𝛼′𝛽′;𝛾′𝛿′ − 𝐶𝛼′𝛽′𝛾′;𝛿′ − 𝐶𝛼′𝛽′𝛿′;𝛾′ .(6.6)

This differs from Eq. (6.4) by the presence of an additional Riemann-tensor term in 𝐶𝛼′𝛽′𝛾′𝛿′ .

6.2 Special cases

We now apply the general expansion method developed in the preceding subsection to the bitensors
𝜎𝛼′𝛽′ , 𝜎𝛼′𝛽 , and 𝜎𝛼𝛽 . In the first instance we have 𝐴𝛼′𝛽′ = 𝑔𝛼′𝛽′ , 𝐴𝛼′𝛽′𝛾′ = 0, and 𝐴𝛼′𝛽′𝛾′𝛿′ =
− 1

3 (𝑅𝛼′𝛾′𝛽′𝛿′ + 𝑅𝛼′𝛿′𝛽′𝛾′). In the second instance we have 𝐵𝛼′𝛽′ = −𝑔𝛼′𝛽′ , 𝐵𝛼′𝛽′𝛾′ = 0, and
𝐵𝛼′𝛽′𝛾′𝛿′ = − 1

3 (𝑅𝛽′𝛼′𝛾′𝛿′ +𝑅𝛽′𝛾′𝛼′𝛿′)− 1
2𝑅𝛼′𝛽′𝛾′𝛿′ = − 1

3𝑅𝛼′𝛿′𝛽′𝛾′ − 1
6𝑅𝛼′𝛽′𝛾′𝛿′ . In the third instance

we have 𝐶𝛼′𝛽′ = 𝑔𝛼′𝛽′ , 𝐶𝛼′𝛽′𝛾′ = 0, and 𝐶𝛼′𝛽′𝛾′𝛿′ = − 1
3 (𝑅𝛼′𝛾′𝛽′𝛿′ + 𝑅𝛼′𝛿′𝛽′𝛾′). This gives us the

expansions

𝜎𝛼′𝛽′ = 𝑔𝛼′𝛽′ − 1

3
𝑅𝛼′𝛾′𝛽′𝛿′ 𝜎

𝛾′
𝜎𝛿′ +𝑂(𝜖3), (6.7)

𝜎𝛼′𝛽 = −𝑔𝛽
′

𝛽

(︁
𝑔𝛼′𝛽′ +

1

6
𝑅𝛼′𝛾′𝛽′𝛿′ 𝜎

𝛾′
𝜎𝛿′
)︁
+𝑂(𝜖3), (6.8)

𝜎𝛼𝛽 = 𝑔𝛼
′

𝛼𝑔
𝛽′

𝛽′

(︁
𝑔𝛼′𝛽′ − 1

3
𝑅𝛼′𝛾′𝛽′𝛿′ 𝜎

𝛾′
𝜎𝛿′
)︁
+𝑂(𝜖3). (6.9)

Taking the trace of the last equation returns 𝜎𝛼
𝛼 = 4− 1

3𝑅𝛾′𝛿′ 𝜎
𝛾′
𝜎𝛿′ +𝑂(𝜖3), or

𝜃* = 3− 1

3
𝑅𝛼′𝛽′ 𝜎𝛼′

𝜎𝛽′
+𝑂(𝜖3), (6.10)

where 𝜃* := 𝜎𝛼
𝛼 − 1 was shown in Section 3.4 to describe the expansion of the congruence of

geodesics that emanate from 𝑥′. Equation (6.10) reveals that timelike geodesics are focused if the
Ricci tensor is nonzero and the strong energy condition holds: when 𝑅𝛼′𝛽′ 𝜎𝛼′

𝜎𝛽′
> 0 we see that

𝜃* is smaller than 3, the value it would take in flat spacetime.
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The expansion method can easily be extended to bitensors of other tensorial ranks. In partic-
ular, it can be adapted to give expansions of the first derivatives of the parallel propagator. The
expansions

𝑔𝛼𝛽′;𝛾′ =
1

2
𝑔𝛼𝛼′𝑅𝛼′

𝛽′𝛾′𝛿′ 𝜎
𝛿′ +𝑂(𝜖2), 𝑔𝛼𝛽′;𝛾 =

1

2
𝑔𝛼𝛼′𝑔𝛾

′

𝛾𝑅
𝛼′

𝛽′𝛾′𝛿′ 𝜎
𝛿′ +𝑂(𝜖2) (6.11)

and thus easy to establish, and they will be needed in part III of this review.

6.3 Expansion of tensors

The expansion method can also be applied to ordinary tensor fields. For concreteness, suppose
that we wish to express a rank-2 tensor 𝐴𝛼𝛽 at a point 𝑥 in terms of its values (and that of its
covariant derivatives) at a neighbouring point 𝑥′. The tensor can be written as an expansion in
powers of −𝜎𝛼′

(𝑥, 𝑥′) and in this case we have

𝐴𝛼𝛽(𝑥) = 𝑔𝛼
′

𝛼𝑔
𝛽′

𝛽

(︂
𝐴𝛼′𝛽′ −𝐴𝛼′𝛽′;𝛾′ 𝜎𝛾′

+
1

2
𝐴𝛼′𝛽′;𝛾′𝛿′ 𝜎

𝛾′
𝜎𝛿′
)︂
+𝑂(𝜖3). (6.12)

If the tensor field is parallel transported on the geodesic 𝛽 that links 𝑥 to 𝑥′, then Eq. (6.12)
reduces to Eq. (5.10). The extension of this formula to tensors of other ranks is obvious.

To derive this result we express 𝐴𝜇𝜈(𝑧), the restriction of the tensor field on 𝛽, in terms of its
tetrad components 𝐴ab(𝜆) = 𝐴𝜇𝜈𝑒

𝜇
a 𝑒

𝜈
b . Recall from Section 5.1 that 𝑒𝜇a is an orthonormal basis

that is parallel transported on 𝛽; recall also that the affine parameter 𝜆 ranges from 𝜆0 (its value at
𝑥′) to 𝜆1 (its value at 𝑥). We have 𝐴𝛼′𝛽′(𝑥′) = 𝐴ab(𝜆0)𝑒

a
𝛼′𝑒b𝛽′ , 𝐴𝛼𝛽(𝑥) = 𝐴ab(𝜆1)𝑒

a
𝛼𝑒

b
𝛽 , and 𝐴ab(𝜆1)

can be expressed in terms of quantities at 𝜆 = 𝜆0 by straightforward Taylor expansion. Since, for
example,

(𝜆1 − 𝜆0)
𝑑𝐴ab

𝑑𝜆

⃒⃒⃒⃒
𝜆0

= (𝜆1 − 𝜆0)
(︀
𝐴𝜇𝜈𝑒

𝜇
a 𝑒

𝜈
b

)︀
;𝜆
𝑡𝜆
⃒⃒⃒
𝜆0

= (𝜆1 − 𝜆0)𝐴𝜇𝜈;𝜆𝑒
𝜇
a 𝑒

𝜈
b 𝑡

𝜆
⃒⃒⃒
𝜆0

= −𝐴𝛼′𝛽′;𝛾′𝑒𝛼
′

a 𝑒
𝛽′

b 𝜎
𝛾′
,

where we have used Eq. (3.4), we arrive at Eq. (6.12) after involving Eq. (5.6).

7 van Vleck determinant

7.1 Definition and properties

The van Vleck biscalar Δ(𝑥, 𝑥′) is defined by

Δ(𝑥, 𝑥′) := det
[︀
Δ𝛼′

𝛽′(𝑥, 𝑥′)
]︀
, Δ𝛼′

𝛽′(𝑥, 𝑥′) := −𝑔𝛼′

𝛼(𝑥
′, 𝑥)𝜎𝛼

𝛽′(𝑥, 𝑥′). (7.1)

As we shall show below, it can also be expressed as

Δ(𝑥, 𝑥′) = −det
[︀
−𝜎𝛼𝛽′(𝑥, 𝑥′)

]︀
√−𝑔√−𝑔′ , (7.2)

where 𝑔 is the metric determinant at 𝑥 and 𝑔′ the metric determinant at 𝑥′.
Eqs. 4.2) and (5.13) imply that at coincidence, [Δ𝛼′

𝛽′ ] = 𝛿𝛼
′

𝛽′ and [Δ] = 1. Equation (6.8), on
the other hand, implies that near coincidence,

Δ𝛼′

𝛽′ = 𝛿𝛼
′

𝛽′ +
1

6
𝑅𝛼′

𝛾′𝛽′𝛿′ 𝜎
𝛾′
𝜎𝛿′ +𝑂(𝜖3), (7.3)
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so that

Δ = 1 +
1

6
𝑅𝛼′𝛽′ 𝜎𝛼′

𝜎𝛽′
+𝑂(𝜖3). (7.4)

This last result follows from the fact that for a “small” matrix 𝑎, det(1+ 𝑎) = 1 + tr(𝑎) +𝑂(𝑎2).
We shall prove below that the van Vleck determinant satisfies the differential equation

1

Δ

(︀
Δ𝜎𝛼

)︀
;𝛼

= 4, (7.5)

which can also be written as (lnΔ),𝛼𝜎
𝛼 = 4− 𝜎𝛼

𝛼, or

𝑑

𝑑𝜆*
(lnΔ) = 3− 𝜃* (7.6)

in the notation introduced in Section 3.4. Equation (7.6) reveals that the behaviour of the van
Vleck determinant is governed by the expansion of the congruence of geodesics that emanate from
𝑥′. If 𝜃* < 3, then the congruence expands less rapidly than it would in flat spacetime, and Δ
increases along the geodesics. If, on the other hand, 𝜃* > 3, then the congruence expands more
rapidly than it would in flat spacetime, and Δ decreases along the geodesics. Thus, Δ > 1 indicates
that the geodesics are undergoing focusing, while Δ < 1 indicates that the geodesics are undergoing
defocusing. The connection between the van Vleck determinant and the strong energy condition
is well illustrated by Eq. (7.4): the sign of Δ− 1 near 𝑥′ is determined by the sign of 𝑅𝛼′𝛽′ 𝜎𝛼′

𝜎𝛽′
.

7.2 Derivations

To show that Eq. (7.2) follows from Eq. (7.1) we rewrite the completeness relations at 𝑥, 𝑔𝛼𝛽 =

𝜂ab𝑒𝛼a 𝑒
𝛽
b , in the matrix form 𝑔−1 = 𝐸𝜂𝐸𝑇 , where 𝐸 denotes the 4 × 4 matrix whose entries

correspond to 𝑒𝛼a . (In this translation we put tensor and frame indices on an equal footing.) With
𝑒 denoting the determinant of this matrix, we have 1/𝑔 = −𝑒2, or 𝑒 = 1/

√−𝑔. Similarly, we rewrite

the completeness relations at 𝑥′, 𝑔𝛼
′𝛽′

= 𝜂ab𝑒𝛼
′

a 𝑒
𝛽′

b , in the matrix form 𝑔′−1 = 𝐸′𝜂𝐸′𝑇 , where 𝐸′

is the matrix corresponding to 𝑒𝛼
′

a . With 𝑒′ denoting its determinant, we have 1/𝑔′ = −𝑒′2, or
𝑒′ = 1/

√−𝑔′. Now, the parallel propagator is defined by 𝑔𝛼𝛼′ = 𝜂ab𝑔𝛼′𝛽′𝑒𝛼a 𝑒
𝛽′

b , and the matrix
form of this equation is 𝑔 = 𝐸𝜂𝐸′𝑇𝑔′𝑇 . The determinant of the parallel propagator is therefore
𝑔 = −𝑒𝑒′𝑔′ = √−𝑔′/√−𝑔. So we have

det
[︀
𝑔𝛼𝛼′

]︀
=

√−𝑔′√−𝑔 , det
[︀
𝑔𝛼

′

𝛼

]︀
=

√−𝑔√−𝑔′ , (7.7)

and Eq. (7.2) follows from the fact that the matrix form of Eq. (7.1) is Δ = −𝑔−1𝑔−1𝜎, where 𝜎
is the matrix corresponding to 𝜎𝛼𝛽′ .

To establish Eq. (7.5) we differentiate the relation 𝜎 = 1
2𝜎

𝛾𝜎𝛾 twice and obtain 𝜎𝛼𝛽′ = 𝜎𝛾
𝛼𝜎𝛾𝛽′+

𝜎𝛾𝜎𝛾𝛼𝛽′ . If we replace the last factor by 𝜎𝛼𝛽′𝛾 and multiply both sides by −𝑔𝛼′𝛼 we find

Δ𝛼′

𝛽′ = −𝑔𝛼′𝛼
(︀
𝜎𝛾

𝛼𝜎𝛾𝛽′ + 𝜎𝛾𝜎𝛼𝛽′𝛾

)︀
.

In this expression we make the substitution 𝜎𝛼𝛽′ = −𝑔𝛼𝛼′Δ𝛼′

𝛽′ , which follows directly from
Eq. (7.1). This gives us

Δ𝛼′

𝛽′ = 𝑔𝛼
′

𝛼𝑔
𝛾
𝛾′𝜎

𝛼
𝛾Δ

𝛾′

𝛽′ +Δ𝛼′

𝛽′;𝛾𝜎
𝛾 , (7.8)

where we have used Eq. (5.11). At this stage we introduce an inverse (Δ−1)𝛼
′

𝛽′ to the van Vleck

bitensor, defined by Δ𝛼′

𝛽′(Δ−1)𝛽
′

𝛾′ = 𝛿𝛼
′

𝛾′ . After multiplying both sides of Eq. (7.8) by (Δ−1)𝛽
′

𝛾′ we
find

𝛿𝛼
′

𝛽′ = 𝑔𝛼
′

𝛼𝑔
𝛽
𝛽′𝜎

𝛼
𝛽 + (Δ−1)𝛾

′

𝛽′Δ
𝛼′

𝛾′;𝛾𝜎
𝛾 ,
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and taking the trace of this equation yields

4 = 𝜎𝛼
𝛼 + (Δ−1)𝛽

′

𝛼′Δ
𝛼′

𝛽′;𝛾𝜎
𝛾 .

We now recall the identity 𝛿 ln det𝑀 = Tr(𝑀−1𝛿𝑀), which relates the variation of a determinant

to the variation of the matrix elements. It implies, in particular, that (Δ−1)𝛽
′

𝛼′Δ𝛼′

𝛽′;𝛾 = (lnΔ),𝛾 ,
and we finally obtain

4 = 𝜎𝛼
𝛼 + (lnΔ),𝛼𝜎

𝛼, (7.9)

which is equivalent to Eq. (7.5) or Eq. (7.6).
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Part II: Coordinate Systems

8 Riemann normal coordinates

8.1 Definition and coordinate transformation

Given a fixed base point 𝑥′ and a tetrad 𝑒𝛼
′

a (𝑥′), we assign to a neighbouring point 𝑥 the four
coordinates

𝑥̂a = −𝑒a𝛼′(𝑥′)𝜎𝛼′
(𝑥, 𝑥′), (8.1)

where 𝑒a𝛼′ = 𝜂ab𝑔𝛼′𝛽′𝑒𝛽
′

b is the dual tetrad attached to 𝑥′. The new coordinates 𝑥̂a are called Rie-

mann normal coordinates (RNC), and they are such that 𝜂ab𝑥̂
a𝑥̂b = 𝜂ab𝑒

a
𝛼′𝑒b𝛽′𝜎𝛼′

𝜎𝛽′
= 𝑔𝛼′𝛽′𝜎𝛼′

𝜎𝛽′
,

or
𝜂ab𝑥̂

a𝑥̂b = 2𝜎(𝑥, 𝑥′). (8.2)

Thus, 𝜂ab𝑥̂
a𝑥̂b is the squared geodesic distance between 𝑥 and the base point 𝑥′. It is obvious that

𝑥′ is at the origin of the RNC, where 𝑥̂a = 0.
If we move the point 𝑥 to 𝑥+𝛿𝑥, the new coordinates change to 𝑥̂a+𝛿𝑥̂a = −𝑒a𝛼′𝜎𝛼′

(𝑥+𝛿𝑥, 𝑥′) =

𝑥̂a − 𝑒a𝛼′𝜎𝛼′

𝛽 𝛿𝑥
𝛽 , so that

𝑑𝑥̂a = −𝑒a𝛼′𝜎𝛼′

𝛽 𝑑𝑥
𝛽 . (8.3)

The coordinate transformation is therefore determined by 𝜕𝑥̂a/𝜕𝑥𝛽 = −𝑒a𝛼′𝜎𝛼′

𝛽 , and at coincidence
we have [︂

𝜕𝑥̂a

𝜕𝑥𝛼

]︂
= 𝑒a𝛼′ ,

[︂
𝜕𝑥𝛼

𝜕𝑥̂a

]︂
= 𝑒𝛼

′

a ; (8.4)

the second result follows from the identities 𝑒a𝛼′𝑒𝛼
′

b = 𝛿ab and 𝑒𝛼
′

a 𝑒
a
𝛽′ = 𝛿𝛼

′

𝛽′ .

It is interesting to note that the Jacobian of the transformation of Eq. (8.3), 𝐽 := det(𝜕𝑥̂a/𝜕𝑥𝛽),
is given by 𝐽 =

√−𝑔Δ(𝑥, 𝑥′), where 𝑔 is the determinant of the metric in the original coordinates,
and Δ(𝑥, 𝑥′) is the Van Vleck determinant of Eq. (7.2). This result follows simply by writing the
coordinate transformation in the form 𝜕𝑥̂a/𝜕𝑥𝛽 = −𝜂ab𝑒𝛼′

b 𝜎𝛼′𝛽 and computing the product of the
determinants. It allows us to deduce that in RNC, the determinant of the metric is given by√︀

−𝑔(RNC) =
1

Δ(𝑥, 𝑥′)
. (8.5)

It is easy to show that the geodesics emanating from 𝑥′ are straight coordinate lines in RNC. The
proper volume of a small comoving region is then equal to 𝑑𝑉 = Δ−1 𝑑4𝑥̂, and this is smaller than
the flat-spacetime value of 𝑑4𝑥̂ if Δ > 1, that is, if the geodesics are focused by the spacetime
curvature.

8.2 Metric near 𝑥′

We now would like to invert Eq. (8.3) in order to express the line element 𝑑𝑠2 = 𝑔𝛼𝛽 𝑑𝑥
𝛼𝑑𝑥𝛽 in terms

of the displacements 𝑑𝑥̂a. We shall do this approximately, by working in a small neighbourhood of
𝑥′. We recall the expansion of Eq. (6.8),

𝜎𝛼′

𝛽 = −𝑔𝛽
′

𝛽

(︂
𝛿𝛼

′

𝛽′ +
1

6
𝑅𝛼′

𝛾′𝛽′𝛿′𝜎
𝛾′
𝜎𝛿′
)︂
+𝑂(𝜖3),

and in this we substitute the frame decomposition of the Riemann tensor, 𝑅𝛼′

𝛾′𝛽′𝛿′ = 𝑅a
cbd 𝑒

𝛼′

a 𝑒
c
𝛾′𝑒b𝛽′𝑒d𝛿′ ,

and the tetrad decomposition of the parallel propagator, 𝑔𝛽
′

𝛽 = 𝑒𝛽
′

b 𝑒
b
𝛽 , where 𝑒

b
𝛽(𝑥) is the dual tetrad
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at 𝑥 obtained by parallel transport of 𝑒b𝛽′(𝑥′). After some algebra we obtain

𝜎𝛼′

𝛽 = −𝑒𝛼′

a 𝑒
a
𝛽 − 1

6
𝑅a

cbd 𝑒
𝛼′

a 𝑒
b
𝛽 𝑥̂

c𝑥̂d +𝑂(𝜖3),

where we have used Eq. (8.1). Substituting this into Eq. (8.3) yields

𝑑𝑥̂a =

[︂
𝛿ab +

1

6
𝑅a

cbd𝑥̂
c𝑥̂d +𝑂(𝑥3)

]︂
𝑒b𝛽 𝑑𝑥

𝛽 , (8.6)

and this is easily inverted to give

𝑒a𝛼 𝑑𝑥
𝛼 =

[︂
𝛿ab −

1

6
𝑅a

cbd𝑥̂
c𝑥̂d +𝑂(𝑥3)

]︂
𝑑𝑥̂b. (8.7)

This is the desired approximate inversion of Eq. (8.3). It is useful to note that Eq. (8.7), when
specialized from the arbitrary coordinates 𝑥𝛼 to 𝑥̂a, gives us the components of the dual tetrad at
𝑥 in RNC. And since 𝑒𝛼

′

a = 𝛿𝛼
′

a in RNC, we immediately obtain the components of the parallel
propagator: 𝑔a

′

b = 𝛿ab − 1
6𝑅

a
cbd𝑥̂

c𝑥̂d +𝑂(𝑥3).
We are now in a position to calculate the metric in the new coordinates. We have 𝑑𝑠2 =

𝑔𝛼𝛽 𝑑𝑥
𝛼𝑑𝑥𝛽 = (𝜂ab𝑒

a
𝛼𝑒

b
𝛽)𝑑𝑥

𝛼𝑑𝑥𝛽 = 𝜂ab(𝑒
a
𝛼 𝑑𝑥

𝛼)(𝑒b𝛽 𝑑𝑥
𝛽), and in this we substitute Eq. (8.7). The

final result is 𝑑𝑠2 = 𝑔ab 𝑑𝑥̂
a𝑑𝑥̂b, with

𝑔ab = 𝜂ab −
1

3
𝑅acbd𝑥̂

c𝑥̂d +𝑂(𝑥3). (8.8)

The quantities 𝑅acbd appearing in Eq. (8.8) are the frame components of the Riemann tensor
evaluated at the base point 𝑥′,

𝑅acbd := 𝑅𝛼′𝛾′𝛽′𝛿′ 𝑒
𝛼′

a 𝑒
𝛾′

c 𝑒
𝛽′

b 𝑒
𝛿′

d , (8.9)

and these are independent of 𝑥̂a. They are also, by virtue of Eq. (8.4), the components of the
(base-point) Riemann tensor in RNC, because Eq. (8.9) can also be expressed as

𝑅acdb = 𝑅𝛼′𝛾′𝛽′𝛿′

[︂
𝜕𝑥𝛼

𝜕𝑥̂a

]︂[︂
𝜕𝑥𝛾

𝜕𝑥̂c

]︂[︂
𝜕𝑥𝛽

𝜕𝑥̂b

]︂[︂
𝜕𝑥𝛿

𝜕𝑥̂d

]︂
,

which is the standard transformation law for tensor components.
It is obvious from Eq. (8.8) that 𝑔ab(𝑥

′) = 𝜂ab and Γa
bc(𝑥

′) = 0, where Γa
bc = − 1

3 (𝑅
a
bcd +

𝑅a
cbd)𝑥̂

d + 𝑂(𝑥2) is the connection compatible with the metric 𝑔ab. The Riemann normal coordi-
nates therefore provide a constructive proof of the local flatness theorem.

9 Fermi normal coordinates

9.1 Fermi–Walker transport

Let 𝛾 be a timelike curve described by parametric relations 𝑧𝜇(𝜏) in which 𝜏 is proper time. Let
𝑢𝜇 = 𝑑𝑧𝜇/𝑑𝜏 be the curve’s normalized tangent vector, and let 𝑎𝜇 = 𝐷𝑢𝜇/𝑑𝜏 be its acceleration
vector.

A vector field 𝑣𝜇 is said to be Fermi–Walker transported on 𝛾 if it is a solution to the differential
equation

𝐷𝑣𝜇

𝑑𝜏
=
(︀
𝑣𝜈𝑎

𝜈
)︀
𝑢𝜇 −

(︀
𝑣𝜈𝑢

𝜈
)︀
𝑎𝜇. (9.1)
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Notice that this reduces to parallel transport when 𝑎𝜇 = 0 and 𝛾 is a geodesic.
The operation of Fermi–Walker (FW) transport satisfies two important properties. The first is

that 𝑢𝜇 is automatically FW transported along 𝛾; this follows at once from Eq. (9.1) and the fact
that 𝑢𝜇 is orthogonal to 𝑎𝜇. The second is that if the vectors 𝑣𝜇 and 𝑤𝜇 are both FW transported
along 𝛾, then their inner product 𝑣𝜇𝑤

𝜇 is constant on 𝛾: 𝐷(𝑣𝜇𝑤
𝜇)/𝑑𝜏 = 0; this also follows

immediately from Eq. (9.1).

9.2 Tetrad and dual tetrad on 𝛾

Let 𝑧 be an arbitrary reference point on 𝛾. At this point we erect an orthonormal tetrad (𝑢𝜇̄, 𝑒𝜇̄𝑎)
where, as a modification to former usage, the frame index 𝑎 runs from 1 to 3. We then propagate
each frame vector on 𝛾 by FW transport; this guarantees that the tetrad remains orthonormal
everywhere on 𝛾. At a generic point 𝑧(𝜏) we have

𝐷𝑒𝜇𝑎
𝑑𝜏

=
(︀
𝑎𝜈𝑒

𝜈
𝑎

)︀
𝑢𝜇, 𝑔𝜇𝜈𝑢

𝜇𝑢𝜈 = −1, 𝑔𝜇𝜈𝑒
𝜇
𝑎𝑢

𝜈 = 0, 𝑔𝜇𝜈𝑒
𝜇
𝑎𝑒

𝜈
𝑏 = 𝛿𝑎𝑏. (9.2)

From the tetrad on 𝛾 we define a dual tetrad (𝑒0𝜇, 𝑒
𝑎
𝜇) by the relations

𝑒0𝜇 = −𝑢𝜇, 𝑒𝑎𝜇 = 𝛿𝑎𝑏𝑔𝜇𝜈𝑒
𝜈
𝑏 ; (9.3)

this also is FW transported on 𝛾. The tetrad and its dual give rise to the completeness relations

𝑔𝜇𝜈 = −𝑢𝜇𝑢𝜈 + 𝛿𝑎𝑏𝑒𝜇𝑎𝑒
𝜈
𝑏 , 𝑔𝜇𝜈 = −𝑒0𝜇𝑒0𝜈 + 𝛿𝑎𝑏 𝑒

𝑎
𝜇𝑒

𝑏
𝜈 . (9.4)

9.3 Fermi normal coordinates

To construct the Fermi normal coordinates (FNC) of a point 𝑥 in the normal convex neighbourhood
of 𝛾 we locate the unique spacelike geodesic 𝛽 that passes through 𝑥 and intersects 𝛾 orthogonally.
We denote the intersection point by 𝑥̄ := 𝑧(𝑡), with 𝑡 denoting the value of the proper-time
parameter at this point. To tensors at 𝑥̄ we assign indices 𝛼̄, 𝛽, and so on. The FNC of 𝑥 are
defined by

𝑥̂0 = 𝑡, 𝑥̂𝑎 = −𝑒𝑎𝛼̄(𝑥̄)𝜎𝛼̄(𝑥, 𝑥̄), 𝜎𝛼̄(𝑥, 𝑥̄)𝑢
𝛼̄(𝑥̄) = 0; (9.5)

the last statement determines 𝑥̄ from the requirement that −𝜎𝛼̄, the vector tangent to 𝛽 at 𝑥̄, be
orthogonal to 𝑢𝛼̄, the vector tangent to 𝛾. From the definition of the FNC and the completeness
relations of Eq. (9.4) it follows that

𝑠2 := 𝛿𝑎𝑏𝑥̂
𝑎𝑥̂𝑏 = 2𝜎(𝑥, 𝑥̄), (9.6)

so that 𝑠 is the spatial distance between 𝑥̄ and 𝑥 along the geodesic 𝛽. This statement gives an
immediate meaning to 𝑥̂𝑎, the spatial Fermi normal coordinates, and the time coordinate 𝑥̂0 is
simply proper time at the intersection point 𝑥̄. The situation is illustrated in Figure 6.

Suppose that 𝑥 is moved to 𝑥 + 𝛿𝑥. This typically induces a change in the spacelike geodesic
𝛽, which moves to 𝛽 + 𝛿𝛽, and a corresponding change in the intersection point 𝑥̄, which moves
to 𝑥′′ := 𝑥̄ + 𝛿𝑥̄, with 𝛿𝑥𝛼̄ = 𝑢𝛼̄𝛿𝑡. The FNC of the new point are then 𝑥̂0(𝑥 + 𝛿𝑥) = 𝑡 + 𝛿𝑡
and 𝑥̂𝑎(𝑥 + 𝛿𝑥) = −𝑒𝑎𝛼′′(𝑥′′)𝜎𝛼′′

(𝑥 + 𝛿𝑥, 𝑥′′), with 𝑥′′ determined by 𝜎𝛼′′(𝑥 + 𝛿𝑥, 𝑥′′)𝑢𝛼
′′
(𝑥′′) = 0.

Expanding these relations to first order in the displacements, and simplifying using Eqs. (9.2),
yields

𝑑𝑡 = 𝜇𝜎𝛼̄𝛽𝑢
𝛼̄ 𝑑𝑥𝛽 , 𝑑𝑥̂𝑎 = −𝑒𝑎𝛼̄

(︀
𝜎𝛼̄

𝛽 + 𝜇𝜎𝛼̄
𝛽𝑢

𝛽𝜎𝛽𝛾𝑢
𝛾
)︀
𝑑𝑥𝛽 , (9.7)

where 𝜇 is determined by 𝜇−1 = −(𝜎𝛼̄𝛽𝑢
𝛼̄𝑢𝛽 + 𝜎𝛼̄𝑎

𝛼̄).
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a

xsz(t)

Figure 6: Fermi normal coordinates of a point 𝑥 relative to a world line 𝛾. The time coordinate 𝑡 selects
a particular point on the word line, and the disk represents the set of spacelike geodesics that intersect
𝛾 orthogonally at 𝑧(𝑡). The unit vector 𝜔𝑎 := 𝑥̂𝑎/𝑠 selects a particular geodesic among this set, and the
spatial distance 𝑠 selects a particular point on this geodesic.

9.4 Coordinate displacements near 𝛾

The relations of Eq. (9.7) can be expressed as expansions in powers of 𝑠, the spatial distance from
𝑥̄ to 𝑥. For this we use the expansions of Eqs. (6.7) and (6.8), in which we substitute 𝜎𝛼̄ = −𝑒𝛼̄𝑎 𝑥̂𝑎
and 𝑔𝛼̄𝛼 = 𝑢𝛼̄𝑒0𝛼 + 𝑒𝛼̄𝑎𝑒

𝑎
𝛼, where (𝑒0𝛼, 𝑒

𝑎
𝛼) is a dual tetrad at 𝑥 obtained by parallel transport of

(−𝑢𝛼̄, 𝑒𝑎𝛼̄) on the spacelike geodesic 𝛽. After some algebra we obtain

𝜇−1 = 1 + 𝑎𝑎𝑥̂
𝑎 +

1

3
𝑅0𝑐0𝑑𝑥̂

𝑐𝑥̂𝑑 +𝑂(𝑠3),

where 𝑎𝑎(𝑡) := 𝑎𝛼̄𝑒
𝛼̄
𝑎 are frame components of the acceleration vector, and𝑅0𝑐0𝑑(𝑡) := 𝑅𝛼̄𝛾𝛽𝛿𝑢

𝛼̄𝑒𝛾𝑐𝑢
𝛽𝑒𝛿𝑑

are frame components of the Riemann tensor evaluated on 𝛾. This last result is easily inverted to
give

𝜇 = 1− 𝑎𝑎𝑥̂
𝑎 +

(︀
𝑎𝑎𝑥̂

𝑎
)︀2 − 1

3
𝑅0𝑐0𝑑𝑥̂

𝑐𝑥̂𝑑 +𝑂(𝑠3).

Proceeding similarly for the other relations of Eq. (9.7), we obtain

𝑑𝑡 =

[︂
1−𝑎𝑎𝑥̂𝑎+

(︀
𝑎𝑎𝑥̂

𝑎
)︀2− 1

2
𝑅0𝑐0𝑑𝑥̂

𝑐𝑥̂𝑑+𝑂(𝑠3)

]︂(︀
𝑒0𝛽𝑑𝑥

𝛽
)︀
+

[︂
−1

6
𝑅0𝑐𝑏𝑑𝑥̂

𝑐𝑥̂𝑑+𝑂(𝑠3)

]︂(︀
𝑒𝑏𝛽𝑑𝑥

𝛽
)︀
(9.8)

and

𝑑𝑥̂𝑎 =

[︂
1

2
𝑅𝑎

𝑐0𝑑𝑥̂
𝑐𝑥̂𝑑 +𝑂(𝑠3)

]︂(︀
𝑒0𝛽𝑑𝑥

𝛽
)︀
+

[︂
𝛿𝑎𝑏 +

1

6
𝑅𝑎

𝑐𝑏𝑑𝑥̂
𝑐𝑥̂𝑑 +𝑂(𝑠3)

]︂(︀
𝑒𝑏𝛽𝑑𝑥

𝛽
)︀
, (9.9)

where 𝑅𝑎𝑐0𝑑(𝑡) := 𝑅𝛼̄𝛾𝛽𝛿𝑒
𝛼̄
𝑎𝑒

𝛾
𝑐𝑢

𝛽𝑒𝛿𝑑 and 𝑅𝑎𝑐𝑏𝑑(𝑡) := 𝑅𝛼̄𝛾𝛽𝛿𝑒
𝛼̄
𝑎𝑒

𝛾
𝑐 𝑒

𝛽
𝑏 𝑒

𝛿
𝑑 are additional frame compo-

nents of the Riemann tensor evaluated on 𝛾. (Note that frame indices are raised with 𝛿𝑎𝑏.)
As a special case of Eqs. (9.8) and (9.9) we find that

𝜕𝑡

𝜕𝑥𝛼

⃒⃒⃒⃒
𝛾

= −𝑢𝛼̄,
𝜕𝑥̂𝑎

𝜕𝑥𝛼

⃒⃒⃒⃒
𝛾

= 𝑒𝑎𝛼̄, (9.10)
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because in the limit 𝑥→ 𝑥̄, the dual tetrad (𝑒0𝛼, 𝑒
𝑎
𝛼) at 𝑥 coincides with the dual tetrad (−𝑢𝛼̄, 𝑒𝑎𝛼̄)

at 𝑥̄. It follows that on 𝛾, the transformation matrix between the original coordinates 𝑥𝛼 and the
FNC (𝑡, 𝑥̂𝑎) is formed by the Fermi–Walker transported tetrad:

𝜕𝑥𝛼

𝜕𝑡

⃒⃒⃒⃒
𝛾

= 𝑢𝛼̄,
𝜕𝑥𝛼

𝜕𝑥̂𝑎

⃒⃒⃒⃒
𝛾

= 𝑒𝛼̄𝑎 . (9.11)

This implies that the frame components of the acceleration vector, 𝑎𝑎(𝑡), are also the components
of the acceleration vector in FNC; orthogonality between 𝑢𝛼̄ and 𝑎𝛼̄ means that 𝑎0 = 0. Similarly,
𝑅0𝑐0𝑑(𝑡), 𝑅0𝑐𝑏𝑑(𝑡), and 𝑅𝑎𝑐𝑏𝑑(𝑡) are the components of the Riemann tensor (evaluated on 𝛾) in
Fermi normal coordinates.

9.5 Metric near 𝛾

Inversion of Eqs. (9.8) and (9.9) gives

𝑒0𝛼𝑑𝑥
𝛼 =

[︂
1 + 𝑎𝑎𝑥̂

𝑎 +
1

2
𝑅0𝑐0𝑑𝑥̂

𝑐𝑥̂𝑑 +𝑂(𝑠3)

]︂
𝑑𝑡+

[︂
1

6
𝑅0𝑐𝑏𝑑𝑥̂

𝑐𝑥̂𝑑 +𝑂(𝑠3)

]︂
𝑑𝑥̂𝑏 (9.12)

and

𝑒𝑎𝛼𝑑𝑥
𝛼 =

[︂
𝛿𝑎𝑏 −

1

6
𝑅𝑎

𝑐𝑏𝑑𝑥̂
𝑐𝑥̂𝑑 +𝑂(𝑠3)

]︂
𝑑𝑥̂𝑏 +

[︂
−1

2
𝑅𝑎

𝑐0𝑑𝑥̂
𝑐𝑥̂𝑑 +𝑂(𝑠3)

]︂
𝑑𝑡. (9.13)

These relations, when specialized to the FNC, give the components of the dual tetrad at 𝑥. They
can also be used to compute the metric at 𝑥, after invoking the completeness relations 𝑔𝛼𝛽 =
−𝑒0𝛼𝑒0𝛽 + 𝛿𝑎𝑏𝑒

𝑎
𝛼𝑒

𝑏
𝛽 . This gives

𝑔𝑡𝑡 = −
[︁
1 + 2𝑎𝑎𝑥̂

𝑎 +
(︀
𝑎𝑎𝑥̂

𝑎
)︀2

+𝑅0𝑐0𝑑𝑥̂
𝑐𝑥̂𝑑 +𝑂(𝑠3)

]︁
, (9.14)

𝑔𝑡𝑎 = −2

3
𝑅0𝑐𝑎𝑑𝑥̂

𝑐𝑥̂𝑑 +𝑂(𝑠3), (9.15)

𝑔𝑎𝑏 = 𝛿𝑎𝑏 −
1

3
𝑅𝑎𝑐𝑏𝑑𝑥̂

𝑐𝑥̂𝑑 +𝑂(𝑠3). (9.16)

This is the metric near 𝛾 in the Fermi normal coordinates. Recall that 𝑎𝑎(𝑡) are the components
of the acceleration vector of 𝛾 – the timelike curve described by 𝑥̂𝑎 = 0 – while 𝑅0𝑐0𝑑(𝑡), 𝑅0𝑐𝑏𝑑(𝑡),
and 𝑅𝑎𝑐𝑏𝑑(𝑡) are the components of the Riemann tensor evaluated on 𝛾.

Notice that on 𝛾, the metric of Eqs. (9.14) – (9.16) reduces to 𝑔𝑡𝑡 = −1 and 𝑔𝑎𝑏 = 𝛿𝑎𝑏. On the
other hand, the nonvanishing Christoffel symbols (on 𝛾) are Γ𝑡

𝑡𝑎 = Γ𝑎
𝑡𝑡 = 𝑎𝑎; these are zero (and

the FNC enforce local flatness on the entire curve) when 𝛾 is a geodesic.

9.6 Thorne–Hartle–Zhang coordinates

The form of the metric can be simplified when the Ricci tensor vanishes on the world line:

𝑅𝜇𝜈(𝑧) = 0. (9.17)

In such circumstances, a transformation from the Fermi normal coordinates (𝑡, 𝑥̂𝑎) to the Thorne–
Hartle–Zhang (THZ) coordinates (𝑡, 𝑦𝑎) brings the metric to the form

𝑔𝑡𝑡 = −
[︁
1 + 2𝑎𝑎𝑦

𝑎 +
(︀
𝑎𝑎𝑦

𝑎
)︀2

+𝑅0𝑐0𝑑𝑦
𝑐𝑦𝑑 +𝑂(𝑠3)

]︁
, (9.18)

𝑔𝑡𝑎 = −2

3
𝑅0𝑐𝑎𝑑𝑦

𝑐𝑦𝑑 +𝑂(𝑠3), (9.19)

𝑔𝑎𝑏 = 𝛿𝑎𝑏
(︀
1−𝑅0𝑐0𝑑𝑦

𝑐𝑦𝑑
)︀
+𝑂(𝑠3). (9.20)
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We see that the transformation leaves 𝑔𝑡𝑡 and 𝑔𝑡𝑎 unchanged, but that it diagonalizes 𝑔𝑎𝑏. This
metric was first displayed in Ref. [174] and the coordinate transformation was later produced by
Zhang [187].

The key to the simplification comes from Eq. (9.17), which dramatically reduces the number of
independent components of the Riemann tensor. In particular, Eq. (9.17) implies that the frame
components 𝑅𝑎𝑐𝑏𝑑 of the Riemann tensor are completely determined by ℰ𝑎𝑏 := 𝑅0𝑎0𝑏, which in this
special case is a symmetric-tracefree tensor. To prove this we invoke the completeness relations of
Eq. (9.4) and take frame components of Eq. (9.17). This produces the three independent equations

𝛿𝑐𝑑𝑅𝑎𝑐𝑏𝑑 = ℰ𝑎𝑏, 𝛿𝑐𝑑𝑅0𝑐𝑎𝑑 = 0, 𝛿𝑐𝑑ℰ𝑐𝑑 = 0,

the last of which stating that ℰ𝑎𝑏 has a vanishing trace. Taking the trace of the first equation gives
𝛿𝑎𝑏𝛿𝑐𝑑𝑅𝑎𝑐𝑏𝑑 = 0, and this implies that 𝑅𝑎𝑐𝑏𝑑 has five independent components. Since this is also the
number of independent components of ℰ𝑎𝑏, we see that the first equation can be inverted – 𝑅𝑎𝑐𝑏𝑑 can
be expressed in terms of ℰ𝑎𝑏. A complete listing of the relevant relations is𝑅1212 = ℰ11+ℰ22 = −ℰ33,
𝑅1213 = ℰ23, 𝑅1223 = −ℰ13, 𝑅1313 = ℰ11+ℰ33 = −ℰ22, 𝑅1323 = ℰ12, and 𝑅2323 = ℰ22+ℰ33 = −ℰ11.
These are summarized by

𝑅𝑎𝑐𝑏𝑑 = 𝛿𝑎𝑏ℰ𝑐𝑑 + 𝛿𝑐𝑑ℰ𝑎𝑏 − 𝛿𝑎𝑑ℰ𝑏𝑐 − 𝛿𝑏𝑐ℰ𝑎𝑑, (9.21)

and ℰ𝑎𝑏 := 𝑅0𝑎0𝑏 satisfies 𝛿𝑎𝑏ℰ𝑎𝑏 = 0.
We may also note that the relation 𝛿𝑐𝑑𝑅0𝑐𝑎𝑑 = 0, together with the usual symmetries of

the Riemann tensor, imply that 𝑅0𝑐𝑎𝑑 too possesses five independent components. These may
thus be related to another symmetric-tracefree tensor ℬ𝑎𝑏. We take the independent components
to be 𝑅0112 := −ℬ13, 𝑅0113 := ℬ12, 𝑅0123 := −ℬ11, 𝑅0212 := −ℬ23, and 𝑅0213 := ℬ22, and
it is easy to see that all other components can be expressed in terms of these. For example,
𝑅0223 = −𝑅0113 = −ℬ12, 𝑅0312 = −𝑅0123 + 𝑅0213 = ℬ11 + ℬ22 = −ℬ33, 𝑅0313 = −𝑅0212 = ℬ23,
and 𝑅0323 = 𝑅0112 = −ℬ13. These relations are summarized by

𝑅0𝑎𝑏𝑐 = −𝜀𝑏𝑐𝑑ℬ𝑑
𝑎, (9.22)

where 𝜀𝑎𝑏𝑐 is the three-dimensional permutation symbol. The inverse relation is ℬ𝑎
𝑏 = − 1

2𝜀
𝑎𝑐𝑑𝑅0𝑏𝑐𝑑.

Substitution of Eq. (9.21) into Eq. (9.16) gives

𝑔𝑎𝑏 = 𝛿𝑎𝑏

(︁
1− 1

3
ℰ𝑐𝑑𝑥̂𝑐𝑥̂𝑑

)︁
− 1

3

(︀
𝑥̂𝑐𝑥̂

𝑐
)︀
ℰ𝑎𝑏 +

1

3
𝑥̂𝑎ℰ𝑏𝑐𝑥̂𝑐 +

1

3
𝑥̂𝑏ℰ𝑎𝑐𝑥̂𝑐 +𝑂(𝑠3),

and we have not yet achieved the simple form of Eq. (9.20). The missing step is the transformation
from the FNC 𝑥̂𝑎 to the THZ coordinates 𝑦𝑎. This is given by

𝑦𝑎 = 𝑥̂𝑎 + 𝜉𝑎, 𝜉𝑎 = −1

6

(︀
𝑥̂𝑐𝑥̂

𝑐
)︀
ℰ𝑎𝑏𝑥̂𝑏 +

1

3
𝑥̂𝑎ℰ𝑏𝑐𝑥̂𝑏𝑥̂𝑐 +𝑂(𝑠4). (9.23)

It is easy to see that this transformation does not affect 𝑔𝑡𝑡 nor 𝑔𝑡𝑎 at orders 𝑠 and 𝑠2. The remaining
components of the metric, however, transform according to 𝑔𝑎𝑏(THZ) = 𝑔𝑎𝑏(FNC) − 𝜉𝑎;𝑏 − 𝜉𝑏;𝑎,
where

𝜉𝑎;𝑏 =
1

3
𝛿𝑎𝑏ℰ𝑐𝑑𝑥̂𝑐𝑥̂𝑑 −

1

6

(︀
𝑥̂𝑐𝑥̂

𝑐
)︀
ℰ𝑎𝑏 −

1

3
ℰ𝑎𝑐𝑥̂𝑐𝑥̂𝑏 +

2

3
𝑥̂𝑎ℰ𝑏𝑐𝑥̂𝑐 +𝑂(𝑠3).

It follows that 𝑔THZ
𝑎𝑏 = 𝛿𝑎𝑏(1−ℰ𝑐𝑑𝑦𝑐𝑦𝑑)+𝑂(𝑦3), which is just the same statement as in Eq. (9.20).

Alternative expressions for the components of the THZ metric are

𝑔𝑡𝑡 = −
[︁
1 + 2𝑎𝑎𝑦

𝑎 +
(︀
𝑎𝑎𝑦

𝑎
)︀2

+ ℰ𝑎𝑏𝑦𝑎𝑦𝑏 +𝑂(𝑠3)
]︁
, (9.24)

𝑔𝑡𝑎 = −2

3
𝜀𝑎𝑏𝑐ℬ𝑏

𝑑𝑦
𝑐𝑦𝑑 +𝑂(𝑠3), (9.25)

𝑔𝑎𝑏 = 𝛿𝑎𝑏
(︀
1− ℰ𝑐𝑑𝑦𝑐𝑦𝑑

)︀
+𝑂(𝑠3). (9.26)
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10 Retarded coordinates

10.1 Geometrical elements

We introduce the same geometrical elements as in Section 9: we have a timelike curve 𝛾 described
by relations 𝑧𝜇(𝜏), its normalized tangent vector 𝑢𝜇 = 𝑑𝑧𝜇/𝑑𝜏 , and its acceleration vector 𝑎𝜇 =
𝐷𝑢𝜇/𝑑𝜏 . We also have an orthonormal triad 𝑒𝜇𝑎 that is FW transported on the world line according
to

𝐷𝑒𝜇𝑎
𝑑𝜏

= 𝑎𝑎𝑢
𝜇, (10.1)

where 𝑎𝑎(𝜏) = 𝑎𝜇𝑒
𝜇
𝑎 are the frame components of the acceleration vector. Finally, we have a

dual tetrad (𝑒0𝜇, 𝑒
𝑎
𝜇), with 𝑒

0
𝜇 = −𝑢𝜇 and 𝑒𝑎𝜇 = 𝛿𝑎𝑏𝑔𝜇𝜈𝑒

𝜈
𝑏 . The tetrad and its dual give rise to the

completeness relations

𝑔𝜇𝜈 = −𝑢𝜇𝑢𝜈 + 𝛿𝑎𝑏𝑒𝜇𝑎𝑒
𝜈
𝑏 , 𝑔𝜇𝜈 = −𝑒0𝜇𝑒0𝜈 + 𝛿𝑎𝑏 𝑒

𝑎
𝜇𝑒

𝑏
𝜈 , (10.2)

which are the same as in Eq. (9.4).
The Fermi normal coordinates of Section 9 were constructed on the basis of a spacelike geodesic

connecting a field point 𝑥 to the world line. The retarded coordinates are based instead on a null
geodesic going from the world line to the field point. We thus let 𝑥 be within the normal convex
neighbourhood of 𝛾, 𝛽 be the unique future-directed null geodesic that goes from the world line to
𝑥, and 𝑥′ := 𝑧(𝑢) be the point at which 𝛽 intersects the world line, with 𝑢 denoting the value of
the proper-time parameter at this point.

From the tetrad at 𝑥′ we obtain another tetrad (𝑒𝛼0 , 𝑒
𝛼
𝑎 ) at 𝑥 by parallel transport on 𝛽. By

raising the frame index and lowering the vectorial index we also obtain a dual tetrad at 𝑥: 𝑒0𝛼 =

−𝑔𝛼𝛽𝑒𝛽0 and 𝑒𝑎𝛼 = 𝛿𝑎𝑏𝑔𝛼𝛽𝑒
𝛽
𝑏 . The metric at 𝑥 can be then be expressed as

𝑔𝛼𝛽 = −𝑒0𝛼𝑒0𝛽 + 𝛿𝑎𝑏𝑒
𝑎
𝛼𝑒

𝑏
𝛽 , (10.3)

and the parallel propagator from 𝑥′ to 𝑥 is given by

𝑔𝛼𝛼′(𝑥, 𝑥′) = −𝑒𝛼0𝑢𝛼′ + 𝑒𝛼𝑎𝑒
𝑎
𝛼′ , 𝑔𝛼

′

𝛼(𝑥
′, 𝑥) = 𝑢𝛼

′
𝑒0𝛼 + 𝑒𝛼

′

𝑎 𝑒
𝑎
𝛼. (10.4)

10.2 Definition of the retarded coordinates

The quasi-Cartesian version of the retarded coordinates are defined by

𝑥̂0 = 𝑢, 𝑥̂𝑎 = −𝑒𝑎𝛼′(𝑥′)𝜎𝛼′
(𝑥, 𝑥′), 𝜎(𝑥, 𝑥′) = 0; (10.5)

the last statement indicates that 𝑥′ and 𝑥 are linked by a null geodesic. From the fact that 𝜎𝛼′
is

a null vector we obtain
𝑟 := (𝛿𝑎𝑏𝑥̂

𝑎𝑥̂𝑏)1/2 = 𝑢𝛼′𝜎𝛼′
, (10.6)

and 𝑟 is a positive quantity by virtue of the fact that 𝛽 is a future-directed null geodesic – this
makes 𝜎𝛼′

past-directed. In flat spacetime, 𝜎𝛼′
= −(𝑥 − 𝑥′)𝛼, and in a Lorentz frame that is

momentarily comoving with the world line, 𝑟 = 𝑡 − 𝑡′ > 0; with the speed of light set equal
to unity, 𝑟 is also the spatial distance between 𝑥′ and 𝑥 as measured in this frame. In curved
spacetime, the quantity 𝑟 = 𝑢𝛼′𝜎𝛼′

can still be called the retarded distance between the point 𝑥
and the world line. Another consequence of Eq. (10.5) is that

𝜎𝛼′
= −𝑟

(︀
𝑢𝛼

′
+Ω𝑎𝑒𝛼

′

𝑎

)︀
, (10.7)

where Ω𝑎 := 𝑥̂𝑎/𝑟 is a unit spatial vector that satisfies 𝛿𝑎𝑏Ω
𝑎Ω𝑏 = 1.
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A straightforward calculation reveals that under a displacement of the point 𝑥, the retarded
coordinates change according to

𝑑𝑢 = −𝑘𝛼 𝑑𝑥𝛼, 𝑑𝑥̂𝑎 = −
(︀
𝑟𝑎𝑎 − 𝜔𝑎

𝑏𝑥̂
𝑏 + 𝑒𝑎𝛼′𝜎𝛼′

𝛽′𝑢𝛽
′)︀
𝑑𝑢− 𝑒𝑎𝛼′𝜎𝛼′

𝛽 𝑑𝑥
𝛽 , (10.8)

where 𝑘𝛼 = 𝜎𝛼/𝑟 is a future-directed null vector at 𝑥 that is tangent to the geodesic 𝛽. To obtain
these results we must keep in mind that a displacement of 𝑥 typically induces a simultaneous
displacement of 𝑥′ because the new points 𝑥+𝛿𝑥 and 𝑥′+𝛿𝑥′ must also be linked by a null geodesic.
We therefore have 0 = 𝜎(𝑥+ 𝛿𝑥, 𝑥′ + 𝛿𝑥′) = 𝜎𝛼 𝛿𝑥

𝛼 + 𝜎𝛼′ 𝛿𝑥𝛼
′
, and the first relation of Eq. (10.8)

follows from the fact that a displacement along the world line is described by 𝛿𝑥𝛼
′
= 𝑢𝛼

′
𝛿𝑢.

10.3 The scalar field 𝑟(𝑥) and the vector field 𝑘𝛼(𝑥)

If we keep 𝑥′ linked to 𝑥 by the relation 𝜎(𝑥, 𝑥′) = 0, then the quantity

𝑟(𝑥) = 𝜎𝛼′(𝑥, 𝑥′)𝑢𝛼
′
(𝑥′) (10.9)

can be viewed as an ordinary scalar field defined in a neighbourhood of 𝛾. We can compute
the gradient of 𝑟 by finding how 𝑟 changes under a displacement of 𝑥 (which again induces a
displacement of 𝑥′). The result is

𝜕𝛽𝑟 = −
(︀
𝜎𝛼′𝑎𝛼

′
+ 𝜎𝛼′𝛽′𝑢𝛼

′
𝑢𝛽

′)︀
𝑘𝛽 + 𝜎𝛼′𝛽𝑢

𝛼′
. (10.10)

Similarly, we can view

𝑘𝛼(𝑥) =
𝜎𝛼(𝑥, 𝑥′)

𝑟(𝑥)
(10.11)

as an ordinary vector field, which is tangent to the congruence of null geodesics that emanate from
𝑥′. It is easy to check that this vector satisfies the identities

𝜎𝛼𝛽𝑘
𝛽 = 𝑘𝛼, 𝜎𝛼′𝛽𝑘

𝛽 =
𝜎𝛼′

𝑟
, (10.12)

from which we also obtain 𝜎𝛼′𝛽𝑢
𝛼′
𝑘𝛽 = 1. From this last result and Eq. (10.10) we deduce the

important relation
𝑘𝛼𝜕𝛼𝑟 = 1. (10.13)

In addition, combining the general statement 𝜎𝛼 = −𝑔𝛼𝛼′𝜎𝛼′
– cf. Eq. (5.12) – with Eq. (10.7)

gives
𝑘𝛼 = 𝑔𝛼𝛼′

(︀
𝑢𝛼

′
+Ω𝑎𝑒𝛼

′

𝑎

)︀
; (10.14)

the vector at 𝑥 is therefore obtained by parallel transport of 𝑢𝛼
′
+ Ω𝑎𝑒𝛼

′

𝑎 on 𝛽. From this and
Eq. (10.4) we get the alternative expression

𝑘𝛼 = 𝑒𝛼0 +Ω𝑎𝑒𝛼𝑎 , (10.15)

which confirms that 𝑘𝛼 is a future-directed null vector field (recall that Ω𝑎 = 𝑥̂𝑎/𝑟 is a unit vector).
The covariant derivative of 𝑘𝛼 can be computed by finding how the vector changes under a

displacement of 𝑥. (It is in fact easier to calculate first how 𝑟𝑘𝛼 changes, and then substitute our
previous expression for 𝜕𝛽𝑟.) The result is

𝑟𝑘𝛼;𝛽 = 𝜎𝛼𝛽 − 𝑘𝛼𝜎𝛽𝛾′𝑢𝛾
′ − 𝑘𝛽𝜎𝛼𝛾′𝑢𝛾

′
+
(︀
𝜎𝛼′𝑎𝛼

′
+ 𝜎𝛼′𝛽′𝑢𝛼

′
𝑢𝛽

′)︀
𝑘𝛼𝑘𝛽 . (10.16)

From this we infer that 𝑘𝛼 satisfies the geodesic equation in affine-parameter form, 𝑘𝛼;𝛽𝑘
𝛽 = 0,

and Eq. (10.13) informs us that the affine parameter is in fact 𝑟. A displacement along a member
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of the congruence is therefore given by 𝑑𝑥𝛼 = 𝑘𝛼 𝑑𝑟. Specializing to retarded coordinates, and
using Eqs. (10.8) and (10.12), we find that this statement becomes 𝑑𝑢 = 0 and 𝑑𝑥̂𝑎 = (𝑥̂𝑎/𝑟) 𝑑𝑟,
which integrate to 𝑢 = constant and 𝑥̂𝑎 = 𝑟Ω𝑎, respectively, with Ω𝑎 still denoting a constant unit
vector. We have found that the congruence of null geodesics emanating from 𝑥′ is described by

𝑢 = constant, 𝑥̂𝑎 = 𝑟Ω𝑎(𝜃𝐴) (10.17)

in the retarded coordinates. Here, the two angles 𝜃𝐴 (𝐴 = 1, 2) serve to parameterize the unit
vector Ω𝑎, which is independent of 𝑟.

Eq. (10.16) also implies that the expansion of the congruence is given by

𝜃 = 𝑘𝛼;𝛼 =
𝜎𝛼

𝛼 − 2

𝑟
. (10.18)

Using Eq. (6.10), we find that this becomes 𝑟𝜃 = 2− 1
3𝑅𝛼′𝛽′𝜎𝛼′

𝜎𝛽′
+𝑂(𝑟3), or

𝑟𝜃 = 2− 1

3
𝑟2
(︀
𝑅00 + 2𝑅0𝑎Ω

𝑎 +𝑅𝑎𝑏Ω
𝑎Ω𝑏

)︀
+𝑂(𝑟3) (10.19)

after using Eq. (10.7). Here, 𝑅00 = 𝑅𝛼′𝛽′𝑢𝛼
′
𝑢𝛽

′
, 𝑅0𝑎 = 𝑅𝛼′𝛽′𝑢𝛼

′
𝑒𝛽

′

𝑎 , and 𝑅𝑎𝑏 = 𝑅𝛼′𝛽′𝑒𝛼
′

𝑎 𝑒
𝛽′

𝑏 are
the frame components of the Ricci tensor evaluated at 𝑥′. This result confirms that the congruence
is singular at 𝑟 = 0, because 𝜃 diverges as 2/𝑟 in this limit; the caustic coincides with the point 𝑥′.

Finally, we infer from Eq. (10.16) that 𝑘𝛼 is hypersurface orthogonal. This, together with the
property that 𝑘𝛼 satisfies the geodesic equation in affine-parameter form, implies that there exists
a scalar field 𝑢(𝑥) such that

𝑘𝛼 = −𝜕𝛼𝑢. (10.20)

This scalar field was already identified in Eq. (10.8): it is numerically equal to the proper-time
parameter of the world line at 𝑥′. We conclude that the geodesics to which 𝑘𝛼 is tangent are
the generators of the null cone 𝑢 = constant. As Eq. (10.17) indicates, a specific generator is
selected by choosing a direction Ω𝑎 (which can be parameterized by two angles 𝜃𝐴), and 𝑟 is an
affine parameter on each generator. The geometrical meaning of the retarded coordinates is now
completely clear; it is illustrated in Figure 7.

10.4 Frame components of tensor fields on the world line

The metric at 𝑥 in the retarded coordinates will be expressed in terms of frame components of
vectors and tensors evaluated on the world line 𝛾. For example, if 𝑎𝛼

′
is the acceleration vector at

𝑥′, then as we have seen,
𝑎𝑎(𝑢) = 𝑎𝛼′ 𝑒𝛼

′

𝑎 (10.21)

are the frame components of the acceleration at proper time 𝑢.
Similarly,

𝑅𝑎0𝑏0(𝑢) = 𝑅𝛼′𝛾′𝛽′𝛿′ 𝑒
𝛼′

𝑎 𝑢
𝛾′
𝑒𝛽

′

𝑏 𝑢
𝛿′ ,

𝑅𝑎0𝑏𝑑(𝑢) = 𝑅𝛼′𝛾′𝛽′𝛿′ 𝑒
𝛼′

𝑎 𝑢
𝛾′
𝑒𝛽

′

𝑏 𝑒
𝛿′

𝑑 ,

𝑅𝑎𝑐𝑏𝑑(𝑢) = 𝑅𝛼′𝛾′𝛽′𝛿′ 𝑒
𝛼′

𝑎 𝑒
𝛾′

𝑐 𝑒
𝛽′

𝑏 𝑒
𝛿′

𝑑 (10.22)

are the frame components of the Riemann tensor evaluated on 𝛾. From these we form the useful
combinations

𝑆𝑎𝑏(𝑢, 𝜃
𝐴) = 𝑅𝑎0𝑏0 +𝑅𝑎0𝑏𝑐Ω

𝑐 +𝑅𝑏0𝑎𝑐Ω
𝑐 +𝑅𝑎𝑐𝑏𝑑Ω

𝑐Ω𝑑 = 𝑆𝑏𝑎, (10.23)

𝑆𝑎(𝑢, 𝜃
𝐴) = 𝑆𝑎𝑏Ω

𝑏 = 𝑅𝑎0𝑏0Ω
𝑏 −𝑅𝑎𝑏0𝑐Ω

𝑏Ω𝑐, (10.24)

𝑆(𝑢, 𝜃𝐴) = 𝑆𝑎Ω
𝑎 = 𝑅𝑎0𝑏0Ω

𝑎Ω𝑏, (10.25)
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a r

x

z(u)

Figure 7: Retarded coordinates of a point 𝑥 relative to a world line 𝛾. The retarded time 𝑢 selects a
particular null cone, the unit vector Ω𝑎 := 𝑥̂𝑎/𝑟 selects a particular generator of this null cone, and the
retarded distance 𝑟 selects a particular point on this generator. This figure is identical to Figure 4.

in which the quantities Ω𝑎 := 𝑥̂𝑎/𝑟 depend on the angles 𝜃𝐴 only – they are independent of 𝑢 and
𝑟.

We have previously introduced the frame components of the Ricci tensor in Eq. (10.19). The
identity

𝑅00 + 2𝑅0𝑎Ω
𝑎 +𝑅𝑎𝑏Ω

𝑎Ω𝑏 = 𝛿𝑎𝑏𝑆𝑎𝑏 − 𝑆 (10.26)

follows easily from Eqs. (10.23) – (10.25) and the definition of the Ricci tensor.

In Section 9 we saw that the frame components of a given tensor were also the components of
this tensor (evaluated on the world line) in the Fermi normal coordinates. We should not expect
this property to be true also in the case of the retarded coordinates: the frame components of a
tensor are not to be identified with the components of this tensor in the retarded coordinates. The
reason is that the retarded coordinates are in fact singular on the world line. As we shall see,
they give rise to a metric that possesses a directional ambiguity at 𝑟 = 0. (This can easily be seen

in Minkowski spacetime by performing the coordinate transformation 𝑢 = 𝑡 −
√︀
𝑥2 + 𝑦2 + 𝑧2.)

Components of tensors are therefore not defined on the world line, although they are perfectly well
defined for 𝑟 ̸= 0. Frame components, on the other hand, are well defined both off and on the
world line, and working with them will eliminate any difficulty associated with the singular nature
of the retarded coordinates.

10.5 Coordinate displacements near 𝛾

The changes in the quasi-Cartesian retarded coordinates under a displacement of 𝑥 are given
by Eq. (10.8). In these we substitute the standard expansions for 𝜎𝛼′𝛽′ and 𝜎𝛼′𝛽 , as given by
Eqs. (6.7) and (6.8), as well as Eqs. (10.7) and (10.14). After a straightforward (but fairly lengthy)
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calculation, we obtain the following expressions for the coordinate displacements:

𝑑𝑢 =
(︀
𝑒0𝛼 𝑑𝑥

𝛼
)︀
− Ω𝑎

(︀
𝑒𝑏𝛼 𝑑𝑥

𝛼
)︀
, (10.27)

𝑑𝑥̂𝑎 = −
[︁
𝑟𝑎𝑎 +

1

2
𝑟2𝑆𝑎 +𝑂(𝑟3)

]︁(︀
𝑒0𝛼 𝑑𝑥

𝛼
)︀

+
[︁
𝛿𝑎𝑏 +

(︁
𝑟𝑎𝑎 +

1

3
𝑟2𝑆𝑎

)︁
Ω𝑏 +

1

6
𝑟2𝑆𝑎

𝑏 +𝑂(𝑟3)
]︁(︀
𝑒𝑏𝛼 𝑑𝑥

𝛼
)︀
. (10.28)

Notice that the result for 𝑑𝑢 is exact, but that 𝑑𝑥̂𝑎 is expressed as an expansion in powers of 𝑟.
These results can also be expressed in the form of gradients of the retarded coordinates:

𝜕𝛼𝑢 = 𝑒0𝛼 − Ω𝑎𝑒
𝑎
𝛼, (10.29)

𝜕𝛼𝑥̂
𝑎 = −

[︁
𝑟𝑎𝑎 +

1

2
𝑟2𝑆𝑎 +𝑂(𝑟3)

]︁
𝑒0𝛼

+
[︁
𝛿𝑎𝑏 +

(︁
𝑟𝑎𝑎 +

1

3
𝑟2𝑆𝑎

)︁
Ω𝑏 +

1

6
𝑟2𝑆𝑎

𝑏 +𝑂(𝑟3)
]︁
𝑒𝑏𝛼. (10.30)

Notice that Eq. (10.29) follows immediately from Eqs. (10.15) and (10.20). From Eq. (10.30) and
the identity 𝜕𝛼𝑟 = Ω𝑎𝜕𝛼𝑥̂

𝑎 we also infer

𝜕𝛼𝑟 = −
[︁
𝑟𝑎𝑎Ω

𝑎 +
1

2
𝑟2𝑆 +𝑂(𝑟3)

]︁
𝑒0𝛼 +

[︁(︁
1 + 𝑟𝑎𝑏Ω

𝑏 +
1

3
𝑟2𝑆

)︁
Ω𝑎 +

1

6
𝑟2𝑆𝑎 +𝑂(𝑟3)

]︁
𝑒𝑎𝛼, (10.31)

where we have used the facts that 𝑆𝑎 = 𝑆𝑎𝑏Ω
𝑏 and 𝑆 = 𝑆𝑎Ω

𝑎; these last results were derived in
Eqs. (10.24) and (10.25). It may be checked that Eq. (10.31) agrees with Eq. (10.10).

10.6 Metric near 𝛾

It is straightforward (but fairly tedious) to invert the relations of Eqs. (10.27) and (10.28) and
solve for 𝑒0𝛼 𝑑𝑥

𝛼 and 𝑒𝑎𝛼 𝑑𝑥
𝛼. The results are

𝑒0𝛼 𝑑𝑥
𝛼 =

[︁
1 + 𝑟𝑎𝑎Ω

𝑎 +
1

2
𝑟2𝑆 +𝑂(𝑟3)

]︁
𝑑𝑢+

[︁(︁
1 +

1

6
𝑟2𝑆

)︁
Ω𝑎 −

1

6
𝑟2𝑆𝑎 +𝑂(𝑟3)

]︁
𝑑𝑥̂𝑎, (10.32)

𝑒𝑎𝛼 𝑑𝑥
𝛼 =

[︁
𝑟𝑎𝑎 +

1

2
𝑟2𝑆𝑎 +𝑂(𝑟3)

]︁
𝑑𝑢+

[︁
𝛿𝑎𝑏 −

1

6
𝑟2𝑆𝑎

𝑏 +
1

6
𝑟2𝑆𝑎Ω𝑏 +𝑂(𝑟3)

]︁
𝑑𝑥̂𝑏. (10.33)

These relations, when specialized to the retarded coordinates, give us the components of the dual
tetrad (𝑒0𝛼, 𝑒

𝑎
𝛼) at 𝑥. The metric is then computed by using the completeness relations of Eq. (10.3).

We find

𝑔𝑢𝑢 = −
(︀
1 + 𝑟𝑎𝑎Ω

𝑎
)︀2

+ 𝑟2𝑎2 − 𝑟2𝑆 +𝑂(𝑟3), (10.34)

𝑔𝑢𝑎 = −
(︁
1 + 𝑟𝑎𝑏Ω

𝑏 +
2

3
𝑟2𝑆

)︁
Ω𝑎 + 𝑟𝑎𝑎 +

2

3
𝑟2𝑆𝑎 +𝑂(𝑟3), (10.35)

𝑔𝑎𝑏 = 𝛿𝑎𝑏 −
(︁
1 +

1

3
𝑟2𝑆

)︁
Ω𝑎Ω𝑏 −

1

3
𝑟2𝑆𝑎𝑏 +

1

3
𝑟2
(︀
𝑆𝑎Ω𝑏 +Ω𝑎𝑆𝑏

)︀
+𝑂(𝑟3), (10.36)

where 𝑎2 := 𝛿𝑎𝑏𝑎
𝑎𝑎𝑏. We see (as was pointed out in Section 10.4) that the metric possesses a

directional ambiguity on the world line: the metric at 𝑟 = 0 still depends on the vector Ω𝑎 = 𝑥̂𝑎/𝑟
that specifies the direction to the point 𝑥. The retarded coordinates are therefore singular on the
world line, and tensor components cannot be defined on 𝛾.

By setting 𝑆𝑎𝑏 = 𝑆𝑎 = 𝑆 = 0 in Eqs. (10.34) – (10.36) we obtain the metric of flat spacetime in
the retarded coordinates. This we express as

𝜂𝑢𝑢 = −
(︀
1 + 𝑟𝑎𝑎Ω

𝑎
)︀2

+ 𝑟2𝑎2,

𝜂𝑢𝑎 = −
(︀
1 + 𝑟𝑎𝑏Ω

𝑏
)︀
Ω𝑎 + 𝑟𝑎𝑎, (10.37)

𝜂𝑎𝑏 = 𝛿𝑎𝑏 − Ω𝑎Ω𝑏.
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In spite of the directional ambiguity, the metric of flat spacetime has a unit determinant everywhere,
and it is easily inverted:

𝜂𝑢𝑢 = 0, 𝜂𝑢𝑎 = −Ω𝑎, 𝜂𝑎𝑏 = 𝛿𝑎𝑏 + 𝑟
(︀
𝑎𝑎Ω𝑏 +Ω𝑎𝑎𝑏

)︀
. (10.38)

The inverse metric also is ambiguous on the world line.
To invert the curved-spacetime metric of Eqs. (10.34) – (10.36) we express it as 𝑔𝛼𝛽 = 𝜂𝛼𝛽 +

ℎ𝛼𝛽 + 𝑂(𝑟3) and treat ℎ𝛼𝛽 = 𝑂(𝑟2) as a perturbation. The inverse metric is then 𝑔𝛼𝛽 = 𝜂𝛼𝛽 −
𝜂𝛼𝛾𝜂𝛽𝛿ℎ𝛾𝛿 +𝑂(𝑟3), or

𝑔𝑢𝑢 = 0, (10.39)

𝑔𝑢𝑎 = −Ω𝑎, (10.40)

𝑔𝑎𝑏 = 𝛿𝑎𝑏 + 𝑟
(︀
𝑎𝑎Ω𝑏 +Ω𝑎𝑎𝑏

)︀
+

1

3
𝑟2𝑆𝑎𝑏 +

1

3
𝑟2
(︀
𝑆𝑎Ω𝑏 +Ω𝑎𝑆𝑏

)︀
+𝑂(𝑟3). (10.41)

The results for 𝑔𝑢𝑢 and 𝑔𝑢𝑎 are exact, and they follow from the general relations 𝑔𝛼𝛽(𝜕𝛼𝑢)(𝜕𝛽𝑢) = 0
and 𝑔𝛼𝛽(𝜕𝛼𝑢)(𝜕𝛽𝑟) = −1 that are derived from Eqs. (10.13) and (10.20).

The metric determinant is computed from
√−𝑔 = 1 + 1

2𝜂
𝛼𝛽ℎ𝛼𝛽 +𝑂(𝑟3), which gives

√−𝑔 = 1− 1

6
𝑟2
(︀
𝛿𝑎𝑏𝑆𝑎𝑏 − 𝑆

)︀
+𝑂(𝑟3) = 1− 1

6
𝑟2
(︀
𝑅00 + 2𝑅0𝑎Ω

𝑎 +𝑅𝑎𝑏Ω
𝑎Ω𝑏

)︀
+𝑂(𝑟3), (10.42)

where we have substituted the identity of Eq. (10.26). Comparison with Eq. (10.19) gives us the
interesting relation

√−𝑔 = 1
2𝑟𝜃 + 𝑂(𝑟3), where 𝜃 is the expansion of the generators of the null

cones 𝑢 = constant.

10.7 Transformation to angular coordinates

Because the vector Ω𝑎 = 𝑥̂𝑎/𝑟 satisfies 𝛿𝑎𝑏Ω
𝑎Ω𝑏 = 1, it can be parameterized by two angles 𝜃𝐴. A

canonical choice for the parameterization is Ω𝑎 = (sin 𝜃 cos𝜑, sin 𝜃 sin𝜑, cos 𝜃). It is then convenient
to perform a coordinate transformation from 𝑥̂𝑎 to (𝑟, 𝜃𝐴), using the relations 𝑥̂𝑎 = 𝑟Ω𝑎(𝜃𝐴).
(Recall from Section 10.3 that the angles 𝜃𝐴 are constant on the generators of the null cones 𝑢 =
constant, and that 𝑟 is an affine parameter on these generators. The relations 𝑥̂𝑎 = 𝑟Ω𝑎 therefore
describe the behaviour of the generators.) The differential form of the coordinate transformation
is

𝑑𝑥̂𝑎 = Ω𝑎 𝑑𝑟 + 𝑟Ω𝑎
𝐴 𝑑𝜃

𝐴, (10.43)

where the transformation matrix

Ω𝑎
𝐴 :=

𝜕Ω𝑎

𝜕𝜃𝐴
(10.44)

satisfies the identity Ω𝑎Ω
𝑎
𝐴 = 0.

We introduce the quantities
Ω𝐴𝐵 := 𝛿𝑎𝑏Ω

𝑎
𝐴Ω

𝑏
𝐵 , (10.45)

which act as a (nonphysical) metric in the subspace spanned by the angular coordinates. In the
canonical parameterization, Ω𝐴𝐵 = diag(1, sin2 𝜃). We use the inverse of Ω𝐴𝐵 , denoted Ω𝐴𝐵 , to
raise upper-case Latin indices. We then define the new object

Ω𝐴
𝑎 := 𝛿𝑎𝑏Ω

𝐴𝐵Ω𝑏
𝐵 (10.46)

which satisfies the identities

Ω𝐴
𝑎 Ω

𝑎
𝐵 = 𝛿𝐴𝐵 , Ω𝑎

𝐴Ω
𝐴
𝑏 = 𝛿𝑎𝑏 − Ω𝑎Ω𝑏. (10.47)
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The second result follows from the fact that both sides are simultaneously symmetric in 𝑎 and 𝑏,
orthogonal to Ω𝑎 and Ω𝑏, and have the same trace.

From the preceding results we establish that the transformation from 𝑥̂𝑎 to (𝑟, 𝜃𝐴) is accom-
plished by

𝜕𝑥̂𝑎

𝜕𝑟
= Ω𝑎,

𝜕𝑥̂𝑎

𝜕𝜃𝐴
= 𝑟Ω𝑎

𝐴, (10.48)

while the transformation from (𝑟, 𝜃𝐴) to 𝑥̂𝑎 is accomplished by

𝜕𝑟

𝜕𝑥̂𝑎
= Ω𝑎,

𝜕𝜃𝐴

𝜕𝑥̂𝑎
=

1

𝑟
Ω𝐴

𝑎 . (10.49)

With these transformation rules it is easy to show that in the angular coordinates, the metric is
given by

𝑔𝑢𝑢 = −
(︀
1 + 𝑟𝑎𝑎Ω

𝑎
)︀2

+ 𝑟2𝑎2 − 𝑟2𝑆 +𝑂(𝑟3), (10.50)

𝑔𝑢𝑟 = −1, (10.51)

𝑔𝑢𝐴 = 𝑟
[︁
𝑟𝑎𝑎 +

2

3
𝑟2𝑆𝑎 +𝑂(𝑟3)

]︁
Ω𝑎

𝐴, (10.52)

𝑔𝐴𝐵 = 𝑟2
[︁
Ω𝐴𝐵 − 1

3
𝑟2𝑆𝑎𝑏Ω

𝑎
𝐴Ω

𝑏
𝐵 +𝑂(𝑟3)

]︁
. (10.53)

The results 𝑔𝑟𝑢 = −1, 𝑔𝑟𝑟 = 0, and 𝑔𝑟𝐴 = 0 are exact, and they follow from the fact that in the
retarded coordinates, 𝑘𝛼 𝑑𝑥

𝛼 = −𝑑𝑢 and 𝑘𝛼𝜕𝛼 = 𝜕𝑟.
The nonvanishing components of the inverse metric are

𝑔𝑢𝑟 = −1, (10.54)

𝑔𝑟𝑟 = 1 + 2𝑟𝑎𝑎Ω
𝑎 + 𝑟2𝑆 +𝑂(𝑟3), (10.55)

𝑔𝑟𝐴 =
1

𝑟

[︁
𝑟𝑎𝑎 +

2

3
𝑟2𝑆𝑎 +𝑂(𝑟3)

]︁
Ω𝐴

𝑎 , (10.56)

𝑔𝐴𝐵 =
1

𝑟2

[︁
Ω𝐴𝐵 +

1

3
𝑟2𝑆𝑎𝑏Ω𝐴

𝑎 Ω
𝐵
𝑏 +𝑂(𝑟3)

]︁
. (10.57)

The results 𝑔𝑢𝑢 = 0, 𝑔𝑢𝑟 = −1, and 𝑔𝑢𝐴 = 0 are exact, and they follow from the same reasoning
as before.

Finally, we note that in the angular coordinates, the metric determinant is given by

√−𝑔 = 𝑟2
√
Ω
[︁
1− 1

6
𝑟2
(︀
𝑅00 + 2𝑅0𝑎Ω

𝑎 +𝑅𝑎𝑏Ω
𝑎Ω𝑏

)︀
+𝑂(𝑟3)

]︁
, (10.58)

where Ω is the determinant of Ω𝐴𝐵 ; in the canonical parameterization,
√
Ω = sin 𝜃.

10.8 Specialization to 𝑎𝜇 = 0 = 𝑅𝜇𝜈

In this subsection we specialize our previous results to a situation where 𝛾 is a geodesic on which
the Ricci tensor vanishes. We therefore set 𝑎𝜇 = 0 = 𝑅𝜇𝜈 everywhere on 𝛾.

We have seen in Section 9.6 that when the Ricci tensor vanishes on 𝛾, all frame components of
the Riemann tensor can be expressed in terms of the symmetric-tracefree tensors ℰ𝑎𝑏(𝑢) and ℬ𝑎𝑏(𝑢).
The relations are 𝑅𝑎0𝑏0 = ℰ𝑎𝑏, 𝑅𝑎0𝑏𝑐 = 𝜀𝑏𝑐𝑑ℬ𝑑

𝑎, and 𝑅𝑎𝑐𝑏𝑑 = 𝛿𝑎𝑏ℰ𝑐𝑑 + 𝛿𝑐𝑑ℰ𝑎𝑏 − 𝛿𝑎𝑑ℰ𝑏𝑐 − 𝛿𝑏𝑐ℰ𝑎𝑑.
These can be substituted into Eqs. (10.23) – (10.25) to give

𝑆𝑎𝑏(𝑢, 𝜃
𝐴) = 2ℰ𝑎𝑏 − Ω𝑎ℰ𝑏𝑐Ω𝑐 − Ω𝑏ℰ𝑎𝑐Ω𝑐 + 𝛿𝑎𝑏ℰ𝑏𝑐Ω𝑐Ω𝑑 + 𝜀𝑎𝑐𝑑Ω

𝑐ℬ𝑑
𝑏 + 𝜀𝑏𝑐𝑑Ω

𝑐ℬ𝑑
𝑎, (10.59)

𝑆𝑎(𝑢, 𝜃
𝐴) = ℰ𝑎𝑏Ω𝑏 + 𝜀𝑎𝑏𝑐Ω

𝑏ℬ𝑐
𝑑Ω

𝑑, (10.60)

𝑆(𝑢, 𝜃𝐴) = ℰ𝑎𝑏Ω𝑎Ω𝑏. (10.61)
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In these expressions the dependence on retarded time 𝑢 is contained in ℰ𝑎𝑏 and ℬ𝑎𝑏, while the
angular dependence is encoded in the unit vector Ω𝑎.

It is convenient to introduce the irreducible quantities

ℰ* := ℰ𝑎𝑏Ω𝑎Ω𝑏, (10.62)

ℰ*
𝑎 :=

(︀
𝛿 𝑏
𝑎 − Ω𝑎Ω

𝑏
)︀
ℰ𝑏𝑐Ω𝑐, (10.63)

ℰ*
𝑎𝑏 := 2ℰ𝑎𝑏 − 2Ω𝑎ℰ𝑏𝑐Ω𝑐 − 2Ω𝑏ℰ𝑎𝑐Ω𝑐 + (𝛿𝑎𝑏 +Ω𝑎Ω𝑏)ℰ*, (10.64)

ℬ*
𝑎 := 𝜀𝑎𝑏𝑐Ω

𝑏ℬ𝑐
𝑑Ω

𝑑, (10.65)

ℬ*
𝑎𝑏 := 𝜀𝑎𝑐𝑑Ω

𝑐ℬ𝑑
𝑒

(︀
𝛿𝑒𝑏 − Ω𝑒Ω𝑏

)︀
+ 𝜀𝑏𝑐𝑑Ω

𝑐ℬ𝑑
𝑒

(︀
𝛿𝑒𝑎 − Ω𝑒Ω𝑎

)︀
. (10.66)

These are all orthogonal to Ω𝑎: ℰ*
𝑎Ω

𝑎 = ℬ*
𝑎Ω

𝑎 = 0 and ℰ*
𝑎𝑏Ω

𝑏 = ℬ*
𝑎𝑏Ω

𝑏 = 0. In terms of these
Eqs. (10.59) – (10.61) become

𝑆𝑎𝑏 = ℰ*
𝑎𝑏 +Ω𝑎ℰ*

𝑏 + ℰ*
𝑎Ω𝑏 +Ω𝑎Ω𝑏ℰ* + ℬ*

𝑎𝑏 +Ω𝑎ℬ*
𝑏 + ℬ*

𝑎Ω𝑏, (10.67)

𝑆𝑎 = ℰ*
𝑎 +Ω𝑎ℰ* + ℬ*

𝑎, (10.68)

𝑆 = ℰ*. (10.69)

When Eqs. (10.67) – (10.69) are substituted into the metric tensor of Eqs. (10.34) – (10.36) – in
which 𝑎𝑎 is set equal to zero – we obtain the compact expressions

𝑔𝑢𝑢 = −1− 𝑟2ℰ* +𝑂(𝑟3), (10.70)

𝑔𝑢𝑎 = −Ω𝑎 +
2

3
𝑟2
(︀
ℰ*
𝑎 + ℬ*

𝑎

)︀
+𝑂(𝑟3), (10.71)

𝑔𝑎𝑏 = 𝛿𝑎𝑏 − Ω𝑎Ω𝑏 −
1

3
𝑟2
(︀
ℰ*
𝑎𝑏 + ℬ*

𝑎𝑏

)︀
+𝑂(𝑟3). (10.72)

The metric becomes

𝑔𝑢𝑢 = −1− 𝑟2ℰ* +𝑂(𝑟3), (10.73)

𝑔𝑢𝑟 = −1, (10.74)

𝑔𝑢𝐴 =
2

3
𝑟3
(︀
ℰ*
𝐴 + ℬ*

𝐴

)︀
+𝑂(𝑟4), (10.75)

𝑔𝐴𝐵 = 𝑟2Ω𝐴𝐵 − 1

3
𝑟4
(︀
ℰ*
𝐴𝐵 + ℬ*

𝐴𝐵

)︀
+𝑂(𝑟5) (10.76)

after transforming to angular coordinates using the rules of Eq. (10.48). Here we have introduced
the projections

ℰ*
𝐴 := ℰ*

𝑎Ω
𝑎
𝐴 = ℰ𝑎𝑏Ω𝑎

𝐴Ω
𝑏, (10.77)

ℰ*
𝐴𝐵 := ℰ*

𝑎𝑏Ω
𝑎
𝐴Ω

𝑏
𝐵 = 2ℰ𝑎𝑏Ω𝑎

𝐴Ω
𝑏
𝐵 + ℰ*Ω𝐴𝐵 , (10.78)

ℬ*
𝐴 := ℬ*

𝑎Ω
𝑎
𝐴 = 𝜀𝑎𝑏𝑐Ω

𝑎
𝐴Ω

𝑏ℬ𝑐
𝑑Ω

𝑑, (10.79)

ℬ*
𝐴𝐵 := ℬ*

𝑎𝑏Ω
𝑎
𝐴Ω

𝑏
𝐵 = 2𝜀𝑎𝑐𝑑Ω

𝑐ℬ𝑑
𝑏Ω

𝑎
(𝐴Ω

𝑏
𝐵). (10.80)

It may be noted that the inverse relations are ℰ*
𝑎 = ℰ*

𝐴Ω
𝐴
𝑎 , ℬ*

𝑎 = ℬ*
𝐴Ω

𝐴
𝑎 , ℰ*

𝑎𝑏 = ℰ*
𝐴𝐵Ω

𝐴
𝑎 Ω

𝐵
𝑏 , and

ℬ*
𝑎𝑏 = ℬ*

𝐴𝐵Ω
𝐴
𝑎 Ω

𝐵
𝑏 , where Ω𝐴

𝑎 was introduced in Eq. (10.46).
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11 Transformation between Fermi and retarded coordinates;
advanced point

A point 𝑥 in the normal convex neighbourhood of a world line 𝛾 can be assigned a set of Fermi
normal coordinates (as in Section 9), or it can be assigned a set of retarded coordinates (Section 10).
These coordinate systems can obviously be related to one another, and our first task in this section
(which will occupy us in Sections 11.1 – 11.3) will be to derive the transformation rules. We begin
by refining our notation so as to eliminate any danger of ambiguity.

x

x’’ = z(v)

x’ = z(u)

x = z(t)_

Figure 8: The retarded, simultaneous, and advanced points on a world line 𝛾. The retarded point
𝑥′ := 𝑧(𝑢) is linked to 𝑥 by a future-directed null geodesic. The simultaneous point 𝑥̄ := 𝑧(𝑡) is linked to
𝑥 by a spacelike geodesic that intersects 𝛾 orthogonally. The advanced point 𝑥′′ := 𝑧(𝑣) is linked to 𝑥 by
a past-directed null geodesic.

The Fermi normal coordinates of 𝑥 refer to a point 𝑥̄ := 𝑧(𝑡) on 𝛾 that is related to 𝑥 by
a spacelike geodesic that intersects 𝛾 orthogonally; see Figure 8. We refer to this point as 𝑥’s
simultaneous point, and to tensors at 𝑥̄ we assign indices 𝛼̄, 𝛽, etc. We let (𝑡, 𝑠𝜔𝑎) be the Fermi
normal coordinates of 𝑥, with 𝑡 denoting the value of 𝛾’s proper-time parameter at 𝑥̄, 𝑠 =

√︀
2𝜎(𝑥, 𝑥̄)

representing the proper distance from 𝑥̄ to 𝑥 along the spacelike geodesic, and 𝜔𝑎 denoting a unit
vector (𝛿𝑎𝑏𝜔

𝑎𝜔𝑏 = 1) that determines the direction of the geodesic. The Fermi normal coordinates
are defined by 𝑠𝜔𝑎 = −𝑒𝑎𝛼̄𝜎𝛼̄ and 𝜎𝛼̄𝑢

𝛼̄ = 0. Finally, we denote by (𝑒𝛼0 , 𝑒
𝛼
𝑎 ) the tetrad at 𝑥 that is

obtained by parallel transport of (𝑢𝛼̄, 𝑒𝛼̄𝑎 ) on the spacelike geodesic.
The retarded coordinates of 𝑥 refer to a point 𝑥′ := 𝑧(𝑢) on 𝛾 that is linked to 𝑥 by a future-

directed null geodesic; see Figure 8. We refer to this point as 𝑥’s retarded point, and to tensors at 𝑥′

we assign indices 𝛼′, 𝛽′, etc. We let (𝑢, 𝑟Ω𝑎) be the retarded coordinates of 𝑥, with 𝑢 denoting the
value of 𝛾’s proper-time parameter at 𝑥′, 𝑟 = 𝜎𝛼′𝑢𝛼

′
representing the affine-parameter distance from

𝑥′ to 𝑥 along the null geodesic, and Ω𝑎 denoting a unit vector (𝛿𝑎𝑏Ω
𝑎Ω𝑏 = 1) that determines the

direction of the geodesic. The retarded coordinates are defined by 𝑟Ω𝑎 = −𝑒𝑎𝛼′𝜎𝛼′
and 𝜎(𝑥, 𝑥′) = 0.

Finally, we denote by (𝑒𝛼0 , 𝑒
𝛼
𝑎 ) the tetrad at 𝑥 that is obtained by parallel transport of (𝑢𝛼

′
, 𝑒𝛼

′

𝑎 )
on the null geodesic.
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The reader who does not wish to follow the details of this discussion can be informed that: (i) our
results concerning the transformation from the retarded coordinates (𝑢, 𝑟,Ω𝑎) to the Fermi normal
coordinates (𝑡, 𝑠, 𝜔𝑎) are contained in Eqs. (11.1) – (11.3) below; (ii) our results concerning the
transformation from the Fermi normal coordinates (𝑡, 𝑠, 𝜔𝑎) to the retarded coordinates (𝑢, 𝑟,Ω𝑎)
are contained in Eqs. (11.4) – (11.6); (iii) the decomposition of each member of (𝑒𝛼0 , 𝑒

𝛼
𝑎 ) in the tetrad

(𝑒𝛼0 , 𝑒
𝛼
𝑎 ) is given in retarded coordinates by Eqs. (11.7) and (11.8); and (iv) the decomposition of

each member of (𝑒𝛼0 , 𝑒
𝛼
𝑎 ) in the tetrad (𝑒𝛼0 , 𝑒

𝛼
𝑎 ) is given in Fermi normal coordinates by Eqs. (11.9)

and (11.10).
Our final task will be to define, along with the retarded and simultaneous points, an advanced

point 𝑥′′ on the world line 𝛾; see Figure 8. This is taken on in Section 11.4.

11.1 From retarded to Fermi coordinates

Quantities at 𝑥̄ := 𝑧(𝑡) can be related to quantities at 𝑥′ := 𝑧(𝑢) by Taylor expansion along the
world line 𝛾. To implement this strategy we must first find an expression for Δ := 𝑡−𝑢. (Although
we use the same notation, this should not be confused with the van Vleck determinant introduced
in Section 7.)

Consider the function 𝑝(𝜏) of the proper-time parameter 𝜏 defined by

𝑝(𝜏) = 𝜎𝜇
(︀
𝑥, 𝑧(𝜏)

)︀
𝑢𝜇(𝜏),

in which 𝑥 is kept fixed and in which 𝑧(𝜏) is an arbitrary point on the world line. We have that
𝑝(𝑢) = 𝑟 and 𝑝(𝑡) = 0, and Δ can ultimately be obtained by expressing 𝑝(𝑡) as 𝑝(𝑢 + Δ) and
expanding in powers of Δ. Formally,

𝑝(𝑡) = 𝑝(𝑢) + 𝑝̇(𝑢)Δ +
1

2
𝑝(𝑢)Δ2 +

1

6
𝑝(3)(𝑢)Δ3 +𝑂(Δ4),

where overdots (or a number within brackets) indicate repeated differentiation with respect to 𝜏 .
We have

𝑝̇(𝑢) = 𝜎𝛼′𝛽′𝑢𝛼
′
𝑢𝛽

′
+ 𝜎𝛼′𝑎𝛼

′
,

𝑝(𝑢) = 𝜎𝛼′𝛽′𝛾′𝑢𝛼
′
𝑢𝛽

′
𝑢𝛾

′
+ 3𝜎𝛼′𝛽′𝑢𝛼

′
𝑎𝛽

′
+ 𝜎𝛼′ 𝑎̇𝛼

′
,

𝑝(3)(𝑢) = 𝜎𝛼′𝛽′𝛾′𝛿′𝑢
𝛼′
𝑢𝛽

′
𝑢𝛾

′
𝑢𝛿

′
+ 𝜎𝛼′𝛽′𝛾′

(︀
5𝑎𝛼

′
𝑢𝛽

′
𝑢𝛾

′
+ 𝑢𝛼

′
𝑢𝛽

′
𝑎𝛾

′)︀
+𝜎𝛼′𝛽′

(︀
3𝑎𝛼

′
𝑎𝛽

′
+ 4𝑢𝛼

′
𝑎̇𝛽

′)︀
+ 𝜎𝛼′ 𝑎̈𝛼

′
,

where 𝑎𝜇 = 𝐷𝑢𝜇/𝑑𝜏 , 𝑎̇𝜇 = 𝐷𝑎𝜇/𝑑𝜏 , and 𝑎̈𝜇 = 𝐷𝑎̇𝜇/𝑑𝜏 .
We now express all of this in retarded coordinates by invoking the expansion of Eq. (6.7) for

𝜎𝛼′𝛽′ (as well as additional expansions for the higher derivatives of the world function, obtained

by further differentiation of this result) and the relation 𝜎𝛼′
= −𝑟(𝑢𝛼′

+ Ω𝑎𝑒𝛼
′

𝑎 ) first derived in
Eq. (10.7). With a degree of accuracy sufficient for our purposes we obtain

𝑝̇(𝑢) = −
[︁
1 + 𝑟𝑎𝑎Ω

𝑎 +
1

3
𝑟2𝑆 +𝑂(𝑟3)

]︁
,

𝑝(𝑢) = −𝑟
(︀
𝑎̇0 + 𝑎̇𝑎Ω

𝑎
)︀
+𝑂(𝑟2),

𝑝(3)(𝑢) = 𝑎̇0 +𝑂(𝑟),

where 𝑆 = 𝑅𝑎0𝑏0Ω
𝑎Ω𝑏 was first introduced in Eq. (10.25), and where 𝑎̇0 := 𝑎̇𝛼′𝑢𝛼

′
, 𝑎̇𝑎 := 𝑎̇𝛼′𝑒𝛼

′

𝑎

are the frame components of the covariant derivative of the acceleration vector. To arrive at these
results we made use of the identity 𝑎𝛼′𝑎𝛼

′
+ 𝑎̇𝛼′𝑢𝛼

′
= 0 that follows from the fact that 𝑎𝜇 is

orthogonal to 𝑢𝜇. Notice that there is no distinction between the two possible interpretations
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𝑎̇𝑎 := 𝑑𝑎𝑎/𝑑𝜏 and 𝑎̇𝑎 := 𝑎̇𝜇𝑒
𝜇
𝑎 for the quantity 𝑎̇𝑎(𝜏); their equality follows at once from the

substitution of 𝐷𝑒𝜇𝑎/𝑑𝜏 = 𝑎𝑎𝑢
𝜇 (which states that the basis vectors are Fermi–Walker transported

on the world line) into the identity 𝑑𝑎𝑎/𝑑𝜏 = 𝐷(𝑎𝜈𝑒
𝜈
𝑎)/𝑑𝜏 .

Collecting our results we obtain

𝑟 =
[︁
1 + 𝑟𝑎𝑎Ω

𝑎 +
1

3
𝑟2𝑆 +𝑂(𝑟3)

]︁
Δ+

1

2
𝑟
[︁
𝑎̇0 + 𝑎̇𝑎Ω

𝑎 +𝑂(𝑟)
]︁
Δ2 − 1

6

[︁
𝑎̇0 +𝑂(𝑟)

]︁
Δ3 +𝑂(Δ4),

which can readily be solved for Δ := 𝑡 − 𝑢 expressed as an expansion in powers of 𝑟. The final
result is

𝑡 = 𝑢+ 𝑟

{︂
1− 𝑟𝑎𝑎(𝑢)Ω

𝑎 + 𝑟2
[︀
𝑎𝑎(𝑢)Ω

𝑎
]︀2 − 1

3
𝑟2𝑎̇0(𝑢)−

1

2
𝑟2𝑎̇𝑎(𝑢)Ω

𝑎 − 1

3
𝑟2𝑅𝑎0𝑏0(𝑢)Ω

𝑎Ω𝑏 +𝑂(𝑟3)

}︂
,

(11.1)
where we show explicitly that all frame components are evaluated at the retarded point 𝑧(𝑢).

To obtain relations between the spatial coordinates we consider the functions

𝑝𝑎(𝜏) = −𝜎𝜇
(︀
𝑥, 𝑧(𝜏)

)︀
𝑒𝜇𝑎(𝜏),

in which 𝑥 is fixed and 𝑧(𝜏) is an arbitrary point on 𝛾. We have that the retarded coordinates are
given by 𝑟Ω𝑎 = 𝑝𝑎(𝑢), while the Fermi coordinates are given instead by 𝑠𝜔𝑎 = 𝑝𝑎(𝑡) = 𝑝𝑎(𝑢+Δ).
This last expression can be expanded in powers of Δ, producing

𝑠𝜔𝑎 = 𝑝𝑎(𝑢) + 𝑝̇𝑎(𝑢)Δ +
1

2
𝑝𝑎(𝑢)Δ2 +

1

6
𝑝𝑎(3)(𝑢)Δ3 +𝑂(Δ4)

with

𝑝̇𝑎(𝑢) = −𝜎𝛼′𝛽′𝑒𝛼
′

𝑎 𝑢
𝛽′ −

(︀
𝜎𝛼′𝑢𝛼

′)︀(︀
𝑎𝛽′𝑒𝛽

′

𝑎

)︀
= −𝑟𝑎𝑎 −

1

3
𝑟2𝑆𝑎 +𝑂(𝑟3),

𝑝𝑎(𝑢) = −𝜎𝛼′𝛽′𝛾′𝑒𝛼
′

𝑎 𝑢
𝛽′
𝑢𝛾

′ −
(︀
2𝜎𝛼′𝛽′𝑢𝛼

′
𝑢𝛽

′
+ 𝜎𝛼′𝑎𝛼

′)︀(︀
𝑎𝛾′𝑒𝛾

′

𝑎

)︀
− 𝜎𝛼′𝛽′𝑒𝛼

′

𝑎 𝑎
𝛽′ −

(︀
𝜎𝛼′𝑢𝛼

′)︀(︀
𝑎̇𝛽′𝑒𝛽

′

𝑎

)︀
=
(︀
1 + 𝑟𝑎𝑏Ω

𝑏
)︀
𝑎𝑎 − 𝑟𝑎̇𝑎 +

1

3
𝑟𝑅𝑎0𝑏0Ω

𝑏 +𝑂(𝑟2),

𝑝(3)𝑎 (𝑢) = −𝜎𝛼′𝛽′𝛾′𝛿′𝑒
𝛼′

𝑎 𝑢
𝛽′
𝑢𝛾

′
𝑢𝛿

′ −
(︀
3𝜎𝛼′𝛽′𝛾′𝑢𝛼

′
𝑢𝛽

′
𝑢𝛾

′
+ 6𝜎𝛼′𝛽′𝑢𝛼

′
𝑎𝛽

′
+ 𝜎𝛼′ 𝑎̇𝛼

′
+ 𝜎𝛼′𝑢𝛼

′
𝑎̇𝛽′𝑢𝛽

′)︀(︀
𝑎𝛿′𝑒

𝛿′

𝑎

)︀
− 𝜎𝛼′𝛽′𝛾′𝑒𝛼

′

𝑎

(︀
2𝑎𝛽

′
𝑢𝛾

′
+ 𝑢𝛽

′
𝑎𝛾

′)︀− (︀3𝜎𝛼′𝛽′𝑢𝛼
′
𝑢𝛽

′
+ 2𝜎𝛼′𝑎𝛼

′)︀(︀
𝑎̇𝛾′𝑒𝛾

′

𝑎

)︀
− 𝜎𝛼′𝛽′𝑒𝛼

′

𝑎 𝑎̇
𝛽′

−
(︀
𝜎𝛼′𝑢𝛼

′)︀(︀
𝑎̈𝛽′𝑒𝛽

′

𝑎

)︀
= 2𝑎̇𝑎 +𝑂(𝑟).

To arrive at these results we have used the same expansions as before and re-introduced 𝑆𝑎 =
𝑅𝑎0𝑏0Ω

𝑏 −𝑅𝑎𝑏0𝑐Ω
𝑏Ω𝑐, as it was first defined in Eq. (10.24).

Collecting our results we obtain

𝑠𝜔𝑎 = 𝑟Ω𝑎 − 𝑟
[︁
𝑎𝑎 +

1

3
𝑟𝑆𝑎 +𝑂(𝑟2)

]︁
Δ+

1

2

[︁(︀
1 + 𝑟𝑎𝑏Ω

𝑏
)︀
𝑎𝑎 − 𝑟𝑎̇𝑎 +

1

3
𝑟𝑅𝑎

0𝑏0Ω
𝑏 +𝑂(𝑟2)

]︁
Δ2

+
1

3

[︁
𝑎̇𝑎 +𝑂(𝑟)

]︁
Δ3 +𝑂(Δ4),

which becomes

𝑠𝜔𝑎 = 𝑟

{︂
Ω𝑎 − 1

2
𝑟
[︀
1− 𝑟𝑎𝑏(𝑢)Ω

𝑏
]︀
𝑎𝑎(𝑢)− 1

6
𝑟2𝑎̇𝑎(𝑢)− 1

6
𝑟2𝑅𝑎

0𝑏0(𝑢)Ω
𝑏 +

1

3
𝑟2𝑅𝑎

𝑏0𝑐(𝑢)Ω
𝑏Ω𝑐 +𝑂(𝑟3)

}︂
(11.2)
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after substituting Eq. (11.1) for Δ := 𝑡 − 𝑢. From squaring Eq. (11.2) and using the identity
𝛿𝑎𝑏𝜔

𝑎𝜔𝑏 = 1 we can also deduce

𝑠 = 𝑟

{︂
1− 1

2
𝑟𝑎𝑎(𝑢)Ω

𝑎 +
3

8
𝑟2
[︀
𝑎𝑎(𝑢)Ω

𝑎
]︀2 − 1

8
𝑟2𝑎̇0(𝑢)−

1

6
𝑟2𝑎̇𝑎(𝑢)Ω

𝑎 − 1

6
𝑟2𝑅𝑎0𝑏0(𝑢)Ω

𝑎Ω𝑏 +𝑂(𝑟3)

}︂
(11.3)

for the spatial distance between 𝑥 and 𝑧(𝑡).

11.2 From Fermi to retarded coordinates

The techniques developed in the preceding subsection can easily be adapted to the task of relating
the retarded coordinates of 𝑥 to its Fermi normal coordinates. Here we use 𝑥̄ := 𝑧(𝑡) as the
reference point and express all quantities at 𝑥′ := 𝑧(𝑢) as Taylor expansions about 𝜏 = 𝑡.

We begin by considering the function

𝜎(𝜏) = 𝜎
(︀
𝑥, 𝑧(𝜏)

)︀
of the proper-time parameter 𝜏 on 𝛾. We have that 𝜎(𝑡) = 1

2𝑠
2 and 𝜎(𝑢) = 0, and Δ := 𝑡 − 𝑢 is

now obtained by expressing 𝜎(𝑢) as 𝜎(𝑡 −Δ) and expanding in powers of Δ. Using the fact that
𝜎̇(𝜏) = 𝑝(𝜏), we have

𝜎(𝑢) = 𝜎(𝑡)− 𝑝(𝑡)Δ +
1

2
𝑝̇(𝑡)Δ2 − 1

6
𝑝(𝑡)Δ3 +

1

24
𝑝(3)(𝑡)Δ4 +𝑂(Δ5).

Expressions for the derivatives of 𝑝(𝜏) evaluated at 𝜏 = 𝑡 can be constructed from results derived
previously in Section 11.1: it suffices to replace all primed indices by barred indices and then
substitute the relation 𝜎𝛼̄ = −𝑠𝜔𝑎𝑒𝛼̄𝑎 that follows immediately from Eq. (9.5). This gives

𝑝̇(𝑡) = −
[︁
1 + 𝑠𝑎𝑎𝜔

𝑎 +
1

3
𝑠2𝑅𝑎0𝑏0𝜔

𝑎𝜔𝑏 +𝑂(𝑠3)
]︁
,

𝑝(𝑡) = −𝑠𝑎̇𝑎𝜔𝑎 +𝑂(𝑠2),

𝑝(3)(𝑡) = 𝑎̇0 +𝑂(𝑠),

and then

𝑠2 =
[︁
1 + 𝑠𝑎𝑎𝜔

𝑎 +
1

3
𝑠2𝑅𝑎0𝑏0𝜔

𝑎𝜔𝑏 +𝑂(𝑠3)
]︁
Δ2 − 1

3
𝑠
[︁
𝑎̇𝑎𝜔

𝑎 +𝑂(𝑠)
]︁
Δ3 − 1

12

[︁
𝑎̇0 +𝑂(𝑠)

]︁
Δ4 +𝑂(Δ5)

after recalling that 𝑝(𝑡) = 0. Solving for Δ as an expansion in powers of 𝑠 returns

𝑢 = 𝑡− 𝑠

{︂
1− 1

2
𝑠𝑎𝑎(𝑡)𝜔

𝑎 +
3

8
𝑠2
[︀
𝑎𝑎(𝑡)𝜔

𝑎
]︀2

+
1

24
𝑠2𝑎̇0(𝑡)+

1

6
𝑠2𝑎̇𝑎(𝑡)𝜔

𝑎 − 1

6
𝑠2𝑅𝑎0𝑏0(𝑡)𝜔

𝑎𝜔𝑏 +𝑂(𝑠3)

}︂
,

(11.4)
in which we emphasize that all frame components are evaluated at the simultaneous point 𝑧(𝑡).

An expression for 𝑟 = 𝑝(𝑢) can be obtained by expanding 𝑝(𝑡−Δ) in powers of Δ. We have

𝑟 = −𝑝̇(𝑡)Δ +
1

2
𝑝(𝑡)Δ2 − 1

6
𝑝(3)(𝑡)Δ3 +𝑂(Δ4),

and substitution of our previous results gives

𝑟 = 𝑠

{︂
1+

1

2
𝑠𝑎𝑎(𝑡)𝜔

𝑎− 1

8
𝑠2
[︀
𝑎𝑎(𝑡)𝜔

𝑎
]︀2− 1

8
𝑠2𝑎̇0(𝑡)−

1

3
𝑠2𝑎̇𝑎(𝑡)𝜔

𝑎+
1

6
𝑠2𝑅𝑎0𝑏0(𝑡)𝜔

𝑎𝜔𝑏+𝑂(𝑠3)

}︂
(11.5)

for the retarded distance between 𝑥 and 𝑧(𝑢).
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Finally, the retarded coordinates 𝑟Ω𝑎 = 𝑝𝑎(𝑢) can be related to the Fermi coordinates by
expanding 𝑝𝑎(𝑡−Δ) in powers of Δ, so that

𝑟Ω𝑎 = 𝑝𝑎(𝑡)− 𝑝̇𝑎(𝑡)Δ +
1

2
𝑝𝑎(𝑡)Δ2 − 1

6
𝑝𝑎(3)(𝑡)Δ3 +𝑂(Δ4).

Results from the preceding subsection can again be imported with mild alterations, and we find

𝑝̇𝑎(𝑡) =
1

3
𝑠2𝑅𝑎𝑏0𝑐𝜔

𝑏𝜔𝑐 +𝑂(𝑠3),

𝑝𝑎(𝑡) =
(︀
1 + 𝑠𝑎𝑏𝜔

𝑏
)︀
𝑎𝑎 +

1

3
𝑠𝑅𝑎0𝑏0𝜔

𝑏 +𝑂(𝑠2),

𝑝(3)𝑎 (𝑡) = 2𝑎̇𝑎(𝑡) +𝑂(𝑠).

This, together with Eq. (11.4), gives

𝑟Ω𝑎 = 𝑠

{︂
𝜔𝑎 +

1

2
𝑠𝑎𝑎(𝑡)− 1

3
𝑠2𝑎̇𝑎(𝑡)− 1

3
𝑠2𝑅𝑎

𝑏0𝑐(𝑡)𝜔
𝑏𝜔𝑐 +

1

6
𝑠2𝑅𝑎

0𝑏0(𝑡)𝜔
𝑏 +𝑂(𝑠3)

}︂
. (11.6)

It may be checked that squaring this equation and using the identity 𝛿𝑎𝑏Ω
𝑎Ω𝑏 = 1 returns the

same result as Eq. (11.5).

11.3 Transformation of the tetrads at 𝑥

Recall that we have constructed two sets of basis vectors at 𝑥. The first set is the tetrad (𝑒𝛼0 , 𝑒
𝛼
𝑎 )

that is obtained by parallel transport of (𝑢𝛼̄, 𝑒𝛼̄𝑎 ) on the spacelike geodesic that links 𝑥 to the
simultaneous point 𝑥̄ := 𝑧(𝑡). The second set is the tetrad (𝑒𝛼0 , 𝑒

𝛼
𝑎 ) that is obtained by parallel

transport of (𝑢𝛼
′
, 𝑒𝛼

′

𝑎 ) on the null geodesic that links 𝑥 to the retarded point 𝑥′ := 𝑧(𝑢). Since
each tetrad forms a complete set of basis vectors, each member of (𝑒𝛼0 , 𝑒

𝛼
𝑎 ) can be decomposed

in the tetrad (𝑒𝛼0 , 𝑒
𝛼
𝑎 ), and correspondingly, each member of (𝑒𝛼0 , 𝑒

𝛼
𝑎 ) can be decomposed in the

tetrad (𝑒𝛼0 , 𝑒
𝛼
𝑎 ). These decompositions are worked out in this subsection. For this purpose we shall

consider the functions

𝑝𝛼(𝜏) = 𝑔𝛼𝜇
(︀
𝑥, 𝑧(𝜏)

)︀
𝑢𝜇(𝜏), 𝑝𝛼𝑎 (𝜏) = 𝑔𝛼𝜇

(︀
𝑥, 𝑧(𝜏)

)︀
𝑒𝜇𝑎(𝜏),

in which 𝑥 is a fixed point in a neighbourhood of 𝛾, 𝑧(𝜏) is an arbitrary point on the world line, and
𝑔𝛼𝜇(𝑥, 𝑧) is the parallel propagator on the unique geodesic that links 𝑥 to 𝑧. We have 𝑒𝛼0 = 𝑝𝛼(𝑡),
𝑒𝛼𝑎 = 𝑝𝛼𝑎 (𝑡), 𝑒

𝛼
0 = 𝑝𝛼(𝑢), and 𝑒𝛼𝑎 = 𝑝𝛼𝑎 (𝑢).

We begin with the decomposition of (𝑒𝛼0 , 𝑒
𝛼
𝑎 ) in the tetrad (𝑒𝛼0 , 𝑒

𝛼
𝑎 ) associated with the retarded

point 𝑧(𝑢). This decomposition will be expressed in the retarded coordinates as an expansion in
powers of 𝑟. As in Section 9.1 we express quantities at 𝑧(𝑡) in terms of quantities at 𝑧(𝑢) by
expanding in powers of Δ := 𝑡− 𝑢. We have

𝑒𝛼0 = 𝑝𝛼(𝑢) + 𝑝̇𝛼(𝑢)Δ +
1

2
𝑝𝛼(𝑢)Δ2 +𝑂(Δ3),

with

𝑝̇𝛼(𝑢) = 𝑔𝛼𝛼′;𝛽′𝑢𝛼
′
𝑢𝛽

′
+ 𝑔𝛼𝛼′𝑎𝛼

′

=
[︁
𝑎𝑎 +

1

2
𝑟𝑅𝑎

0𝑏0Ω
𝑏 +𝑂(𝑟2)

]︁
𝑒𝛼𝑎 ,

𝑝𝛼(𝑢) = 𝑔𝛼𝛼′;𝛽′𝛾′𝑢𝛼
′
𝑢𝛽

′
𝑢𝛾

′
+ 𝑔𝛼𝛼′;𝛽′

(︀
2𝑎𝛼

′
𝑢𝛽

′
+ 𝑢𝛼

′
𝑎𝛽

′)︀
+ 𝑔𝛼𝛼′ 𝑎̇𝛼

′

=
[︁
−𝑎̇0 +𝑂(𝑟)

]︁
𝑒𝛼0 +

[︁
𝑎̇𝑎 +𝑂(𝑟)

]︁
𝑒𝛼𝑎 ,
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where we have used the expansions of Eq. (6.11) as well as the decompositions of Eq. (10.4).
Collecting these results and substituting Eq. (11.1) for Δ yields

𝑒𝛼0 =
[︁
1− 1

2
𝑟2𝑎̇0(𝑢)+𝑂(𝑟3)

]︁
𝑒𝛼0+

[︁
𝑟
(︀
1−𝑎𝑏Ω𝑏

)︀
𝑎𝑎(𝑢)+

1

2
𝑟2𝑎̇𝑎(𝑢)+

1

2
𝑟2𝑅𝑎

0𝑏0(𝑢)Ω
𝑏+𝑂(𝑟3)

]︁
𝑒𝛼𝑎 . (11.7)

Similarly, we have

𝑒𝛼𝑎 = 𝑝𝛼𝑎 (𝑢) + 𝑝̇𝛼𝑎 (𝑢)Δ +
1

2
𝑝𝛼𝑎 (𝑢)Δ

2 +𝑂(Δ3),

with

𝑝̇𝛼𝑎 (𝑢) = 𝑔𝛼𝛼′;𝛽′𝑒𝛼
′

𝑎 𝑢
𝛽′

+
(︀
𝑔𝛼𝛼′𝑢𝛼

′)︀(︀
𝑎𝛽′𝑒𝛽

′

𝑎

)︀
=
[︁
𝑎𝑎 +

1

2
𝑟𝑅𝑎0𝑏0Ω

𝑏 +𝑂(𝑟2)
]︁
𝑒𝛼0 +

[︁
−1

2
𝑟𝑅𝑏

𝑎0𝑐Ω
𝑐 +𝑂(𝑟2)

]︁
𝑒𝛼𝑏 ,

𝑝𝛼𝑎 (𝑢) = 𝑔𝛼𝛼′;𝛽′𝛾′𝑒𝛼
′

𝑎 𝑢
𝛽′
𝑢𝛾

′
+ 𝑔𝛼𝛼′;𝛽′

(︀
2𝑢𝛼

′
𝑢𝛽

′
𝑎𝛾′𝑒𝛾

′

𝑎 + 𝑒𝛼
′

𝑎 𝑎
𝛽′)︀

+
(︀
𝑔𝛼𝛼′𝑎𝛼

′)︀(︀
𝑎𝛽′𝑒𝛽

′

𝑎

)︀
+
(︀
𝑔𝛼𝛼′𝑢𝛼

′)︀(︀
𝑎̇𝛽′𝑒𝛽

′

𝑎

)︀
=
[︁
𝑎̇𝑎 +𝑂(𝑟)

]︁
𝑒𝛼0 +

[︁
𝑎𝑎𝑎

𝑏 +𝑂(𝑟)
]︁
𝑒𝛼𝑏 ,

and all this gives

𝑒𝛼𝑎 =
[︁
𝛿𝑏𝑎 +

1

2
𝑟2𝑎𝑏(𝑢)𝑎𝑎(𝑢)−

1

2
𝑟2𝑅𝑏

𝑎0𝑐(𝑢)Ω
𝑐 +𝑂(𝑟3)

]︁
𝑒𝛼𝑏

+
[︁
𝑟
(︀
1− 𝑟𝑎𝑏Ω

𝑏
)︀
𝑎𝑎(𝑢) +

1

2
𝑟2𝑎̇𝑎(𝑢) +

1

2
𝑟2𝑅𝑎0𝑏0(𝑢)Ω

𝑏 +𝑂(𝑟3)
]︁
𝑒𝛼0 . (11.8)

We now turn to the decomposition of (𝑒𝛼0 , 𝑒
𝛼
𝑎 ) in the tetrad (𝑒𝛼0 , 𝑒

𝛼
𝑎 ) associated with the simul-

taneous point 𝑧(𝑡). This decomposition will be expressed in the Fermi normal coordinates as an
expansion in powers of 𝑠. Here, as in Section 9.2, we shall express quantities at 𝑧(𝑢) in terms of
quantities at 𝑧(𝑡). We begin with

𝑒𝛼0 = 𝑝𝛼(𝑡)− 𝑝̇𝛼(𝑡)Δ +
1

2
𝑝𝛼(𝑡)Δ2 +𝑂(Δ3)

and we evaluate the derivatives of 𝑝𝛼(𝜏) at 𝜏 = 𝑡. To accomplish this we rely on our previous
results (replacing primed indices with barred indices), on the expansions of Eq. (6.11), and on the
decomposition of 𝑔𝛼𝛼̄(𝑥, 𝑥̄) in the tetrads at 𝑥 and 𝑥̄. This gives

𝑝̇𝛼(𝑡) =
[︁
𝑎𝑎 +

1

2
𝑠𝑅𝑎

0𝑏0𝜔
𝑏 +𝑂(𝑠2)

]︁
𝑒𝛼𝑎 ,

𝑝𝛼(𝑡) =
[︁
−𝑎̇0 +𝑂(𝑠)

]︁
𝑒𝛼0 +

[︁
𝑎̇𝑎 +𝑂(𝑠)

]︁
𝑒𝛼𝑎 ,

and we finally obtain

𝑒𝛼0 =
[︁
1− 1

2
𝑠2𝑎̇0(𝑡) +𝑂(𝑠3)

]︁
𝑒𝛼0 +

[︁
−𝑠
(︁
1− 1

2
𝑠𝑎𝑏𝜔

𝑏
)︁
𝑎𝑎(𝑡) +

1

2
𝑠2𝑎̇𝑎(𝑡)− 1

2
𝑠2𝑅𝑎

0𝑏0(𝑡)𝜔
𝑏 +𝑂(𝑠3)

]︁
𝑒𝛼𝑎 .

(11.9)
Similarly, we write

𝑒𝛼𝑎 = 𝑝𝛼𝑎 (𝑡)− 𝑝̇𝛼𝑎 (𝑡)Δ +
1

2
𝑝𝛼𝑎 (𝑡)Δ

2 +𝑂(Δ3),

in which we substitute

𝑝̇𝛼𝑎 (𝑡) =
[︁
𝑎𝑎 +

1

2
𝑠𝑅𝑎0𝑏0𝜔

𝑏 +𝑂(𝑠2)
]︁
𝑒𝛼0 +

[︁
−1

2
𝑠𝑅𝑏

𝑎0𝑐𝜔
𝑐 +𝑂(𝑠2)

]︁
𝑒𝛼𝑏 ,

𝑝𝛼𝑎 (𝑡) =
[︁
𝑎̇𝑎 +𝑂(𝑠)

]︁
𝑒𝛼0 +

[︁
𝑎𝑎𝑎

𝑏 +𝑂(𝑠)
]︁
𝑒𝛼𝑏 ,
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as well as Eq. (11.4) for Δ := 𝑡− 𝑢. Our final result is

𝑒𝛼𝑎 =
[︁
𝛿𝑏𝑎 +

1

2
𝑠2𝑎𝑏(𝑡)𝑎𝑎(𝑡) +

1

2
𝑠2𝑅𝑏

𝑎0𝑐(𝑡)𝜔
𝑐 +𝑂(𝑠3)

]︁
𝑒𝛼𝑏

+
[︁
−𝑠
(︁
1− 1

2
𝑠𝑎𝑏𝜔

𝑏
)︁
𝑎𝑎(𝑡) +

1

2
𝑠2𝑎̇𝑎(𝑡)−

1

2
𝑠2𝑅𝑎0𝑏0(𝑢)𝜔

𝑏 +𝑂(𝑠3)
]︁
𝑒𝛼0 . (11.10)

11.4 Advanced point

It will prove convenient to introduce on the world line, along with the retarded and simultaneous
points, an advanced point associated with the field point 𝑥. The advanced point will be denoted
𝑥′′ := 𝑧(𝑣), with 𝑣 denoting the value of the proper-time parameter at 𝑥′′; to tensors at this point
we assign indices 𝛼′′, 𝛽′′, etc. The advanced point is linked to 𝑥 by a past-directed null geodesic
(refer back to Figure 8), and it can be located by solving 𝜎(𝑥, 𝑥′′) = 0 together with the requirement
that 𝜎𝛼′′

(𝑥, 𝑥′′) be a future-directed null vector. The affine-parameter distance between 𝑥 and 𝑥′′

along the null geodesic is given by
𝑟adv = −𝜎𝛼′′𝑢𝛼

′′
, (11.11)

and we shall call this the advanced distance between 𝑥 and the world line. Notice that 𝑟adv is a
positive quantity.

We wish first to find an expression for 𝑣 in terms of the retarded coordinates of 𝑥. For this
purpose we define Δ′ := 𝑣 − 𝑢 and re-introduce the function 𝜎(𝜏) := 𝜎(𝑥, 𝑧(𝜏)) first considered in
Section 11.2. We have that 𝜎(𝑣) = 𝜎(𝑢) = 0, and Δ′ can ultimately be obtained by expressing 𝜎(𝑣)
as 𝜎(𝑢+Δ′) and expanding in powers of Δ′. Recalling that 𝜎̇(𝜏) = 𝑝(𝜏), we have

𝜎(𝑣) = 𝜎(𝑢) + 𝑝(𝑢)Δ′ +
1

2
𝑝̇(𝑢)Δ′2 +

1

6
𝑝(𝑢)Δ′3 +

1

24
𝑝(3)(𝑢)Δ′4 +𝑂(Δ′5).

Using the expressions for the derivatives of 𝑝(𝜏) that were first obtained in Section 11.1, we write
this as

𝑟 =
1

2

[︁
1 + 𝑟𝑎𝑎Ω

𝑎 +
1

3
𝑟2𝑆 +𝑂(𝑟3)

]︁
Δ′ +

1

6
𝑟
[︁
𝑎̇0 + 𝑎̇𝑎Ω

𝑎 +𝑂(𝑟)
]︁
Δ′2 − 1

24

[︁
𝑎̇0 +𝑂(𝑟)

]︁
Δ′3 +𝑂(Δ′4).

Solving for Δ′ as an expansion in powers of 𝑟, we obtain

𝑣 = 𝑢+2𝑟

{︂
1− 𝑟𝑎𝑎(𝑢)Ω

𝑎+ 𝑟2
[︀
𝑎𝑎(𝑢)Ω

𝑎
]︀2− 1

3
𝑟2𝑎̇0(𝑢)−

2

3
𝑟2𝑎̇𝑎(𝑢)Ω

𝑎− 1

3
𝑟2𝑅𝑎0𝑏0(𝑢)Ω

𝑎Ω𝑏+𝑂(𝑟3)

}︂
,

(11.12)
in which all frame components are evaluated at the retarded point 𝑧(𝑢).

Our next task is to derive an expression for the advanced distance 𝑟adv. For this purpose we
observe that 𝑟adv = −𝑝(𝑣) = −𝑝(𝑢+Δ′), which we can expand in powers of Δ′ := 𝑣−𝑢. This gives

𝑟adv = −𝑝(𝑢)− 𝑝̇(𝑢)Δ′ − 1

2
𝑝(𝑢)Δ′2 − 1

6
𝑝(3)(𝑢)Δ′3 +𝑂(Δ′4),

which then becomes

𝑟adv = −𝑟+
[︁
1+𝑟𝑎𝑎Ω

𝑎+
1

3
𝑟2𝑆+𝑂(𝑟3)

]︁
Δ′+

1

2
𝑟
[︁
𝑎̇0+ 𝑎̇𝑎Ω

𝑎+𝑂(𝑟)
]︁
Δ′2− 1

6

[︁
𝑎̇0+𝑂(𝑟)

]︁
Δ′3+𝑂(Δ′4).

After substituting Eq. (11.12) for Δ′ and witnessing a number of cancellations, we arrive at the
simple expression

𝑟adv = 𝑟

[︂
1 +

2

3
𝑟2𝑎̇𝑎(𝑢)Ω

𝑎 +𝑂(𝑟3)

]︂
. (11.13)
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From Eqs. (10.29), (10.30), and (11.12) we deduce that the gradient of the advanced time 𝑣 is
given by

𝜕𝛼𝑣 =
[︁
1− 2𝑟𝑎𝑎Ω

𝑎 +𝑂(𝑟2)
]︁
𝑒0𝛼+

[︁
Ω𝑎 − 2𝑟𝑎𝑎 +𝑂(𝑟2)

]︁
𝑒𝑎𝛼, (11.14)

where the expansion in powers of 𝑟 was truncated to a sufficient number of terms. Similarly,
Eqs. (10.30), (10.31), and (11.13) imply that the gradient of the advanced distance is given by

𝜕𝛼𝑟adv =
[︁(︁

1 + 𝑟𝑎𝑏Ω
𝑏 +

4

3
𝑟2𝑎̇𝑏Ω

𝑏 +
1

3
𝑟2𝑆

)︁
Ω𝑎 +

2

3
𝑟2𝑎̇𝑎 +

1

6
𝑟2𝑆𝑎 +𝑂(𝑟3)

]︁
𝑒𝑎𝛼

+
[︁
−𝑟𝑎𝑎Ω𝑎 − 1

2
𝑟2𝑆 +𝑂(𝑟3)

]︁
𝑒0𝛼, (11.15)

where 𝑆𝑎 and 𝑆 were first introduced in Eqs. (10.24) and (10.25), respectively. We emphasize that
in Eqs. (11.14) and (11.15), all frame components are evaluated at the retarded point 𝑧(𝑢).

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7

http://www.livingreviews.org/lrr-2011-7


76 Eric Poisson, Adam Pound and Ian Vega

Part III: Green’s Functions

12 Scalar Green’s functions in flat spacetime

12.1 Green’s equation for a massive scalar field

To prepare the way for our discussion of Green’s functions in curved spacetime, we consider first
the slightly nontrivial case of a massive scalar field Φ(𝑥) in flat spacetime. This field satisfies the
wave equation

(�− 𝑘2)Φ(𝑥) = −4𝜋𝜇(𝑥), (12.1)

where � = 𝜂𝛼𝛽𝜕𝛼𝜕𝛽 is the wave operator, 𝜇(𝑥) a prescribed source, and where the parameter 𝑘
has a dimension of inverse length. We seek a Green’s function 𝐺(𝑥, 𝑥′) such that a solution to
Eq. (12.1) can be expressed as

Φ(𝑥) =

∫︁
𝐺(𝑥, 𝑥′)𝜇(𝑥′) 𝑑4𝑥′, (12.2)

where the integration is over all of Minkowski spacetime. The relevant wave equation for the
Green’s function is

(�− 𝑘2)𝐺(𝑥, 𝑥′) = −4𝜋𝛿4(𝑥− 𝑥′), (12.3)

where 𝛿4(𝑥 − 𝑥′) = 𝛿(𝑡 − 𝑡′)𝛿(𝑥 − 𝑥′)𝛿(𝑦 − 𝑦′)𝛿(𝑧 − 𝑧′) is a four-dimensional Dirac distribution in
flat spacetime. Two types of Green’s functions will be of particular interest: the retarded Green’s
function, a solution to Eq. (12.3) with the property that it vanishes when 𝑥 is in the past of 𝑥′,
and the advanced Green’s function, which vanishes when 𝑥 is in the future of 𝑥′.

To solve Eq. (12.3) we appeal to Lorentz invariance and the fact that the spacetime is homo-
geneous to argue that the retarded and advanced Green’s functions must be given by expressions
of the form

𝐺ret(𝑥, 𝑥
′) = 𝜃(𝑡− 𝑡′)𝑔(𝜎), 𝐺adv(𝑥, 𝑥

′) = 𝜃(𝑡′ − 𝑡)𝑔(𝜎), (12.4)

where 𝜎 = 1
2𝜂𝛼𝛽(𝑥 − 𝑥′)𝛼(𝑥 − 𝑥′)𝛽 is Synge’s world function in flat spacetime, and where 𝑔(𝜎)

is a function to be determined. For the remainder of this section we set 𝑥′ = 0 without loss of
generality.

12.2 Integration over the source

The Dirac functional on the right-hand side of Eq. (12.3) is a highly singular quantity, and we can
avoid dealing with it by integrating the equation over a small four-volume 𝑉 that contains 𝑥′ ≡ 0.
This volume is bounded by a closed hypersurface 𝜕𝑉 . After using Gauss’ theorem on the first term
of Eq. (12.3), we obtain

∮︀
𝜕𝑉

𝐺;𝛼𝑑Σ𝛼 − 𝑘2
∫︀
𝑉
𝐺𝑑𝑉 = −4𝜋, where 𝑑Σ𝛼 is a surface element on 𝜕𝑉 .

Assuming that the integral of 𝐺 over 𝑉 goes to zero in the limit 𝑉 → 0, we have

lim
𝑉→0

∮︁
𝜕𝑉

𝐺;𝛼𝑑Σ𝛼 = −4𝜋. (12.5)

It should be emphasized that the four-volume 𝑉 must contain the point 𝑥′.
To examine Eq. (12.5) we introduce coordinates (𝑤,𝜒, 𝜃, 𝜑) defined by

𝑡 = 𝑤 cos𝜒, 𝑥 = 𝑤 sin𝜒 sin 𝜃 cos𝜑, 𝑦 = 𝑤 sin𝜒 sin 𝜃 sin𝜑, 𝑧 = 𝑤 sin𝜒 cos 𝜃,

and we let 𝜕𝑉 be a surface of constant 𝑤. The metric of flat spacetime is given by

𝑑𝑠2 = − cos 2𝜒𝑑𝑤2 + 2𝑤 sin 2𝜒𝑑𝑤𝑑𝜒+ 𝑤2 cos 2𝜒𝑑𝜒2 + 𝑤2 sin2 𝜒𝑑Ω2
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in the new coordinates, where 𝑑Ω2 = 𝑑𝜃2 + sin2 𝜃 𝑑𝜑2. Notice that 𝑤 is a timelike coordinate
when cos 2𝜒 > 0, and that 𝜒 is then a spacelike coordinate; the roles are reversed when cos 2𝜒 <
0. Straightforward computations reveal that in these coordinates, 𝜎 = − 1

2𝑤
2 cos 2𝜒,

√−𝑔 =

𝑤3 sin2 𝜒 sin 𝜃, 𝑔𝑤𝑤 = − cos 2𝜒, 𝑔𝑤𝜒 = 𝑤−1 sin 2𝜒, 𝑔𝜒𝜒 = 𝑤−2 cos 2𝜒, and the only nonvanishing
component of the surface element is 𝑑Σ𝑤 = 𝑤3 sin2 𝜒𝑑𝜒𝑑Ω, where 𝑑Ω = sin 𝜃 𝑑𝜃𝑑𝜑. To calculate
the gradient of the Green’s function we express it as 𝐺 = 𝜃(±𝑡)𝑔(𝜎) = 𝜃(±𝑤 cos𝜒)𝑔(− 1

2𝑤
2 cos 2𝜒),

with the upper (lower) sign belonging to the retarded (advanced) Green’s function. Calculation
gives 𝐺;𝛼𝑑Σ𝛼 = 𝜃(± cos𝜒)𝑤4 sin2 𝜒𝑔′(𝜎) 𝑑𝜒𝑑Ω, with a prime indicating differentiation with respect
to 𝜎; it should be noted that derivatives of the step function do not appear in this expression.

Integration of 𝐺;𝛼𝑑Σ𝛼 with respect to 𝑑Ω is immediate, and we find that Eq. (12.5) reduces to

lim
𝑤→0

∫︁ 𝜋

0

𝜃(± cos𝜒)𝑤4 sin2 𝜒𝑔′(𝜎) 𝑑𝜒 = −1. (12.6)

For the retarded Green’s function, the step function restricts the domain of integration to 0 < 𝜒 <
𝜋/2, in which 𝜎 increases from − 1

2𝑤
2 to 1

2𝑤
2. Changing the variable of integration from 𝜒 to 𝜎

transforms Eq. (12.6) into

lim
𝜖→0

𝜖

∫︁ 𝜖

−𝜖

𝑤(𝜎/𝜖) 𝑔′(𝜎) 𝑑𝜎 = −1, 𝑤(𝜉) :=

√︃
1 + 𝜉

1− 𝜉
, (12.7)

where 𝜖 := 1
2𝑤

2. For the advanced Green’s function, the domain of integration is 𝜋/2 < 𝜒 < 𝜋,
in which 𝜎 decreases from 1

2𝑤
2 to − 1

2𝑤
2. Changing the variable of integration from 𝜒 to 𝜎 also

produces Eq. (12.7).

12.3 Singular part of 𝑔(𝜎)

We have seen that Eq. (12.7) properly encodes the influence of the singular source term on both
the retarded and advanced Green’s function. The function 𝑔(𝜎) that enters into the expressions
of Eq. (12.4) must therefore be such that Eq. (12.7) is satisfied. It follows immediately that 𝑔(𝜎)
must be a singular function, because for a smooth function the integral of Eq. (12.7) would be of
order 𝜖 and the left-hand side of Eq. (12.7) could never be made equal to −1. The singularity,
however, must be integrable, and this leads us to assume that 𝑔′(𝜎) must be made out of Dirac
𝛿-functions and derivatives.

We make the ansatz

𝑔(𝜎) = 𝑉 (𝜎)𝜃(−𝜎) +𝐴𝛿(𝜎) +𝐵𝛿′(𝜎) + 𝐶𝛿′′(𝜎) + · · · , (12.8)

where 𝑉 (𝜎) is a smooth function, and 𝐴, 𝐵, 𝐶, . . . are constants. The first term represents a
function supported within the past and future light cones of 𝑥′ ≡ 0; we exclude a term proportional
to 𝜃(𝜎) for reasons of causality. The other terms are supported on the past and future light cones.
It is sufficient to take the coefficients in front of the 𝛿-functions to be constants. To see this we
invoke the distributional identities

𝜎𝛿(𝜎) = 0 → 𝜎𝛿′(𝜎) + 𝛿(𝜎) = 0 → 𝜎𝛿′′(𝜎) + 2𝛿′(𝜎) = 0 → · · · (12.9)

from which it follows that 𝜎2𝛿′(𝜎) = 𝜎3𝛿′′(𝜎) = · · · = 0. A term like 𝑓(𝜎)𝛿(𝜎) is then distribution-
ally equal to 𝑓(0)𝛿(𝜎), while a term like 𝑓(𝜎)𝛿′(𝜎) is distributionally equal to 𝑓(0)𝛿′(𝜎)−𝑓 ′(0)𝛿(𝜎),
and a term like 𝑓(𝜎)𝛿′′(𝜎) is distributionally equal to 𝑓(0)𝛿′′(𝜎) − 2𝑓 ′(0)𝛿′(𝜎) + 2𝑓 ′′(0)𝛿(𝜎); here
𝑓(𝜎) is an arbitrary test function. Summing over such terms, we recover an expression of the form
of Eq. (12.9), and there is no need to make 𝐴, 𝐵, 𝐶, . . . functions of 𝜎.
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Differentiation of Eq. (12.8) and substitution into Eq. (12.7) yields

𝜖

∫︁ 𝜖

−𝜖

𝑤(𝜎/𝜖) 𝑔′(𝜎) 𝑑𝜎 = 𝜖

[︂∫︁ 𝜖

−𝜖

𝑉 ′(𝜎)𝑤(𝜎/𝜖) 𝑑𝜎 − 𝑉 (0)𝑤(0)− 𝐴

𝜖
𝑤̇(0) +

𝐵

𝜖2
𝑤̈(0)− 𝐶

𝜖3
𝑤(3)(0) + · · ·

]︂
,

where overdots (or a number within brackets) indicate repeated differentiation with respect to
𝜉 := 𝜎/𝜖. The limit 𝜖 → 0 exists if and only if 𝐵 = 𝐶 = · · · = 0. In the limit we must then have
𝐴𝑤̇(0) = 1, which implies 𝐴 = 1. We conclude that 𝑔(𝜎) must have the form of

𝑔(𝜎) = 𝛿(𝜎) + 𝑉 (𝜎)𝜃(−𝜎), (12.10)

with 𝑉 (𝜎) a smooth function that cannot be determined from Eq. (12.7) alone.

12.4 Smooth part of 𝑔(𝜎)

To determine 𝑉 (𝜎) we must go back to the differential equation of Eq. (12.3). Because the singular
structure of the Green’s function is now under control, we can safely set 𝑥 ̸= 𝑥′ ≡ 0 in the
forthcoming operations. This means that the equation to solve is in fact (� − 𝑘2)𝑔(𝜎) = 0, the
homogeneous version of Eq. (12.3). We have ∇𝛼𝑔 = 𝑔′𝜎𝛼, ∇𝛼∇𝛽𝑔 = 𝑔′′𝜎𝛼𝜎𝛽 + 𝑔′𝜎𝛼𝛽 , �𝑔 =
2𝜎𝑔′′ + 4𝑔′, so that Green’s equation reduces to the ordinary differential equation

2𝜎𝑔′′ + 4𝑔′ − 𝑘2𝑔 = 0. (12.11)

If we substitute Eq. (12.10) into this we get

−(2𝑉 + 𝑘2)𝛿(𝜎) + (2𝜎𝑉 ′′ + 4𝑉 ′ − 𝑘2𝑉 )𝜃(−𝜎) = 0,

where we have used the identities of Eq. (12.9). The left-hand side will vanish as a distribution if
we set

2𝜎𝑉 ′′ + 4𝑉 ′ − 𝑘2𝑉 = 0, 𝑉 (0) = −1

2
𝑘2. (12.12)

These equations determine 𝑉 (𝜎) uniquely, even in the absence of a second boundary condition at
𝜎 = 0, because the differential equation is singular at 𝜎 = 0 while 𝑉 is known to be smooth.

To solve Eq. (12.12) we let 𝑉 = 𝐹 (𝑧)/𝑧, with 𝑧 := 𝑘
√
−2𝜎. This gives rise to Bessel’s equation

for the new function 𝐹 :
𝑧2𝐹𝑧𝑧 + 𝑧𝐹𝑧 + (𝑧2 − 1)𝐹 = 0.

The solution that is well behaved near 𝑧 = 0 is 𝐹 = 𝑎𝐽1(𝑧), where 𝑎 is a constant to be determined.
We have that 𝐽1(𝑧) ∼ 1

2𝑧 for small values of 𝑧, and it follows that 𝑉 ∼ 𝑎/2. From Eq. (12.12) we
see that 𝑎 = −𝑘2. So we have found that the only acceptable solution to Eq. (12.12) is

𝑉 (𝜎) = − 𝑘√
−2𝜎

𝐽1
(︀
𝑘
√
−2𝜎

)︀
. (12.13)

To summarize, the retarded and advanced solutions to Eq. (12.3) are given by Eq. (12.4) with
𝑔(𝜎) given by Eq. (12.10) and 𝑉 (𝜎) given by Eq. (12.13).

12.5 Advanced distributional methods

The techniques developed previously to find Green’s functions for the scalar wave equation are
limited to flat spacetime, and they would not be very useful for curved spacetimes. To pursue
this generalization we must introduce more powerful distributional methods. We do so in this
subsection, and in the next we shall use them to recover our previous results.
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Let 𝜃+(𝑥,Σ) be a generalized step function, defined to be one when 𝑥 is in the future of the
spacelike hypersurface Σ and zero otherwise. Similarly, define 𝜃−(𝑥,Σ) := 1 − 𝜃+(𝑥,Σ) to be one
when 𝑥 is in the past of the spacelike hypersurface Σ and zero otherwise. Then define the light-cone
step functions

𝜃±(−𝜎) = 𝜃±(𝑥,Σ)𝜃(−𝜎), 𝑥′ ∈ Σ, (12.14)

so that 𝜃+(−𝜎) is one if 𝑥 is within 𝐼+(𝑥′), the chronological future of 𝑥′, and zero otherwise, and
𝜃−(−𝜎) is one if 𝑥 is within 𝐼−(𝑥′), the chronological past of 𝑥′, and zero otherwise; the choice of
hypersurface is immaterial so long as Σ is spacelike and contains the reference point 𝑥′. Notice
that 𝜃+(−𝜎) + 𝜃−(−𝜎) = 𝜃(−𝜎). Define also the light-cone Dirac functionals

𝛿±(𝜎) = 𝜃±(𝑥,Σ)𝛿(𝜎), 𝑥′ ∈ Σ, (12.15)

so that 𝛿+(𝜎), when viewed as a function of 𝑥, is supported on the future light cone of 𝑥′, while
𝛿−(𝜎) is supported on its past light cone. Notice that 𝛿+(𝜎) + 𝛿−(𝜎) = 𝛿(𝜎). In Eqs. (12.14) and
(12.15), 𝜎 is the world function for flat spacetime; it is negative when 𝑥 and 𝑥′ are timelike related,
and positive when they are spacelike related.

The distributions 𝜃±(−𝜎) and 𝛿±(𝜎) are not defined at 𝑥 = 𝑥′ and they cannot be differentiated
there. This pathology can be avoided if we shift 𝜎 by a small positive quantity 𝜖. We can therefore
use the distributions 𝜃±(−𝜎 − 𝜖) and 𝛿±(𝜎 + 𝜖) in some sensitive computations, and then take
the limit 𝜖 → 0+. Notice that the equation 𝜎 + 𝜖 = 0 describes a two-branch hyperboloid that
is located just within the light cone of the reference point 𝑥′. The hyperboloid does not include
𝑥′, and 𝜃+(𝑥,Σ) is one everywhere on its future branch, while 𝜃−(𝑥,Σ) is one everywhere on
its past branch. These factors, therefore, become invisible to differential operators. For example,
𝜃′+(−𝜎−𝜖) = 𝜃+(𝑥,Σ)𝜃

′(−𝜎−𝜖) = −𝜃+(𝑥,Σ)𝛿(𝜎+𝜖) = −𝛿+(𝜎+𝜖). This manipulation shows that
after the shift from 𝜎 to 𝜎+𝜖, the distributions of Eqs. (12.14) and (12.15) can be straightforwardly
differentiated with respect to 𝜎.

In the next paragraphs we shall establish the distributional identities

lim
𝜖→0+

𝜖𝛿±(𝜎 + 𝜖) = 0, (12.16)

lim
𝜖→0+

𝜖𝛿′±(𝜎 + 𝜖) = 0, (12.17)

lim
𝜖→0+

𝜖𝛿′′±(𝜎 + 𝜖) = 2𝜋𝛿4(𝑥− 𝑥′) (12.18)

in four-dimensional flat spacetime. These will be used in the next subsection to recover the Green’s
functions for the scalar wave equation, and they will be generalized to curved spacetime in Sec-
tion 13.

The derivation of Eqs. (12.16) – (12.18) relies on a “master” distributional identity, formulated
in three-dimensional flat space:

lim
𝜖→0+

𝜖

𝑅5
=

2𝜋

3
𝛿3(𝑥), 𝑅 :=

√︀
𝑟2 + 2𝜖, (12.19)

with 𝑟 := |𝑥| :=
√︀
𝑥2 + 𝑦2 + 𝑧2. This follows from yet another identity, ∇2𝑟−1 = −4𝜋𝛿3(𝑥), in

which we write the left-hand side as lim𝜖→0+ ∇2𝑅−1; since 𝑅−1 is nonsingular at 𝑥 = 0 it can
be straightforwardly differentiated, and the result is ∇2𝑅−1 = −6𝜖/𝑅5, from which Eq. (12.19)
follows.

To prove Eq. (12.16) we must show that 𝜖𝛿±(𝜎 + 𝜖) vanishes as a distribution in the limit
𝜖→ 0+. For this we must prove that a functional of the form

𝐴±[𝑓 ] = lim
𝜖→0+

∫︁
𝜖𝛿±(𝜎 + 𝜖)𝑓(𝑥) 𝑑4𝑥,
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where 𝑓(𝑥) = 𝑓(𝑡,𝑥) is a smooth test function, vanishes for all such functions 𝑓 . Our first task
will be to find a more convenient expression for 𝛿±(𝜎 + 𝜖). Once more we set 𝑥′ = 0 (without loss
of generality) and we note that 2(𝜎 + 𝜖) = −𝑡2 + 𝑟2 + 2𝜖 = −(𝑡 − 𝑅)(𝑡 + 𝑅), where we have used
Eq. (12.19). It follows that

𝛿±(𝜎 + 𝜖) =
𝛿(𝑡∓𝑅)

𝑅
, (12.20)

and from this we find

𝐴±[𝑓 ] = lim
𝜖→0+

∫︁
𝜖
𝑓(±𝑅,𝑥)

𝑅
𝑑3𝑥 = lim

𝜖→0+

∫︁
𝜖

𝑅5
𝑅4𝑓(±𝑅,𝑥) 𝑑3𝑥 =

2𝜋

3

∫︁
𝛿3(𝑥)𝑟

4𝑓(±𝑟,𝑥) 𝑑3𝑥 = 0,

which establishes Eq. (12.16).
The validity of Eq. (12.17) is established by a similar computation. Here we must show that a

functional of the form

𝐵±[𝑓 ] = lim
𝜖→0+

∫︁
𝜖𝛿′±(𝜎 + 𝜖)𝑓(𝑥) 𝑑4𝑥

vanishes for all test functions 𝑓 . We have

𝐵±[𝑓 ] = lim
𝜖→0+

𝜖
𝑑

𝑑𝜖

∫︁
𝛿±(𝜎 + 𝜖)𝑓(𝑥) 𝑑4𝑥 = lim

𝜖→0+
𝜖
𝑑

𝑑𝜖

∫︁
𝑓(±𝑅,𝑥)

𝑅
𝑑3𝑥 = lim

𝜖→0+
𝜖

∫︁ (︂
± 𝑓

𝑅2
− 𝑓

𝑅3

)︂
𝑑3𝑥

= lim
𝜖→0+

∫︁
𝜖

𝑅5

(︀
±𝑅3𝑓 −𝑅2𝑓

)︀
𝑑3𝑥 =

2𝜋

3

∫︁
𝛿3(𝑥)

(︀
±𝑟3𝑓 − 𝑟2𝑓

)︀
𝑑3𝑥 = 0,

and the identity of Eq. (12.17) is proved. In these manipulations we have let an overdot indicate
partial differentiation with respect to 𝑡, and we have used 𝜕𝑅/𝜕𝜖 = 1/𝑅.

To establish Eq. (12.18) we consider the functional

𝐶±[𝑓 ] = lim
𝜖→0+

∫︁
𝜖𝛿′′±(𝜎 + 𝜖)𝑓(𝑥) 𝑑4𝑥

and show that it evaluates to 2𝜋𝑓(0,0). We have

𝐶±[𝑓 ] = lim
𝜖→0+

𝜖
𝑑2

𝑑𝜖2

∫︁
𝛿±(𝜎 + 𝜖)𝑓(𝑥) 𝑑4𝑥 = lim

𝜖→0+
𝜖
𝑑2

𝑑𝜖2

∫︁
𝑓(±𝑅,𝑥)

𝑅
𝑑3𝑥

= lim
𝜖→0+

𝜖

∫︁ (︂
𝑓

𝑅3
∓ 3

𝑓

𝑅4
+ 3

𝑓

𝑅5

)︂
𝑑3𝑥 = 2𝜋

∫︁
𝛿3(𝑥)

(︂
1

3
𝑟2𝑓 ± 𝑟𝑓 + 𝑓

)︂
𝑑3𝑥

= 2𝜋𝑓(0,0),

as required. This proves that Eq. (12.18) holds as a distributional identity in four-dimensional flat
spacetime.

12.6 Alternative computation of the Green’s functions

The retarded and advanced Green’s functions for the scalar wave equation are now defined as the
limit of the functions 𝐺𝜖

±(𝑥, 𝑥
′) when 𝜖→ 0+. For these we make the ansatz

𝐺𝜖
±(𝑥, 𝑥

′) = 𝛿±(𝜎 + 𝜖) + 𝑉 (𝜎)𝜃±(−𝜎 − 𝜖), (12.21)

and we shall prove that 𝐺𝜖
±(𝑥, 𝑥

′) satisfies Eq. (12.3) in the limit. We recall that the distributions
𝜃± and 𝛿± were defined in the preceding subsection, and we assume that 𝑉 (𝜎) is a smooth function
of 𝜎(𝑥, 𝑥′) = 1

2𝜂𝛼𝛽(𝑥−𝑥′)𝛼(𝑥−𝑥′)𝛽 ; because this function is smooth, it is not necessary to evaluate
𝑉 at 𝜎+ 𝜖 in Eq. (12.21). We recall also that 𝜃+ and 𝛿+ are nonzero when 𝑥 is in the future of 𝑥′,
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while 𝜃− and 𝛿− are nonzero when 𝑥 is in the past of 𝑥′. We will therefore prove that the retarded
and advanced Green’s functions are of the form

𝐺ret(𝑥, 𝑥
′) = lim

𝜖→0+
𝐺𝜖

+(𝑥, 𝑥
′) = 𝜃+(𝑥,Σ)

[︀
𝛿(𝜎) + 𝑉 (𝜎)𝜃(−𝜎)

]︀
(12.22)

and
𝐺adv(𝑥, 𝑥

′) = lim
𝜖→0+

𝐺𝜖
−(𝑥, 𝑥

′) = 𝜃−(𝑥,Σ)
[︀
𝛿(𝜎) + 𝑉 (𝜎)𝜃(−𝜎)

]︀
, (12.23)

where Σ is a spacelike hypersurface that contains 𝑥′. We will also determine the form of the
function 𝑉 (𝜎).

The functions that appear in Eq. (12.21) can be straightforwardly differentiated. The ma-
nipulations are similar to what was done in Section 12.4, and dropping all labels, we obtain
(� − 𝑘2)𝐺 = 2𝜎𝐺′′ + 4𝐺′ − 𝑘2𝐺, with a prime indicating differentiation with respect to 𝜎. From
Eq. (12.21) we obtain 𝐺′ = 𝛿′ − 𝑉 𝛿 + 𝑉 ′𝜃 and 𝐺′′ = 𝛿′′ − 𝑉 𝛿′ − 2𝑉 ′𝛿 + 𝑉 ′′𝜃. The identities of
Eq. (12.9) can be expressed as (𝜎 + 𝜖)𝛿′(𝜎 + 𝜖) = −𝛿(𝜎 + 𝜖) and (𝜎 + 𝜖)𝛿′′(𝜎 + 𝜖) = −2𝛿′(𝜎 + 𝜖),
and combining this with our previous results gives

(�− 𝑘2)𝐺𝜖
±(𝑥, 𝑥

′) = (−2𝑉 − 𝑘2)𝛿±(𝜎 + 𝜖) + (2𝜎𝑉 ′′ + 4𝑉 ′ − 𝑘2𝑉 )𝜃±(−𝜎 − 𝜖)

− 2𝜖𝛿′′±(𝜎 + 𝜖) + 2𝑉 𝜖𝛿′±(𝜎 + 𝜖) + 4𝑉 ′𝜖𝛿±(𝜎 + 𝜖).

According to Eq. (12.16) – (12.18), the last two terms on the right-hand side disappear in the limit
𝜖→ 0+, and the third term becomes −4𝜋𝛿4(𝑥− 𝑥′). Provided that the first two terms vanish also,
we recover (�− 𝑘2)𝐺(𝑥, 𝑥′) = −4𝜋𝛿4(𝑥−𝑥′) in the limit, as required. Thus, the limit of 𝐺𝜖

±(𝑥, 𝑥
′)

when 𝜖→ 0+ will indeed satisfy Green’s equation provided that 𝑉 (𝜎) is a solution to

2𝜎𝑉 ′′ + 4𝑉 ′ − 𝑘2𝑉 = 0, 𝑉 (0) = −1

2
𝑘2; (12.24)

these are the same statements as in Eq. (12.12). The solution to these equations was produced in
Eq. (12.13):

𝑉 (𝜎) = − 𝑘√
−2𝜎

𝐽1
(︀
𝑘
√
−2𝜎

)︀
, (12.25)

and this completely determines the Green’s functions of Eqs. (12.22) and (12.23).

13 Distributions in curved spacetime

The distributions introduced in Section 12.5 can also be defined in a four-dimensional spacetime
with metric 𝑔𝛼𝛽 . Here we produce the relevant generalizations of the results derived in that section.

13.1 Invariant Dirac distribution

We first introduce 𝛿4(𝑥, 𝑥
′), an invariant Dirac functional in a four-dimensional curved spacetime.

This is defined by the relations∫︁
𝑉

𝑓(𝑥)𝛿4(𝑥, 𝑥
′)
√−𝑔 𝑑4𝑥 = 𝑓(𝑥′),

∫︁
𝑉 ′
𝑓(𝑥′)𝛿4(𝑥, 𝑥

′)
√︀
−𝑔′ 𝑑4𝑥′ = 𝑓(𝑥), (13.1)

where 𝑓(𝑥) is a smooth test function, 𝑉 any four-dimensional region that contains 𝑥′, and 𝑉 ′ any
four-dimensional region that contains 𝑥. These relations imply that 𝛿4(𝑥, 𝑥

′) is symmetric in its
arguments, and it is easy to see that

𝛿4(𝑥, 𝑥
′) =

𝛿4(𝑥− 𝑥′)√−𝑔 =
𝛿4(𝑥− 𝑥′)√−𝑔′ = (𝑔𝑔′)−1/4𝛿4(𝑥− 𝑥′), (13.2)
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where 𝛿4(𝑥− 𝑥′) = 𝛿(𝑥0 − 𝑥′0)𝛿(𝑥1 − 𝑥′1)𝛿(𝑥2 − 𝑥′2)𝛿(𝑥3 − 𝑥′3) is the ordinary (coordinate) four-
dimensional Dirac functional. The relations of Eq. (13.2) are all equivalent because 𝑓(𝑥)𝛿4(𝑥, 𝑥

′) =
𝑓(𝑥′)𝛿4(𝑥, 𝑥

′) is a distributional identity; the last form is manifestly symmetric in 𝑥 and 𝑥′.
The invariant Dirac distribution satisfies the identities

Ω···(𝑥, 𝑥
′)𝛿4(𝑥, 𝑥

′) =
[︀
Ω···
]︀
𝛿4(𝑥, 𝑥

′),

(13.3)(︀
𝑔𝛼𝛼′(𝑥, 𝑥′)𝛿4(𝑥, 𝑥

′)
)︀
;𝛼

= −𝜕𝛼′𝛿4(𝑥, 𝑥
′),

(︀
𝑔𝛼

′

𝛼(𝑥
′, 𝑥)𝛿4(𝑥, 𝑥

′)
)︀
;𝛼′ = −𝜕𝛼𝛿4(𝑥, 𝑥′),

where Ω···(𝑥, 𝑥
′) is any bitensor and 𝑔𝛼𝛼′(𝑥, 𝑥′), 𝑔𝛼

′

𝛼(𝑥, 𝑥
′) are parallel propagators. The first identity

follows immediately from the definition of the 𝛿-function. The second and third identities are
established by showing that integration against a test function 𝑓(𝑥) gives the same result from
both sides. For example, the first of the Eqs. (13.1) implies∫︁

𝑉

𝑓(𝑥)𝜕𝛼′𝛿4(𝑥, 𝑥
′)
√−𝑔 𝑑4𝑥 = 𝜕𝛼′𝑓(𝑥′),

and on the other hand,

−
∫︁
𝑉

𝑓(𝑥)
(︀
𝑔𝛼𝛼′𝛿4(𝑥, 𝑥

′)
)︀
;𝛼

√−𝑔 𝑑4𝑥 = −
∮︁
𝜕𝑉

𝑓(𝑥)𝑔𝛼𝛼′𝛿4(𝑥, 𝑥
′)𝑑Σ𝛼 +

[︀
𝑓,𝛼𝑔

𝛼
𝛼′

]︀
= 𝜕𝛼′𝑓(𝑥′),

which establishes the second identity of Eq. (13.3). Notice that in these manipulations, the inte-
grations involve scalar functions of the coordinates 𝑥; the fact that these functions are also vectors
with respect to 𝑥′ does not invalidate the procedure. The third identity of Eq. (13.3) is proved in
a similar way.

13.2 Light-cone distributions

For the remainder of Section 13 we assume that 𝑥 ∈ 𝒩 (𝑥′), so that a unique geodesic 𝛽 links these
two points. We then let 𝜎(𝑥, 𝑥′) be the curved spacetime world function, and we define light-cone
step functions by

𝜃±(−𝜎) = 𝜃±(𝑥,Σ)𝜃(−𝜎), 𝑥′ ∈ Σ, (13.4)

where 𝜃+(𝑥,Σ) is one when 𝑥 is in the future of the spacelike hypersurface Σ and zero otherwise,
and 𝜃−(𝑥,Σ) = 1 − 𝜃+(𝑥,Σ). These are immediate generalizations to curved spacetime of the
objects defined in flat spacetime by Eq. (12.14). We have that 𝜃+(−𝜎) is one when 𝑥 is within
𝐼+(𝑥′), the chronological future of 𝑥′, and zero otherwise, and 𝜃−(−𝜎) is one when 𝑥 is within
𝐼−(𝑥′), the chronological past of 𝑥′, and zero otherwise. We also have 𝜃+(−𝜎) + 𝜃−(−𝜎) = 𝜃(−𝜎).

We define the curved-spacetime version of the light-cone Dirac functionals by

𝛿±(𝜎) = 𝜃±(𝑥,Σ)𝛿(𝜎), 𝑥′ ∈ Σ, (13.5)

an immediate generalization of Eq. (12.15). We have that 𝛿+(𝜎), when viewed as a function of 𝑥,
is supported on the future light cone of 𝑥′, while 𝛿−(𝜎) is supported on its past light cone. We also
have 𝛿+(𝜎) + 𝛿−(𝜎) = 𝛿(𝜎), and we recall that 𝜎 is negative when 𝑥 and 𝑥′ are timelike related,
and positive when they are spacelike related.

For the same reasons as those mentioned in Section 12.5, it is sometimes convenient to shift
the argument of the step and 𝛿-functions from 𝜎 to 𝜎 + 𝜖, where 𝜖 is a small positive quantity.
With this shift, the light-cone distributions can be straightforwardly differentiated with respect to
𝜎. For example, 𝛿±(𝜎 + 𝜖) = −𝜃′±(−𝜎 − 𝜖), with a prime indicating differentiation with respect to
𝜎.
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We now prove that the identities of Eq. (12.16) – (12.18) generalize to

lim
𝜖→0+

𝜖𝛿±(𝜎 + 𝜖) = 0, (13.6)

lim
𝜖→0+

𝜖𝛿′±(𝜎 + 𝜖) = 0, (13.7)

lim
𝜖→0+

𝜖𝛿′′±(𝜎 + 𝜖) = 2𝜋𝛿4(𝑥, 𝑥
′) (13.8)

in a four-dimensional curved spacetime; the only differences lie with the definition of the world
function and the fact that it is the invariant Dirac functional that appears in Eq. (13.8). To
establish these identities in curved spacetime we use the fact that they hold in flat spacetime
– as was shown in Section 12.5 – and that they are scalar relations that must be valid in any
coordinate system if they are found to hold in one. Let us then examine Eqs. (13.6) – (13.7) in the
Riemann normal coordinates of Section 8; these are denoted 𝑥̂𝛼 and are based at 𝑥′. We have that
𝜎(𝑥, 𝑥′) = 1

2𝜂𝛼𝛽 𝑥̂
𝛼𝑥̂𝛽 and 𝛿4(𝑥, 𝑥

′) = Δ(𝑥, 𝑥′)𝛿4(𝑥 − 𝑥′) = 𝛿4(𝑥 − 𝑥′), where Δ(𝑥, 𝑥′) is the van
Vleck determinant, whose coincidence limit is unity. In Riemann normal coordinates, therefore,
Eqs. (13.6) – (13.8) take exactly the same form as Eqs. (12.16) – (12.18). Because the identities are
true in flat spacetime, they must be true also in curved spacetime (in Riemann normal coordinates
based at 𝑥′); and because these are scalar relations, they must be valid in any coordinate system.

14 Scalar Green’s functions in curved spacetime

14.1 Green’s equation for a massless scalar field in curved spacetime

We consider a massless scalar field Φ(𝑥) in a curved spacetime with metric 𝑔𝛼𝛽 . The field satisfies
the wave equation

(�− 𝜉𝑅)Φ(𝑥) = −4𝜋𝜇(𝑥), (14.1)

where � = 𝑔𝛼𝛽∇𝛼∇𝛽 is the wave operator, 𝑅 the Ricci scalar, 𝜉 an arbitrary coupling constant,
and 𝜇(𝑥) is a prescribed source. We seek a Green’s function 𝐺(𝑥, 𝑥′) such that a solution to
Eq. (14.1) can be expressed as

Φ(𝑥) =

∫︁
𝐺(𝑥, 𝑥′)𝜇(𝑥′)

√︀
−𝑔′ 𝑑4𝑥′, (14.2)

where the integration is over the entire spacetime. The wave equation for the Green’s function is

(�− 𝜉𝑅)𝐺(𝑥, 𝑥′) = −4𝜋𝛿4(𝑥, 𝑥
′), (14.3)

where 𝛿4(𝑥, 𝑥
′) is the invariant Dirac functional introduced in Section 13.1. It is easy to verify that

the field defined by Eq. (14.2) is truly a solution to Eq. (14.1).
We let 𝐺+(𝑥, 𝑥

′) be the retarded solution to Eq. (14.3), and 𝐺−(𝑥, 𝑥
′) is the advanced solution;

when viewed as functions of 𝑥, 𝐺+(𝑥, 𝑥
′) is nonzero in the causal future of 𝑥′, while 𝐺−(𝑥, 𝑥

′) is
nonzero in its causal past. We assume that the retarded and advanced Green’s functions exist as
distributions and can be defined globally in the entire spacetime.

14.2 Hadamard construction of the Green’s functions

Assuming throughout this subsection that 𝑥 is restricted to the normal convex neighbourhood of
𝑥′, we make the ansatz

𝐺±(𝑥, 𝑥
′) = 𝑈(𝑥, 𝑥′)𝛿±(𝜎) + 𝑉 (𝑥, 𝑥′)𝜃±(−𝜎), (14.4)
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where 𝑈(𝑥, 𝑥′) and 𝑉 (𝑥, 𝑥′) are smooth biscalars; the fact that the spacetime is no longer homo-
geneous means that these functions cannot depend on 𝜎 alone.

Before we substitute the Green’s functions of Eq. (14.4) into the differential equation of Eq. (14.3)
we proceed as in Section 12.6 and shift 𝜎 by the small positive quantity 𝜖. We shall therefore con-
sider the distributions

𝐺𝜖
±(𝑥, 𝑥

′) = 𝑈(𝑥, 𝑥′)𝛿±(𝜎 + 𝜖) + 𝑉 (𝑥, 𝑥′)𝜃±(−𝜃 − 𝜖),

and later recover the Green’s functions by taking the limit 𝜖 → 0+. Differentiation of these
objects is straightforward, and in the following manipulations we will repeatedly use the relation
𝜎𝛼𝜎𝛼 = 2𝜎 satisfied by the world function. We will also use the distributional identities 𝜎𝛿±(𝜎 +
𝜖) = −𝜖𝛿±(𝜎+ 𝜖), 𝜎𝛿′±(𝜎+ 𝜖) = −𝛿±(𝜎+ 𝜖)− 𝜖𝛿′±(𝜎+ 𝜖), and 𝜎𝛿′′±(𝜎+ 𝜖) = −2𝛿′(𝜎+ 𝜖)− 𝜖𝛿′′(𝜎+ 𝜖).
After a routine calculation we obtain

(�− 𝜉𝑅)𝐺𝜖
± = −2𝜖𝛿′′±(𝜎 + 𝜖)𝑈 + 2𝜖𝛿′±(𝜎 + 𝜖)𝑉 + 𝛿′±(𝜎 + 𝜖)

{︁
2𝑈,𝛼𝜎

𝛼 + (𝜎𝛼
𝛼 − 4)𝑈

}︁
+ 𝛿±(𝜎 + 𝜖)

{︁
−2𝑉,𝛼𝜎

𝛼 + (2− 𝜎𝛼
𝛼)𝑉 + (�− 𝜉𝑅)𝑈

}︁
+ 𝜃±(−𝜎 − 𝜖)

{︁
(�− 𝜉𝑅)𝑉

}︁
,

which becomes

(�− 𝜉𝑅)𝐺± = −4𝜋𝛿4(𝑥, 𝑥
′)𝑈 + 𝛿′±(𝜎)

{︁
2𝑈,𝛼𝜎

𝛼 + (𝜎𝛼
𝛼 − 4)𝑈

}︁
+ 𝛿±(𝜎)

{︁
−2𝑉,𝛼𝜎

𝛼 + (2− 𝜎𝛼
𝛼)𝑉 + (�− 𝜉𝑅)𝑈

}︁
+ 𝜃±(−𝜎)

{︁
(�− 𝜉𝑅)𝑉

}︁
(14.5)

in the limit 𝜖→ 0+, after using the identities of Eqs. (13.6) – (13.8).
According to Eq. (14.3), the right-hand side of Eq. (14.5) should be equal to −4𝜋𝛿4(𝑥, 𝑥

′). This
immediately gives us the coincidence condition[︀

𝑈
]︀
= 1 (14.6)

for the biscalar 𝑈(𝑥, 𝑥′). To eliminate the 𝛿′± term we make its coefficient vanish:

2𝑈,𝛼𝜎
𝛼 + (𝜎𝛼

𝛼 − 4)𝑈 = 0. (14.7)

As we shall now prove, these two equations determine 𝑈(𝑥, 𝑥′) uniquely.
Recall from Section 3.3 that 𝜎𝛼 is a vector at 𝑥 that is tangent to the unique geodesic 𝛽 that

connects 𝑥 to 𝑥′. This geodesic is affinely parameterized by 𝜆 and a displacement along 𝛽 is
described by 𝑑𝑥𝛼 = (𝜎𝛼/𝜆)𝑑𝜆. The first term of Eq. (14.7) therefore represents the logarithmic
rate of change of 𝑈(𝑥, 𝑥′) along 𝛽, and this can be expressed as 2𝜆𝑑𝑈/𝑑𝜆. For the second term
we recall from Section 7.1 the differential equation Δ−1(Δ𝜎𝛼);𝛼 = 4 satisfied by Δ(𝑥, 𝑥′), the van
Vleck determinant. This gives us 𝜎𝛼

𝛼−4 = −Δ−1Δ,𝛼𝜎
𝛼 = −Δ−1𝜆𝑑Δ/𝑑𝜆, and Eq. (14.7) becomes

𝜆
𝑑

𝑑𝜆

(︀
2 ln𝑈 − lnΔ

)︀
= 0.

It follows that 𝑈2/Δ is constant on 𝛽, and this must therefore be equal to its value at the starting
point 𝑥′: 𝑈2/Δ = [𝑈2/Δ] = 1, by virtue of Eq. (14.6) and the property [Δ] = 1 of the van Vleck
determinant. Because this statement must be true for all geodesics 𝛽 that emanate from 𝑥′, we
have found that the unique solution to Eqs. (14.6) and (14.7) is

𝑈(𝑥, 𝑥′) = Δ1/2(𝑥, 𝑥′). (14.8)

We must still consider the remaining terms in Eq. (14.5). The 𝛿± term can be eliminated by
demanding that its coefficient vanish when 𝜎 = 0. This, however, does not constrain its value away
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from the light cone, and we thus obtain information about 𝑉 |𝜎=0 only. Denoting this by 𝑉 (𝑥, 𝑥′)
– the restriction of 𝑉 (𝑥, 𝑥′) on the light cone 𝜎(𝑥, 𝑥′) = 0 – we have

𝑉,𝛼𝜎
𝛼 +

1

2

(︀
𝜎𝛼

𝛼 − 2
)︀
𝑉 =

1

2

(︀
�− 𝜉𝑅

)︀
𝑈
⃒⃒⃒
𝜎=0

, (14.9)

where we indicate that the right-hand side also must be restricted to the light cone. The first
term of Eq. (14.9) can be expressed as 𝜆𝑑𝑉 /𝑑𝜆 and this equation can be integrated along any
null geodesic that generates the null cone 𝜎(𝑥, 𝑥′) = 0. For these integrations to be well posed,
however, we must provide initial values at 𝑥 = 𝑥′. As we shall now see, these can be inferred from
Eq. (14.9) and the fact that 𝑉 (𝑥, 𝑥′) must be smooth at coincidence.

Eqs. (7.4) and (14.8) imply that near coincidence, 𝑈(𝑥, 𝑥′) admits the expansion

𝑈 = 1 +
1

12
𝑅𝛼′𝛽′𝜎𝛼′

𝜎𝛽′
+𝑂(𝜆3), (14.10)

where 𝑅𝛼′𝛽′ is the Ricci tensor at 𝑥′ and 𝜆 is the affine-parameter distance to 𝑥 (which can be
either on or off the light cone). Differentiation of this relation gives

𝑈,𝛼 = −1

6
𝑔𝛼

′

𝛼𝑅𝛼′𝛽′𝜎𝛽′
+𝑂(𝜆2), 𝑈,𝛼′ =

1

6
𝑅𝛼′𝛽′𝜎𝛽′

+𝑂(𝜆2), (14.11)

and eventually, [︀
�𝑈
]︀
=

1

6
𝑅(𝑥′). (14.12)

Using also [𝜎𝛼
𝛼] = 4, we find that the coincidence limit of Eq. (14.9) gives[︀

𝑉
]︀
=

1

12

(︁
1− 6𝜉

)︁
𝑅(𝑥′), (14.13)

and this provides the initial values required for the integration of Eq. (14.9) on the null cone.
Eqs. (14.9) and (14.13) give us a means to construct 𝑉 (𝑥, 𝑥′), the restriction of 𝑉 (𝑥, 𝑥′) on the

null cone 𝜎(𝑥, 𝑥′) = 0. These values can then be used as characteristic data for the wave equation

(�− 𝜉𝑅)𝑉 (𝑥, 𝑥′) = 0, (14.14)

which is obtained by elimination of the 𝜃± term in Eq. (14.5). While this certainly does not
constitute a practical method to compute the biscalar 𝑉 (𝑥, 𝑥′), these considerations show that
𝑉 (𝑥, 𝑥′) exists and is unique.

To summarize: We have shown that with 𝑈(𝑥, 𝑥′) given by Eq. (14.8) and 𝑉 (𝑥, 𝑥′) deter-
mined uniquely by the wave equation of Eq. (14.14) and the characteristic data constructed with
Eqs. (14.9) and (14.13), the retarded and advanced Green’s functions of Eq. (14.4) do indeed satisfy
Eq. (14.3). It should be emphasized that the construction provided in this subsection is restricted
to 𝒩 (𝑥′), the normal convex neighbourhood of the reference point 𝑥′.

14.3 Reciprocity

We shall now establish the following reciprocity relation between the (globally defined) retarded
and advanced Green’s functions:

𝐺−(𝑥
′, 𝑥) = 𝐺+(𝑥, 𝑥

′). (14.15)

Before we get to the proof we observe that by virtue of Eq. (14.15), the biscalar 𝑉 (𝑥, 𝑥′) must be
symmetric in its arguments:

𝑉 (𝑥′, 𝑥) = 𝑉 (𝑥, 𝑥′). (14.16)
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To go from Eq. (14.15) to Eq. (14.16) we simply note that when 𝑥 ∈ 𝒩 (𝑥′) and belongs to 𝐼+(𝑥′),
then 𝐺+(𝑥, 𝑥

′) = 𝑉 (𝑥, 𝑥′) and 𝐺−(𝑥
′, 𝑥) = 𝑉 (𝑥′, 𝑥).

To prove the reciprocity relation we invoke the identities

𝐺+(𝑥, 𝑥
′)(�− 𝜉𝑅)𝐺−(𝑥, 𝑥

′′) = −4𝜋𝐺+(𝑥, 𝑥
′)𝛿4(𝑥, 𝑥

′′)

and
𝐺−(𝑥, 𝑥

′′)(�− 𝜉𝑅)𝐺+(𝑥, 𝑥
′) = −4𝜋𝐺−(𝑥, 𝑥

′′)𝛿4(𝑥, 𝑥
′)

and take their difference. On the left-hand side we have

𝐺+(𝑥, 𝑥
′)�𝐺−(𝑥, 𝑥

′′)−𝐺−(𝑥, 𝑥
′′)�𝐺+(𝑥, 𝑥

′) = ∇𝛼

(︁
𝐺+(𝑥, 𝑥

′)∇𝛼𝐺−(𝑥, 𝑥
′′)−𝐺−(𝑥, 𝑥

′′)∇𝛼𝐺+(𝑥, 𝑥
′)
)︁
,

while the right-hand side gives

−4𝜋
(︁
𝐺+(𝑥, 𝑥

′)𝛿4(𝑥, 𝑥
′′)−𝐺−(𝑥, 𝑥

′′)𝛿4(𝑥, 𝑥
′)
)︁
.

Integrating both sides over a large four-dimensional region 𝑉 that contains both 𝑥′ and 𝑥′′, we
obtain∮︁

𝜕𝑉

(︁
𝐺+(𝑥, 𝑥

′)∇𝛼𝐺−(𝑥, 𝑥
′′)−𝐺−(𝑥, 𝑥

′′)∇𝛼𝐺+(𝑥, 𝑥
′)
)︁
𝑑Σ𝛼 = −4𝜋

(︁
𝐺+(𝑥

′′, 𝑥′)−𝐺−(𝑥
′, 𝑥′′)

)︁
,

where 𝜕𝑉 is the boundary of 𝑉 . Assuming that the Green’s functions fall off sufficiently rapidly
at infinity (in the limit 𝜕𝑉 → ∞; this statement imposes some restriction on the spacetime’s
asymptotic structure), we have that the left-hand side of the equation evaluates to zero in the
limit. This gives us the statement 𝐺+(𝑥

′′, 𝑥′) = 𝐺−(𝑥
′, 𝑥′′), which is just Eq. (14.15) with 𝑥′′

replacing 𝑥.

14.4 Kirchhoff representation

Suppose that the values for a scalar field Φ(𝑥′) and its normal derivative 𝑛𝛼
′∇𝛼′Φ(𝑥′) are known

on a spacelike hypersurface Σ. Suppose also that the scalar field satisfies the homogeneous wave
equation

(�− 𝜉𝑅)Φ(𝑥) = 0. (14.17)

Then the value of the field at a point 𝑥 in the future of Σ is given by Kirchhoff’s formula,

Φ(𝑥) = − 1

4𝜋

∫︁
Σ

(︁
𝐺+(𝑥, 𝑥

′)∇𝛼′
Φ(𝑥′)− Φ(𝑥′)∇𝛼′

𝐺+(𝑥, 𝑥
′)
)︁
𝑑Σ𝛼′ , (14.18)

where 𝑑Σ𝛼′ is the surface element on Σ. If 𝑛𝛼′ is the future-directed unit normal, then 𝑑Σ𝛼′ =
−𝑛𝛼′𝑑𝑉 , with 𝑑𝑉 denoting the invariant volume element on Σ; notice that 𝑑Σ𝛼′ is past directed.

To establish this result we start with the equations

𝐺−(𝑥
′, 𝑥)(�′ − 𝜉𝑅′)Φ(𝑥′) = 0, Φ(𝑥′)(�′ − 𝜉𝑅′)𝐺−(𝑥

′, 𝑥) = −4𝜋𝛿4(𝑥
′, 𝑥)Φ(𝑥′),

in which 𝑥 and 𝑥′ refer to arbitrary points in spacetime. Taking their difference gives

∇𝛼′

(︁
𝐺−(𝑥

′, 𝑥)∇𝛼′
Φ(𝑥′)− Φ(𝑥′)∇𝛼′

𝐺−(𝑥
′, 𝑥)

)︁
= 4𝜋𝛿4(𝑥

′, 𝑥)Φ(𝑥′),

and this we integrate over a four-dimensional region 𝑉 that is bounded in the past by the hyper-
surface Σ. We suppose that 𝑉 contains 𝑥 and we obtain∮︁

𝜕𝑉

(︁
𝐺−(𝑥

′, 𝑥)∇𝛼′
Φ(𝑥′)− Φ(𝑥′)∇𝛼′

𝐺−(𝑥
′, 𝑥)

)︁
𝑑Σ𝛼′ = 4𝜋Φ(𝑥),
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where 𝑑Σ𝛼′ is the outward-directed surface element on the boundary 𝜕𝑉 . Assuming that the
Green’s function falls off sufficiently rapidly into the future, we have that the only contribution to
the hypersurface integral is the one that comes from Σ. Since the surface element on Σ points in
the direction opposite to the outward-directed surface element on 𝜕𝑉 , we must change the sign of
the left-hand side to be consistent with the convention adopted previously. With this change we
have

Φ(𝑥) = − 1

4𝜋

∮︁
𝜕𝑉

(︁
𝐺−(𝑥

′, 𝑥)∇𝛼′
Φ(𝑥′)− Φ(𝑥′)∇𝛼′

𝐺−(𝑥
′, 𝑥)

)︁
𝑑Σ𝛼′ ,

which is the same statement as Eq. (14.18) if we take into account the reciprocity relation of
Eq. (14.15).

14.5 Singular and regular Green’s functions

In Part IV of this review we will compute the retarded field of a moving scalar charge, and we will
analyze its singularity structure near the world line; this will be part of our effort to understand the
effect of the field on the particle’s motion. The retarded solution to the scalar wave equation is the
physically relevant solution because it properly incorporates outgoing-wave boundary conditions
at infinity – the advanced solution would come instead with incoming-wave boundary conditions.
The retarded field is singular on the world line because a point particle produces a Coulomb field
that diverges at the particle’s position. In view of this singular behaviour, it is a subtle matter to
describe the field’s action on the particle, and to formulate meaningful equations of motion.

When facing this problem in flat spacetime (recall the discussion of Section 1.3) it is convenient
to decompose the retarded Green’s function 𝐺+(𝑥, 𝑥

′) into a singular Green’s function 𝐺S(𝑥, 𝑥
′) :=

1
2 [𝐺+(𝑥, 𝑥

′) + 𝐺−(𝑥, 𝑥
′)] and a regular two-point function 𝐺R(𝑥, 𝑥

′) := 1
2 [𝐺+(𝑥, 𝑥

′) − 𝐺−(𝑥, 𝑥
′)].

The singular Green’s function takes its name from the fact that it produces a field with the same
singularity structure as the retarded solution: the diverging field near the particle is insensitive to
the boundary conditions imposed at infinity. We note also that 𝐺S(𝑥, 𝑥

′) satisfies the same wave
equation as the retarded Green’s function (with a Dirac functional as a source), and that by virtue
of the reciprocity relations, it is symmetric in its arguments. The regular two-point function, on
the other hand, takes its name from the fact that it satisfies the homogeneous wave equation,
without the Dirac functional on the right-hand side; it produces a field that is regular on the world
line of the moving scalar charge. (We reserve the term “Green’s function” to a two-point function
that satisfies the wave equation with a Dirac distribution on the right-hand side; when the source
term is absent, the object is called a “two-point function”.)

Because the singular Green’s function is symmetric in its argument, it does not distinguish
between past and future, and it produces a field that contains equal amounts of outgoing and
incoming radiation – the singular solution describes a standing wave at infinity. Removing𝐺S(𝑥, 𝑥

′)
from the retarded Green’s function will have the effect of removing the singular behaviour of the
field without affecting the motion of the particle. The motion is not affected because it is intimately
tied to the boundary conditions: If the waves are outgoing, the particle loses energy to the radiation
and its motion is affected; if the waves are incoming, the particle gains energy from the radiation
and its motion is affected differently. With equal amounts of outgoing and incoming radiation,
the particle neither loses nor gains energy and its interaction with the scalar field cannot affect
its motion. Thus, subtracting 𝐺S(𝑥, 𝑥

′) from the retarded Green’s function eliminates the singular
part of the field without affecting the motion of the scalar charge. The subtraction leaves behind
the regular two-point function, which produces a field that is regular on the world line; it is this field
that will govern the motion of the particle. The action of this field is well defined, and it properly
encodes the outgoing-wave boundary conditions: the particle will lose energy to the radiation.

In this subsection we attempt a decomposition of the curved-spacetime retarded Green’s func-
tion into singular and regular pieces. The flat-spacetime relations will have to be amended, how-
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ever, because of the fact that in a curved spacetime, the advanced Green’s function is generally
nonzero when 𝑥′ is in the chronological future of 𝑥. This implies that the value of the advanced
field at 𝑥 depends on events 𝑥′ that will unfold in the future; this dependence would be inherited
by the regular field (which acts on the particle and determines its motion) if the naive definition
𝐺R(𝑥, 𝑥

′) := 1
2 [𝐺+(𝑥, 𝑥

′)−𝐺−(𝑥, 𝑥
′)] were to be adopted.

We shall not adopt this definition. Instead, we shall follow Detweiler and Whiting [53] and
introduce a singular Green’s function with the properties

S1: 𝐺S(𝑥, 𝑥
′) satisfies the inhomogeneous scalar wave equation,

(�− 𝜉𝑅)𝐺S(𝑥, 𝑥
′) = −4𝜋𝛿4(𝑥, 𝑥

′); (14.19)

S2: 𝐺S(𝑥, 𝑥
′) is symmetric in its arguments,

𝐺S(𝑥
′, 𝑥) = 𝐺S(𝑥, 𝑥

′); (14.20)

S3: 𝐺S(𝑥, 𝑥
′) vanishes if 𝑥 is in the chronological past or future of 𝑥′,

𝐺S(𝑥, 𝑥
′) = 0 when 𝑥 ∈ 𝐼±(𝑥′). (14.21)

Properties S1 and S2 ensure that the singular Green’s function will properly reproduce the singular
behaviour of the retarded solution without distinguishing between past and future; and as we shall
see, property S3 ensures that the support of the regular two-point function will not include the
chronological future of 𝑥.

The regular two-point function is then defined by

𝐺R(𝑥, 𝑥
′) = 𝐺+(𝑥, 𝑥

′)−𝐺S(𝑥, 𝑥
′), (14.22)

where 𝐺+(𝑥, 𝑥
′) is the retarded Green’s function. This comes with the properties

R1: 𝐺R(𝑥, 𝑥
′) satisfies the homogeneous wave equation,

(�− 𝜉𝑅)𝐺R(𝑥, 𝑥
′) = 0; (14.23)

R2: 𝐺R(𝑥, 𝑥
′) agrees with the retarded Green’s function if 𝑥 is in the chronological future of

𝑥′,
𝐺R(𝑥, 𝑥

′) = 𝐺+(𝑥, 𝑥
′) when 𝑥 ∈ 𝐼+(𝑥′); (14.24)

R3: 𝐺R(𝑥, 𝑥
′) vanishes if 𝑥 is in the chronological past of 𝑥′,

𝐺R(𝑥, 𝑥
′) = 0 when 𝑥 ∈ 𝐼−(𝑥′). (14.25)

Property R1 follows directly from Eq. (14.22) and property S1 of the singular Green’s function.
Properties R2 and R3 follow from S3 and the fact that the retarded Green’s function vanishes if
𝑥 is in past of 𝑥′. The properties of the regular two-point function ensure that the corresponding
regular field will be nonsingular at the world line, and will depend only on the past history of the
scalar charge.

We must still show that such singular and regular Green’s functions can be constructed. This
relies on the existence of a two-point function 𝐻(𝑥, 𝑥′) that would possess the properties

H1: 𝐻(𝑥, 𝑥′) satisfies the homogeneous wave equation,

(�− 𝜉𝑅)𝐻(𝑥, 𝑥′) = 0; (14.26)
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H2: 𝐻(𝑥, 𝑥′) is symmetric in its arguments,

𝐻(𝑥′, 𝑥) = 𝐻(𝑥, 𝑥′); (14.27)

H3: 𝐻(𝑥, 𝑥′) agrees with the retarded Green’s function if 𝑥 is in the chronological future of
𝑥′,

𝐻(𝑥, 𝑥′) = 𝐺+(𝑥, 𝑥
′) when 𝑥 ∈ 𝐼+(𝑥′); (14.28)

H4: 𝐻(𝑥, 𝑥′) agrees with the advanced Green’s function if 𝑥 is in the chronological past of
𝑥′,

𝐻(𝑥, 𝑥′) = 𝐺−(𝑥, 𝑥
′) when 𝑥 ∈ 𝐼−(𝑥′). (14.29)

With a biscalar 𝐻(𝑥, 𝑥′) satisfying these relations, a singular Green’s function defined by

𝐺S(𝑥, 𝑥
′) =

1

2

[︁
𝐺+(𝑥, 𝑥

′) +𝐺−(𝑥, 𝑥
′)−𝐻(𝑥, 𝑥′)

]︁
(14.30)

will satisfy all the properties listed previously: S1 comes as a consequence of H1 and the fact
that both the advanced and the retarded Green’s functions are solutions to the inhomogeneous
wave equation, S2 follows directly from H2 and the definition of Eq. (14.30), and S3 comes as a
consequence of H3, H4 and the properties of the retarded and advanced Green’s functions.

The question is now: does such a function 𝐻(𝑥, 𝑥′) exist? We will present a plausibility
argument for an affirmative answer. Later in this section we will see that 𝐻(𝑥, 𝑥′) is guaranteed
to exist in the local convex neighbourhood of 𝑥′, where it is equal to 𝑉 (𝑥, 𝑥′). And in Section 14.6
we will see that there exist particular spacetimes for which 𝐻(𝑥, 𝑥′) can be defined globally.

To satisfy all of H1 –H4 might seem a tall order, but it should be possible. We first note
that property H4 is not independent from the rest: it follows from H2, H3, and the reciprocity
relation (14.15) satisfied by the retarded and advanced Green’s functions. Let 𝑥 ∈ 𝐼−(𝑥′), so that
𝑥′ ∈ 𝐼+(𝑥). Then 𝐻(𝑥, 𝑥′) = 𝐻(𝑥′, 𝑥) by H2, and by H3 this is equal to 𝐺+(𝑥

′, 𝑥). But by the
reciprocity relation this is also equal to 𝐺−(𝑥, 𝑥

′), and we have obtained H4. Alternatively, and
this shall be our point of view in the next paragraph, we can think of H3 as following from H2 and
H4.

Because 𝐻(𝑥, 𝑥′) satisfies the homogeneous wave equation (property H1), it can be given the
Kirkhoff representation of Eq. (14.18): if Σ is a spacelike hypersurface in the past of both 𝑥 and
𝑥′, then

𝐻(𝑥, 𝑥′) = − 1

4𝜋

∫︁
Σ

(︁
𝐺+(𝑥, 𝑥

′′)∇𝛼′′
𝐻(𝑥′′, 𝑥′)−𝐻(𝑥′′, 𝑥′)∇𝛼′′

𝐺+(𝑥, 𝑥
′′)
)︁
𝑑Σ𝛼′′ ,

where 𝑑Σ𝛼′′ is a surface element on Σ. The hypersurface can be partitioned into two segments,
Σ−(𝑥′) and Σ − Σ−(𝑥′), with Σ−(𝑥′) denoting the intersection of Σ with 𝐼−(𝑥′). To enforce
H4 it suffices to choose for 𝐻(𝑥, 𝑥′) initial data on Σ−(𝑥′) that agree with the initial data for
the advanced Green’s function; because both functions satisfy the homogeneous wave equation in
𝐼−(𝑥′), the agreement will be preserved in the entire domain of dependence of Σ−(𝑥′). The data
on Σ−Σ−(𝑥′) is still free, and it should be possible to choose it so as to make 𝐻(𝑥, 𝑥′) symmetric.
Assuming that this can be done, we see that H2 is enforced and we conclude that the properties
H1, H2, H3, and H4 can all be satisfied.

When 𝑥 is restricted to the normal convex neighbourhood of 𝑥′, properties H1 –H4 imply that

𝐻(𝑥, 𝑥′) = 𝑉 (𝑥, 𝑥′); (14.31)
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it should be stressed here that while 𝐻(𝑥, 𝑥′) is assumed to be defined globally in the entire
spacetime, the existence of 𝑉 (𝑥, 𝑥′) is limited to 𝒩 (𝑥′). With Eqs. (14.4) and (14.30) we find that
the singular Green’s function is given explicitly by

𝐺S(𝑥, 𝑥
′) =

1

2
𝑈(𝑥, 𝑥′)𝛿(𝜎)− 1

2
𝑉 (𝑥, 𝑥′)𝜃(𝜎) (14.32)

in the normal convex neighbourhood. Equation (14.32) shows very clearly that the singular Green’s
function does not distinguish between past and future (property S2), and that its support excludes
𝐼±(𝑥′), in which 𝜃(𝜎) = 0 (property S3). From Eq. (14.22) we get an analogous expression for the
regular two-point function:

𝐺R(𝑥, 𝑥
′) =

1

2
𝑈(𝑥, 𝑥′)

[︁
𝛿+(𝜎)− 𝛿−(𝜎)

]︁
+ 𝑉 (𝑥, 𝑥′)

[︁
𝜃+(−𝜎) +

1

2
𝜃(𝜎)

]︁
. (14.33)

This reveals directly that the regular two-point function coincides with 𝐺+(𝑥, 𝑥
′) in 𝐼+(𝑥′), in

which 𝜃(𝜎) = 0 and 𝜃+(−𝜎) = 1 (property R2), and that its support does not include 𝐼−(𝑥′), in
which 𝜃(𝜎) = 𝜃+(−𝜎) = 0 (property R3).

14.6 Example: Cosmological Green’s functions

To illustrate the general theory outlined in the previous subsections we consider here the specific
case of a minimally coupled (𝜉 = 0) scalar field in a cosmological spacetime with metric

𝑑𝑠2 = 𝑎2(𝜂)(−𝑑𝜂2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2), (14.34)

where 𝑎(𝜂) is the scale factor expressed in terms of conformal time. For concreteness we take the
universe to be matter dominated, so that 𝑎(𝜂) = 𝐶𝜂2, where 𝐶 is a constant. This spacetime
is one of the very few for which Green’s functions can be explicitly constructed. The calculation
presented here was first carried out by Burko, Harte, and Poisson [33]; it can be extended to other
cosmologies [86].

To solve Green’s equation �𝐺(𝑥, 𝑥′) = −4𝜋𝛿4(𝑥, 𝑥
′) we first introduce a reduced Green’s func-

tion 𝑔(𝑥, 𝑥′) defined by

𝐺(𝑥, 𝑥′) =
𝑔(𝑥, 𝑥′)

𝑎(𝜂)𝑎(𝜂′)
. (14.35)

Substitution yields (︂
− 𝜕2

𝜕𝜂2
+∇2 +

2

𝜂2

)︂
𝑔(𝑥, 𝑥′) = −4𝜋𝛿(𝜂 − 𝜂′)𝛿3(𝑥− 𝑥′), (14.36)

where 𝑥 = (𝑥, 𝑦, 𝑧) is a vector in three-dimensional flat space, and ∇2 is the Laplacian operator in
this space. We next expand 𝑔(𝑥, 𝑥′) in terms of plane-wave solutions to Laplace’s equation,

𝑔(𝑥, 𝑥′) =
1

(2𝜋)3

∫︁
𝑔(𝜂, 𝜂′;𝑘) 𝑒𝑖𝑘·(𝑥−𝑥′) 𝑑3𝑘, (14.37)

and we substitute this back into Eq. (14.36). The result, after also Fourier transforming 𝛿3(𝑥−𝑥′),
is an ordinary differential equation for 𝑔(𝜂, 𝜂′;𝑘):(︂

𝑑2

𝑑𝜂2
+ 𝑘2 − 2

𝜂2

)︂
𝑔 = 4𝜋𝛿(𝜂 − 𝜂′), (14.38)

where 𝑘2 = 𝑘 · 𝑘. To generate the retarded Green’s function we set

𝑔+(𝜂, 𝜂
′;𝑘) = 𝜃(𝜂 − 𝜂′) 𝑔(𝜂, 𝜂′; 𝑘), (14.39)
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in which we indicate that 𝑔 depends only on the modulus of the vector 𝑘. To generate the
advanced Green’s function we would set instead 𝑔−(𝜂, 𝜂

′;𝑘) = 𝜃(𝜂′ − 𝜂) 𝑔(𝜂, 𝜂′; 𝑘). The following
manipulations will refer specifically to the retarded Green’s function; they are easily adapted to
the case of the advanced Green’s function.

Substitution of Eq. (14.39) into Eq. (14.38) reveals that 𝑔 must satisfy the homogeneous equa-
tion (︂

𝑑2

𝑑𝜂2
+ 𝑘2 − 2

𝜂2

)︂
𝑔 = 0, (14.40)

together with the boundary conditions

𝑔(𝜂 = 𝜂′; 𝑘) = 0,
𝑑𝑔

𝑑𝜂
(𝜂 = 𝜂′; 𝑘) = 4𝜋. (14.41)

Inserting Eq. (14.39) into Eq. (14.37) and integrating over the angular variables associated with
the vector 𝑘 yields

𝑔+(𝑥, 𝑥
′) =

𝜃(Δ𝜂)

2𝜋2𝑅

∫︁ ∞

0

𝑔(𝜂, 𝜂′; 𝑘) 𝑘 sin(𝑘𝑅) 𝑑𝑘, (14.42)

where Δ𝜂 := 𝜂 − 𝜂′ and 𝑅 := |𝑥− 𝑥′|.
Eq. (14.40) has cos(𝑘Δ𝜂)− (𝑘𝜂)−1 sin(𝑘Δ𝜂) and sin(𝑘Δ𝜂) + (𝑘𝜂)−1 cos(𝑘Δ𝜂) as linearly inde-

pendent solutions, and 𝑔(𝜂, 𝜂′; 𝑘) must be given by a linear superposition. The coefficients can be
functions of 𝜂′, and after imposing Eqs. (14.41) we find that the appropriate combination is

𝑔(𝜂, 𝜂′; 𝑘) =
4𝜋

𝑘

[︂(︂
1 +

1

𝑘2𝜂𝜂′

)︂
sin(𝑘Δ𝜂)− Δ𝜂

𝑘𝜂𝜂′
cos(𝑘Δ𝜂)

]︂
. (14.43)

Substituting this into Eq. (14.42) and using the identity (2/𝜋)
∫︀∞
0

sin(𝜔𝑥) sin(𝜔𝑥′) 𝑑𝜔 = 𝛿(𝑥−𝑥′)−
𝛿(𝑥+ 𝑥′) yields

𝑔+(𝑥, 𝑥
′) =

𝛿(Δ𝜂 −𝑅)

𝑅
+
𝜃(Δ𝜂)

𝜂𝜂′
2

𝜋

∫︁ ∞

0

1

𝑘
sin(𝑘Δ𝜂) cos(𝑘𝑅) 𝑑𝑘

after integration by parts. The integral evaluates to 𝜃(Δ𝜂 −𝑅).

We have arrived at

𝑔+(𝑥, 𝑥
′) =

𝛿(𝜂 − 𝜂′ − |𝑥− 𝑥′|)
|𝑥− 𝑥′| +

𝜃(𝜂 − 𝜂′ − |𝑥− 𝑥′|)
𝜂𝜂′

(14.44)

for our final expression for the retarded Green’s function. The advanced Green’s function is given
instead by

𝑔−(𝑥, 𝑥
′) =

𝛿(𝜂 − 𝜂′ + |𝑥− 𝑥′|)
|𝑥− 𝑥′| +

𝜃(−𝜂 + 𝜂′ − |𝑥− 𝑥′|)
𝜂𝜂′

. (14.45)

The distributions 𝑔±(𝑥, 𝑥
′) are solutions to the reduced Green’s equation of Eq. (14.36). The actual

Green’s functions are obtained by substituting Eqs. (14.44) and (14.45) into Eq. (14.35). We note
that the support of the retarded Green’s function is given by 𝜂 − 𝜂′ ≥ |𝑥− 𝑥′|, while the support
of the advanced Green’s function is given by 𝜂 − 𝜂′ ≤ −|𝑥− 𝑥′|.

It may be verified that the symmetric two-point function

ℎ(𝑥, 𝑥′) =
1

𝜂𝜂′
(14.46)
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satisfies all of the properties H1 –H4 listed in Section 14.5; it may thus be used to define singular
and regular Green’s functions. According to Eq. (14.30) the singular Green’s function is given by

𝑔S(𝑥, 𝑥
′) =

1

2|𝑥− 𝑥′|
[︁
𝛿(𝜂 − 𝜂′ − |𝑥− 𝑥′|) + 𝛿(𝜂 − 𝜂′ + |𝑥− 𝑥′|)

]︁
+

1

2𝜂𝜂′

[︁
𝜃(𝜂 − 𝜂′ − |𝑥− 𝑥′|)− 𝜃(𝜂 − 𝜂′ + |𝑥− 𝑥′|)

]︁
(14.47)

and its support is limited to the interval −|𝑥− 𝑥′| ≤ 𝜂 − 𝜂′ ≤ |𝑥− 𝑥′|. According to Eq. (14.22)
the regular two-point function is given by

𝑔R(𝑥, 𝑥
′) =

1

2|𝑥− 𝑥′|
[︁
𝛿(𝜂 − 𝜂′ − |𝑥− 𝑥′|)− 𝛿(𝜂 − 𝜂′ + |𝑥− 𝑥′|)

]︁
+

1

2𝜂𝜂′

[︁
𝜃(𝜂 − 𝜂′ − |𝑥− 𝑥′|) + 𝜃(𝜂 − 𝜂′ + |𝑥− 𝑥′|)

]︁
; (14.48)

its support is given by 𝜂 − 𝜂′ ≥ −|𝑥− 𝑥′| and for 𝜂 − 𝜂′ ≥ |𝑥− 𝑥′| the regular two-point function
agrees with the retarded Green’s function.

As a final observation we note that for this cosmological spacetime, the normal convex neigh-
bourhood of any point 𝑥 consists of the whole spacetime manifold (which excludes the cosmological
singularity at 𝑎 = 0). The Hadamard construction of the Green’s functions is therefore valid glob-
ally, a fact that is immediately revealed by Eqs. (14.44) and (14.45).

15 Electromagnetic Green’s functions

15.1 Equations of electromagnetism

The electromagnetic field tensor 𝐹𝛼𝛽 = ∇𝛼𝐴𝛽 −∇𝛽𝐴𝛼 is expressed in terms of a vector potential
𝐴𝛼. In the Lorenz gauge ∇𝛼𝐴

𝛼 = 0, the vector potential satisfies the wave equation

�𝐴𝛼 −𝑅𝛼
𝛽𝐴

𝛽 = −4𝜋𝑗𝛼, (15.1)

where � = 𝑔𝛼𝛽∇𝛼∇𝛽 is the wave operator, 𝑅𝛼
𝛽 the Ricci tensor, and 𝑗𝛼 a prescribed current

density. The wave equation enforces the condition ∇𝛼𝑗
𝛼 = 0, which expresses charge conservation.

The solution to the wave equation is written as

𝐴𝛼(𝑥) =

∫︁
𝐺𝛼

𝛽′(𝑥, 𝑥′)𝑗𝛽
′
(𝑥′)

√︀
−𝑔′ 𝑑4𝑥′, (15.2)

in terms of a Green’s function 𝐺𝛼
𝛽′(𝑥, 𝑥′) that satisfies

�𝐺𝛼
𝛽′(𝑥, 𝑥′)−𝑅𝛼

𝛽(𝑥)𝐺
𝛽
𝛽′(𝑥, 𝑥

′) = −4𝜋𝑔𝛼𝛽′(𝑥, 𝑥′)𝛿4(𝑥, 𝑥
′), (15.3)

where 𝑔𝛼𝛽′(𝑥, 𝑥′) is a parallel propagator and 𝛿4(𝑥, 𝑥
′) an invariant Dirac distribution. The par-

allel propagator is inserted on the right-hand side of Eq. (15.3) to keep the index structure of
the equation consistent from side to side; because 𝑔𝛼𝛽′(𝑥, 𝑥′)𝛿4(𝑥, 𝑥

′) is distributionally equal to

[𝑔𝛼𝛽′ ]𝛿4(𝑥, 𝑥
′) = 𝛿𝛼

′

𝛽′𝛿4(𝑥, 𝑥
′), it could have been replaced by either 𝛿𝛼

′

𝛽′ or 𝛿𝛼𝛽 . It is easy to
check that by virtue of Eq. (15.3), the vector potential of Eq. (15.2) satisfies the wave equation of
Eq. (15.1).

We will assume that the retarded Green’s function 𝐺 𝛼
+𝛽′(𝑥, 𝑥′), which is nonzero if 𝑥 is in the

causal future of 𝑥′, and the advanced Green’s function 𝐺 𝛼
−𝛽′(𝑥, 𝑥′), which is nonzero if 𝑥 is in the

causal past of 𝑥′, exist as distributions and can be defined globally in the entire spacetime.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7

http://www.livingreviews.org/lrr-2011-7


The Motion of Point Particles in Curved Spacetime 93

15.2 Hadamard construction of the Green’s functions

Assuming throughout this subsection that 𝑥 is in the normal convex neighbourhood of 𝑥′, we make
the ansatz

𝐺 𝛼
±𝛽′(𝑥, 𝑥′) = 𝑈𝛼

𝛽′(𝑥, 𝑥′)𝛿±(𝜎) + 𝑉 𝛼
𝛽′(𝑥, 𝑥′)𝜃±(−𝜎), (15.4)

where 𝜃±(−𝜎), 𝛿±(𝜎) are the light-cone distributions introduced in Section 13.2, and where 𝑈𝛼
𝛽′(𝑥, 𝑥′),

𝑉 𝛼
𝛽′(𝑥, 𝑥′) are smooth bitensors.
To conveniently manipulate the Green’s functions we shift 𝜎 by a small positive quantity 𝜖.

The Green’s functions are then recovered by the taking the limit of

𝐺𝜖 𝛼
± 𝛽′(𝑥, 𝑥′) := 𝑈𝛼

𝛽′(𝑥, 𝑥′)𝛿±(𝜎 + 𝜖) + 𝑉 𝛼
𝛽′(𝑥, 𝑥′)𝜃±(−𝜎 − 𝜖)

as 𝜖 → 0+. When we substitute this into the left-hand side of Eq. (15.3) and then take the limit,
we obtain

�𝐺 𝛼
±𝛽′ −𝑅𝛼

𝛽𝐺
𝛽
±𝛽′ = −4𝜋𝛿4(𝑥, 𝑥

′)𝑈𝛼
𝛽′ + 𝛿′±(𝜎)

{︁
2𝑈𝛼

𝛽′;𝛾𝜎
𝛾 + (𝜎𝛾

𝛾 − 4)𝑈𝛼
𝛽′

}︁
+ 𝛿±(𝜎)

{︁
−2𝑉 𝛼

𝛽′;𝛾𝜎
𝛾 + (2− 𝜎𝛾

𝛾)𝑉
𝛼
𝛽′ +�𝑈𝛼

𝛽′ −𝑅𝛼
𝛽𝑈

𝛽
𝛽′

}︁
+ 𝜃±(−𝜎)

{︁
�𝑉 𝛼

𝛽′ −𝑅𝛼
𝛽𝑉

𝛽
𝛽′

}︁
after a routine computation similar to the one presented at the beginning of Section 14.2. Com-
parison with Eq. (15.3) returns: (i) the equations[︀

𝑈𝛼
𝛽′

]︀
=
[︀
𝑔𝛼𝛽′

]︀
= 𝛿𝛼

′

𝛽′ (15.5)

and
2𝑈𝛼

𝛽′;𝛾𝜎
𝛾 + (𝜎𝛾

𝛾 − 4)𝑈𝛼
𝛽′ = 0 (15.6)

that determine 𝑈𝛼
𝛽′(𝑥, 𝑥′); (ii) the equation

𝑉 𝛼
𝛽′;𝛾𝜎

𝛾 +
1

2
(𝜎𝛾

𝛾 − 2)𝑉 𝛼
𝛽′ =

1

2

(︀
�𝑈𝛼

𝛽′ −𝑅𝛼
𝛽𝑈

𝛽
𝛽′

)︀⃒⃒⃒
𝜎=0

(15.7)

that determines 𝑉 𝛼
𝛽′(𝑥, 𝑥′), the restriction of 𝑉 𝛼

𝛽′(𝑥, 𝑥′) on the light cone 𝜎(𝑥, 𝑥′) = 0; and (iii) the
wave equation

�𝑉 𝛼
𝛽′ −𝑅𝛼

𝛽𝑉
𝛽
𝛽′ = 0 (15.8)

that determines 𝑉 𝛼
𝛽′(𝑥, 𝑥′) inside the light cone.

Eq. (15.6) can be integrated along the unique geodesic 𝛽 that links 𝑥′ to 𝑥. The initial conditions
are provided by Eq. (15.5), and if we set 𝑈𝛼

𝛽′(𝑥, 𝑥′) = 𝑔𝛼𝛽′(𝑥, 𝑥′)𝑈(𝑥, 𝑥′), we find that these
equations reduce to Eqs. (14.7) and (14.6), respectively. According to Eq. (14.8), then, we have

𝑈𝛼
𝛽′(𝑥, 𝑥′) = 𝑔𝛼𝛽′(𝑥, 𝑥′)Δ1/2(𝑥, 𝑥′), (15.9)

which reduces to

𝑈𝛼
𝛽′ = 𝑔𝛼𝛽′

(︁
1 +

1

12
𝑅𝛾′𝛿′𝜎

𝛾′
𝜎𝛿′ +𝑂(𝜆3)

)︁
(15.10)

near coincidence, with 𝜆 denoting the affine-parameter distance between 𝑥′ and 𝑥. Differentiation
of this relation gives

𝑈𝛼
𝛽′;𝛾 =

1

2
𝑔𝛾

′

𝛾

(︁
𝑔𝛼𝛼′𝑅𝛼′

𝛽′𝛾′𝛿′ −
1

3
𝑔𝛼𝛽′𝑅𝛾′𝛿′

)︁
𝜎𝛿′ +𝑂(𝜆2), (15.11)

𝑈𝛼
𝛽′;𝛾′ =

1

2

(︁
𝑔𝛼𝛼′𝑅𝛼′

𝛽′𝛾′𝛿′ +
1

3
𝑔𝛼𝛽′𝑅𝛾′𝛿′

)︁
𝜎𝛿′ +𝑂(𝜆2), (15.12)
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and eventually, [︀
�𝑈𝛼

𝛽′

]︀
=

1

6
𝛿𝛼

′

𝛽′𝑅(𝑥′). (15.13)

Similarly, Eq. (15.7) can be integrated along each null geodesic that generates the null cone
𝜎(𝑥, 𝑥′) = 0. The initial values are obtained by taking the coincidence limit of this equation, using
Eqs. (15.5), (15.13), and the additional relation [𝜎𝛾

𝛾 ] = 4. We arrive at

[︀
𝑉 𝛼

𝛽′

]︀
= −1

2

(︁
𝑅𝛼′

𝛽′ − 1

6
𝛿𝛼

′

𝛽′𝑅′
)︁
. (15.14)

With the characteristic data obtained by integrating Eq. (15.7), the wave equation of Eq. (15.8)
admits a unique solution.

To summarize, the retarded and advanced electromagnetic Green’s functions are given by
Eq. (15.4) with 𝑈𝛼

𝛽′(𝑥, 𝑥′) given by Eq. (15.9) and 𝑉 𝛼
𝛽′(𝑥, 𝑥′) determined by Eq. (15.8) and the

characteristic data constructed with Eqs. (15.7) and (15.14). It should be emphasized that the
construction provided in this subsection is restricted to 𝒩 (𝑥′), the normal convex neighbourhood
of the reference point 𝑥′.

15.3 Reciprocity and Kirchhoff representation

Like their scalar counterparts, the (globally defined) electromagnetic Green’s functions satisfy a
reciprocity relation, the statement of which is

𝐺−
𝛽′𝛼(𝑥

′, 𝑥) = 𝐺+
𝛼𝛽′(𝑥, 𝑥

′). (15.15)

The derivation of Eq. (15.15) is virtually identical to what was presented in Section 14.3, and we
shall not present the details. It suffices to mention that it is based on the identities

𝐺+
𝛼𝛽′(𝑥, 𝑥

′)
(︁
�𝐺 𝛼

−𝛾′′(𝑥, 𝑥′′)−𝑅𝛼
𝛾𝐺

𝛾
−𝛾′′(𝑥, 𝑥

′′)
)︁
= −4𝜋𝐺+

𝛼𝛽′(𝑥, 𝑥
′)𝑔𝛼𝛾′′(𝑥, 𝑥′′)𝛿4(𝑥, 𝑥

′′)

and

𝐺−
𝛼𝛾′′(𝑥, 𝑥

′′)
(︁
�𝐺 𝛼

+𝛽′(𝑥, 𝑥′)−𝑅𝛼
𝛾𝐺

𝛾
+𝛽′(𝑥, 𝑥

′)
)︁
= −4𝜋𝐺−

𝛼𝛾′′(𝑥, 𝑥
′′)𝑔𝛼𝛽′(𝑥, 𝑥′)𝛿4(𝑥, 𝑥

′).

A direct consequence of the reciprocity relation is

𝑉𝛽′𝛼(𝑥
′, 𝑥) = 𝑉𝛼𝛽′(𝑥, 𝑥′), (15.16)

the statement that the bitensor 𝑉𝛼𝛽′(𝑥, 𝑥′) is symmetric in its indices and arguments.

The Kirchhoff representation for the electromagnetic vector potential is formulated as follows.
Suppose that 𝐴𝛼(𝑥) satisfies the homogeneous version of Eq. (15.1) and that initial values 𝐴𝛼′

(𝑥′),
𝑛𝛽

′∇𝛽′𝐴𝛼′
(𝑥′) are specified on a spacelike hypersurface Σ. Then the value of the potential at a

point 𝑥 in the future of Σ is given by

𝐴𝛼(𝑥) = − 1

4𝜋

∫︁
Σ

(︂
𝐺 𝛼

+𝛽′(𝑥, 𝑥′)∇𝛾′
𝐴𝛽′

(𝑥′)−𝐴𝛽′
(𝑥′)∇𝛾′

𝐺 𝛼
+𝛽′(𝑥, 𝑥′)

)︂
𝑑Σ𝛾′ , (15.17)

where 𝑑Σ𝛾′ = −𝑛𝛾′𝑑𝑉 is a surface element on Σ; 𝑛𝛾′ is the future-directed unit normal and 𝑑𝑉
is the invariant volume element on the hypersurface. The derivation of Eq. (15.17) is virtually
identical to what was presented in Section 14.4.
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15.4 Relation with scalar Green’s functions

In a spacetime that satisfies the Einstein field equations in vacuum, so that 𝑅𝛼𝛽 = 0 everywhere in
the spacetime, the (retarded and advanced) electromagnetic Green’s functions satisfy the identities
[54]

𝐺 𝛼
±𝛽′;𝛼 = −𝐺±;𝛽′ , (15.18)

where 𝐺± are the corresponding scalar Green’s functions.
To prove this we differentiate Eq. (15.3) covariantly with respect to 𝑥𝛼 and use Eq. (13.3) to

express the right-hand side as +4𝜋𝜕𝛽′𝛿4(𝑥, 𝑥
′). After repeated use of Ricci’s identity to permute

the ordering of the covariant derivatives on the left-hand side, we arrive at the equation

�
(︀
−𝐺𝛼

𝛽′;𝛼

)︀
= −4𝜋𝜕𝛽′𝛿4(𝑥, 𝑥

′); (15.19)

all terms involving the Riemann tensor disappear by virtue of the fact that the spacetime is Ricci-
flat. Because Eq. (15.19) is also the differential equation satisfied by 𝐺;𝛽′ , and because the solutions
are chosen to satisfy the same boundary conditions, we have established the validity of Eq. (15.18).

15.5 Singular and regular Green’s functions

We shall now construct singular and regular Green’s functions for the electromagnetic field. The
treatment here parallels closely what was presented in Section 14.5, and the reader is referred to
that section for a more complete discussion.

We begin by introducing the bitensor 𝐻𝛼
𝛽′(𝑥, 𝑥′) with properties

H1: 𝐻𝛼
𝛽′(𝑥, 𝑥′) satisfies the homogeneous wave equation,

�𝐻𝛼
𝛽′(𝑥, 𝑥′)−𝑅𝛼

𝛽(𝑥)𝐻
𝛽
𝛽′(𝑥, 𝑥

′) = 0; (15.20)

H2: 𝐻𝛼
𝛽′(𝑥, 𝑥′) is symmetric in its indices and arguments,

𝐻𝛽′𝛼(𝑥
′, 𝑥) = 𝐻𝛼𝛽′(𝑥, 𝑥′); (15.21)

H3: 𝐻𝛼
𝛽′(𝑥, 𝑥′) agrees with the retarded Green’s function if 𝑥 is in the chronological future

of 𝑥′,
𝐻𝛼

𝛽′(𝑥, 𝑥′) = 𝐺 𝛼
+𝛽′(𝑥, 𝑥′) when 𝑥 ∈ 𝐼+(𝑥′); (15.22)

H4: 𝐻𝛼
𝛽′(𝑥, 𝑥′) agrees with the advanced Green’s function if 𝑥 is in the chronological past of

𝑥′,
𝐻𝛼

𝛽′(𝑥, 𝑥′) = 𝐺 𝛼
−𝛽′(𝑥, 𝑥′) when 𝑥 ∈ 𝐼−(𝑥′). (15.23)

It is easy to prove that property H4 follows from H2, H3, and the reciprocity relation (15.15)
satisfied by the retarded and advanced Green’s functions. That such a bitensor exists can be
argued along the same lines as those presented in Section 14.5.

Equipped with the bitensor 𝐻𝛼
𝛽′(𝑥, 𝑥′) we define the singular Green’s function to be

𝐺 𝛼
S 𝛽′(𝑥, 𝑥′) =

1

2

[︁
𝐺 𝛼

+𝛽′(𝑥, 𝑥′) +𝐺 𝛼
−𝛽′(𝑥, 𝑥′)−𝐻𝛼

𝛽′(𝑥, 𝑥′)
]︁
. (15.24)

This comes with the properties

S1: 𝐺 𝛼
S 𝛽′(𝑥, 𝑥′) satisfies the inhomogeneous wave equation,

�𝐺 𝛼
S 𝛽′(𝑥, 𝑥′)−𝑅𝛼

𝛽(𝑥)𝐺
𝛽
S 𝛽′(𝑥, 𝑥

′) = −4𝜋𝑔𝛼𝛽′(𝑥, 𝑥′)𝛿4(𝑥, 𝑥
′); (15.25)
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S2: 𝐺 𝛼
S 𝛽′(𝑥, 𝑥′) is symmetric in its indices and arguments,

𝐺S
𝛽′𝛼(𝑥

′, 𝑥) = 𝐺S
𝛼𝛽′(𝑥, 𝑥′); (15.26)

S3: 𝐺 𝛼
S 𝛽′(𝑥, 𝑥′) vanishes if 𝑥 is in the chronological past or future of 𝑥′,

𝐺 𝛼
S 𝛽′(𝑥, 𝑥′) = 0 when 𝑥 ∈ 𝐼±(𝑥′). (15.27)

These can be established as consequences of H1 –H4 and the properties of the retarded and ad-
vanced Green’s functions.

The regular two-point function is then defined by

𝐺 𝛼
R 𝛽′(𝑥, 𝑥′) = 𝐺 𝛼

+𝛽′(𝑥, 𝑥′)−𝐺 𝛼
S 𝛽′(𝑥, 𝑥′), (15.28)

and it comes with the properties

R1: 𝐺 𝛼
R 𝛽′(𝑥, 𝑥′) satisfies the homogeneous wave equation,

�𝐺 𝛼
R 𝛽′(𝑥, 𝑥′)−𝑅𝛼

𝛽(𝑥)𝐺
𝛽

R 𝛽′(𝑥, 𝑥
′) = 0; (15.29)

R2: 𝐺 𝛼
R 𝛽′(𝑥, 𝑥′) agrees with the retarded Green’s function if 𝑥 is in the chronological future

of 𝑥′,
𝐺 𝛼

R 𝛽′(𝑥, 𝑥′) = 𝐺 𝛼
+𝛽′(𝑥, 𝑥′) when 𝑥 ∈ 𝐼+(𝑥′); (15.30)

R3: 𝐺 𝛼
R 𝛽′(𝑥, 𝑥′) vanishes if 𝑥 is in the chronological past of 𝑥′,

𝐺 𝛼
R 𝛽′(𝑥, 𝑥′) = 0 when 𝑥 ∈ 𝐼−(𝑥′). (15.31)

Those follow immediately from S1 –S3 and the properties of the retarded Green’s function.
When 𝑥 is restricted to the normal convex neighbourhood of 𝑥′, we have the explicit relations

𝐻𝛼
𝛽′(𝑥, 𝑥′) = 𝑉 𝛼

𝛽′(𝑥, 𝑥′), (15.32)

𝐺 𝛼
S 𝛽′(𝑥, 𝑥′) =

1

2
𝑈𝛼

𝛽′(𝑥, 𝑥′)𝛿(𝜎)− 1

2
𝑉 𝛼

𝛽′(𝑥, 𝑥′)𝜃(𝜎), (15.33)

𝐺 𝛼
R 𝛽′(𝑥, 𝑥′) =

1

2
𝑈𝛼

𝛽′(𝑥, 𝑥′)
[︁
𝛿+(𝜎)− 𝛿−(𝜎)

]︁
+ 𝑉 𝛼

𝛽′(𝑥, 𝑥′)
[︁
𝜃+(−𝜎) +

1

2
𝜃(𝜎)

]︁
. (15.34)

From these we see clearly that the singular Green’s function does not distinguish between past and
future (property S2), and that its support excludes 𝐼±(𝑥′) (property S3). We see also that the
regular two-point function coincides with 𝐺 𝛼

+𝛽′(𝑥, 𝑥′) in 𝐼+(𝑥′) (property R2), and that its support

does not include 𝐼−(𝑥′) (property R3).

16 Gravitational Green’s functions

16.1 Equations of linearized gravity

We are given a background spacetime for which the metric 𝑔𝛼𝛽 satisfies the Einstein field equations
in vacuum. We then perturb the metric from 𝑔𝛼𝛽 to

g𝛼𝛽 = 𝑔𝛼𝛽 + ℎ𝛼𝛽 . (16.1)
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The metric perturbation ℎ𝛼𝛽 is assumed to be small, and when working out the Einstein field
equations to be satisfied by the new metric g𝛼𝛽 , we work consistently to first order in ℎ𝛼𝛽 . To
simplify the expressions we use the trace-reversed potentials 𝛾𝛼𝛽 defined by

𝛾𝛼𝛽 = ℎ𝛼𝛽 − 1

2

(︀
𝑔𝛾𝛿ℎ𝛾𝛿

)︀
𝑔𝛼𝛽 , (16.2)

and we impose the Lorenz gauge condition,

𝛾𝛼𝛽;𝛽 = 0. (16.3)

In this equation, and in all others below, indices are raised and lowered with the background
metric 𝑔𝛼𝛽 . Similarly, the connection involved in Eq. (16.3), and in all other equations below, is
the one that is compatible with the background metric. If 𝑇𝛼𝛽 is the perturbing energy-momentum
tensor, then by virtue of the linearized Einstein field equations the perturbation field obeys the
wave equation

�𝛾𝛼𝛽 + 2𝑅 𝛼 𝛽
𝛾 𝛿 𝛾𝛾𝛿 = −16𝜋𝑇𝛼𝛽 , (16.4)

in which � = 𝑔𝛼𝛽∇𝛼∇𝛽 is the wave operator and 𝑅𝛾𝛼𝛿𝛽 the Riemann tensor. In first-order
perturbation theory, the energy-momentum tensor must be conserved in the background spacetime:
𝑇𝛼𝛽

;𝛽 = 0.
The solution to the wave equation is written as

𝛾𝛼𝛽(𝑥) = 4

∫︁
𝐺𝛼𝛽

𝛾′𝛿′(𝑥, 𝑥
′)𝑇 𝛾′𝛿′(𝑥′)

√︀
−𝑔′ 𝑑4𝑥′, (16.5)

in terms of a Green’s function 𝐺𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) that satisfies [161]

�𝐺𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) + 2𝑅 𝛼 𝛽
𝛾 𝛿 (𝑥)𝐺𝛾𝛿

𝛾′𝛿′(𝑥, 𝑥
′) = −4𝜋𝑔

(𝛼
𝛾′(𝑥, 𝑥

′)𝑔
𝛽)
𝛿′(𝑥, 𝑥

′)𝛿4(𝑥, 𝑥
′), (16.6)

where 𝑔𝛼𝛾′(𝑥, 𝑥′) is a parallel propagator and 𝛿4(𝑥, 𝑥
′) an invariant Dirac functional. The parallel

propagators are inserted on the right-hand side of Eq. (16.6) to keep the index structure of the
equation consistent from side to side; in particular, both sides of the equation are symmetric in 𝛼
and 𝛽, and in 𝛾′ and 𝛿′. It is easy to check that by virtue of Eq. (16.6), the perturbation field of
Eq. (16.5) satisfies the wave equation of Eq. (16.4). Once 𝛾𝛼𝛽 is known, the metric perturbation
can be reconstructed from the relation ℎ𝛼𝛽 = 𝛾𝛼𝛽 − 1

2 (𝑔
𝛾𝛿𝛾𝛾𝛿)𝑔𝛼𝛽 .

We will assume that the retarded Green’s function 𝐺 𝛼𝛽
+ 𝛾′𝛿′(𝑥, 𝑥

′), which is nonzero if 𝑥 is in

the causal future of 𝑥′, and the advanced Green’s function 𝐺 𝛼𝛽
− 𝛾′𝛿′(𝑥, 𝑥

′), which is nonzero if 𝑥 is
in the causal past of 𝑥′, exist as distributions and can be defined globally in the entire background
spacetime.

16.2 Hadamard construction of the Green’s functions

Assuming throughout this subsection that 𝑥 is in the normal convex neighbourhood of 𝑥′, we make
the ansatz

𝐺 𝛼𝛽
± 𝛾′𝛿′(𝑥, 𝑥

′) = 𝑈𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′)𝛿±(𝜎) + 𝑉 𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′)𝜃±(−𝜎), (16.7)

where 𝜃±(−𝜎), 𝛿±(𝜎) are the light-cone distributions introduced in Section 13.2, and where 𝑈𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′),

𝑉 𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) are smooth bitensors.
To conveniently manipulate the Green’s functions we shift 𝜎 by a small positive quantity 𝜖.

The Green’s functions are then recovered by the taking the limit of

𝐺𝜖 𝛼𝛽
± 𝛾′𝛿′(𝑥, 𝑥

′) = 𝑈𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′)𝛿±(𝜎 + 𝜖) + 𝑉 𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′)𝜃±(−𝜎 − 𝜖)
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as 𝜖 → 0+. When we substitute this into the left-hand side of Eq. (16.6) and then take the limit,
we obtain

�𝐺 𝛼𝛽
± 𝛾′𝛿′ + 2𝑅 𝛼 𝛽

𝛾 𝛿 𝐺 𝛾𝛿
± 𝛾′𝛿′ = −4𝜋𝛿4(𝑥, 𝑥

′)𝑈𝛼𝛽
𝛾′𝛿′ + 𝛿′±(𝜎)

{︁
2𝑈𝛼𝛽

𝛾′𝛿′;𝛾𝜎
𝛾 + (𝜎𝛾

𝛾 − 4)𝑈𝛼𝛽
𝛾′𝛿′

}︁
+ 𝛿±(𝜎)

{︁
−2𝑉 𝛼𝛽

𝛾′𝛿′;𝛾𝜎
𝛾 + (2− 𝜎𝛾

𝛾)𝑉
𝛼𝛽
𝛾′𝛿′ +�𝑈

𝛼𝛽
𝛾′𝛿′ + 2𝑅 𝛼 𝛽

𝛾 𝛿 𝑈𝛾𝛿
𝛾′𝛿′

}︁
+ 𝜃±(−𝜎)

{︁
�𝑉 𝛼𝛽

𝛾′𝛿′ + 2𝑅 𝛼 𝛽
𝛾 𝛿 𝑉 𝛾𝛿

𝛾′𝛿′

}︁
after a routine computation similar to the one presented at the beginning of Section 14.2. Com-
parison with Eq. (16.6) returns: (i) the equations[︀

𝑈𝛼𝛽
𝛾′𝛿′

]︀
=
[︁
𝑔
(𝛼
𝛾′𝑔

𝛽)
𝛿′

]︁
= 𝛿

(𝛼′

𝛾′𝛿
𝛽′)
𝛿′ (16.8)

and
2𝑈𝛼𝛽

𝛾′𝛿′;𝛾𝜎
𝛾 + (𝜎𝛾

𝛾 − 4)𝑈𝛼𝛽
𝛾′𝛿′ = 0 (16.9)

that determine 𝑈𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′); (ii) the equation

𝑉 𝛼𝛽
𝛾′𝛿′;𝛾𝜎

𝛾 +
1

2
(𝜎𝛾

𝛾 − 2)𝑉 𝛼𝛽
𝛾′𝛿′ =

1

2

(︀
�𝑈𝛼𝛽

𝛾′𝛿′ + 2𝑅 𝛼 𝛽
𝛾 𝛿 𝑈𝛾𝛿

𝛾′𝛿′

)︀⃒⃒⃒
𝜎=0

(16.10)

that determine 𝑉 𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′), the restriction of 𝑉 𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) on the light cone 𝜎(𝑥, 𝑥′) = 0; and (iii)
the wave equation

�𝑉 𝛼𝛽
𝛾′𝛿′ + 2𝑅 𝛼 𝛽

𝛾 𝛿 𝑉 𝛾𝛿
𝛾′𝛿′ = 0 (16.11)

that determines 𝑉 𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) inside the light cone.
Eq. (16.9) can be integrated along the unique geodesic 𝛽 that links 𝑥′ to 𝑥. The initial condi-

tions are provided by Eq. (16.8), and if we set 𝑈𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) = 𝑔
(𝛼
𝛾′𝑔

𝛽)
𝛿′𝑈(𝑥, 𝑥′), we find that these

equations reduce to Eqs. (14.7) and (14.6), respectively. According to Eq. (14.8), then, we have

𝑈𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) = 𝑔
(𝛼
𝛾′(𝑥, 𝑥

′)𝑔
𝛽)
𝛿′(𝑥, 𝑥

′)Δ1/2(𝑥, 𝑥′), (16.12)

which reduces to
𝑈𝛼𝛽

𝛾′𝛿′ = 𝑔
(𝛼
𝛾′𝑔

𝛽)
𝛿′

(︁
1 +𝑂(𝜆3)

)︁
(16.13)

near coincidence, with 𝜆 denoting the affine-parameter distance between 𝑥′ and 𝑥; there is no term
of order 𝜆2 because by assumption, the background Ricci tensor vanishes at 𝑥′ (as it does in the
entire spacetime). Differentiation of this relation gives

𝑈𝛼𝛽
𝛾′𝛿′;𝜖 =

1

2
𝑔
(𝛼
𝛼′𝑔

𝛽)
𝛽′𝑔

𝜖′

𝜖

(︁
𝑅𝛼′

𝛾′𝜖′𝜄′𝛿
𝛽′

𝛿′ +𝑅𝛼′

𝛿′𝜖′𝜄′𝛿
𝛽′

𝛾′

)︁
𝜎𝜄′ +𝑂(𝜆2), (16.14)

𝑈𝛼𝛽
𝛾′𝛿′;𝜖′ =

1

2
𝑔
(𝛼
𝛼′𝑔

𝛽)
𝛽′

(︁
𝑅𝛼′

𝛾′𝜖′𝜄′𝛿
𝛽′

𝛿′ +𝑅𝛼′

𝛿′𝜖′𝜄′𝛿
𝛽′

𝛾′

)︁
𝜎𝜄′ +𝑂(𝜆2), (16.15)

and eventually, [︀
�𝑈𝛼𝛽

𝛾′𝛿′ ] = 0; (16.16)

this last result follows from the fact that [𝑈𝛼𝛽
𝛾′𝛿′;𝜖𝜄] is antisymmetric in the last pair of indices.

Similarly, Eq. (16.10) can be integrated along each null geodesic that generates the null cone
𝜎(𝑥, 𝑥′) = 0. The initial values are obtained by taking the coincidence limit of this equation, using
Eqs. (16.8), (16.16), and the additional relation [𝜎𝛾

𝛾 ] = 4. We arrive at[︀
𝑉 𝛼𝛽

𝛾′𝛿′

]︀
=

1

2

(︁
𝑅𝛼′ 𝛽′

𝛾′ 𝛿′ +𝑅𝛽′ 𝛼′

𝛾′ 𝛿′

)︁
. (16.17)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7

http://www.livingreviews.org/lrr-2011-7


The Motion of Point Particles in Curved Spacetime 99

With the characteristic data obtained by integrating Eq. (16.10), the wave equation of Eq. (16.11)
admits a unique solution.

To summarize, the retarded and advanced gravitational Green’s functions are given by Eq. (16.7)

with 𝑈𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) given by Eq. (16.12) and 𝑉 𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) determined by Eq. (16.11) and the char-
acteristic data constructed with Eqs. (16.10) and (16.17). It should be emphasized that the con-
struction provided in this subsection is restricted to 𝒩 (𝑥′), the normal convex neighbourhood of
the reference point 𝑥′.

16.3 Reciprocity and Kirchhoff representation

The (globally defined) gravitational Green’s functions satisfy the reciprocity relation

𝐺−
𝛾′𝛿′𝛼𝛽(𝑥

′, 𝑥) = 𝐺+
𝛼𝛽𝛾′𝛿′(𝑥, 𝑥

′). (16.18)

The derivation of this result is virtually identical to what was presented in Sections 14.3 and 15.3.
A direct consequence of the reciprocity relation is the statement

𝑉𝛾′𝛿′𝛼𝛽(𝑥
′, 𝑥) = 𝑉𝛼𝛽𝛾′𝛿′(𝑥, 𝑥

′). (16.19)

The Kirchhoff representation for the trace-reversed gravitational perturbation 𝛾𝛼𝛽 is formulated
as follows. Suppose that 𝛾𝛼𝛽(𝑥) satisfies the homogeneous version of Eq. (16.4) and that initial
values 𝛾𝛼

′𝛽′
(𝑥′), 𝑛𝛾

′∇𝛾′𝛾𝛼
′𝛽′

(𝑥′) are specified on a spacelike hypersurface Σ. Then the value of
the perturbation field at a point 𝑥 in the future of Σ is given by

𝛾𝛼𝛽(𝑥) = − 1

4𝜋

∫︁
Σ

(︂
𝐺 𝛼𝛽

+ 𝛾′𝛿′(𝑥, 𝑥
′)∇𝜖′𝛾𝛾

′𝛿′(𝑥′)− 𝛾𝛾
′𝛿′(𝑥′)∇𝜖′𝐺 𝛼𝛽

+ 𝛾′𝛿′(𝑥, 𝑥
′)

)︂
𝑑Σ𝜖′ , (16.20)

where 𝑑Σ𝜖′ = −𝑛𝜖′𝑑𝑉 is a surface element on Σ; 𝑛𝜖′ is the future-directed unit normal and 𝑑𝑉
is the invariant volume element on the hypersurface. The derivation of Eq. (16.20) is virtually
identical to what was presented in Sections 14.4 and 15.3.

16.4 Relation with electromagnetic and scalar Green’s functions

In a spacetime that satisfies the Einstein field equations in vacuum, so that 𝑅𝛼𝛽 = 0 everywhere
in the spacetime, the (retarded and advanced) gravitational Green’s functions satisfy the identi-
ties [144]

𝐺 𝛼𝛽
± 𝛾′𝛿′;𝛽 = −𝐺 𝛼

±(𝛾′;𝛿′) (16.21)

and
𝑔𝛾

′𝛿′𝐺 𝛼𝛽
± 𝛾′𝛿′ = 𝑔𝛼𝛽𝐺±, (16.22)

where 𝐺 𝛼
±𝛽′ are the corresponding electromagnetic Green’s functions, and 𝐺± the corresponding

scalar Green’s functions.
To prove Eq. (16.21) we differentiate Eq. (16.6) covariantly with respect to 𝑥𝛽 , use Eq. (13.3)

to work on the right-hand side, and invoke Ricci’s identity to permute the ordering of the covariant
derivatives on the left-hand side. After simplification and involvement of the Ricci-flat condition
(which, together with the Bianchi identities, implies that 𝑅 ;𝛽

𝛼𝛾𝛽𝛿 = 0), we arrive at the equation

�
(︀
−𝐺𝛼𝛽

𝛾′𝛿′;𝛽

)︀
= −4𝜋𝑔𝛼(𝛾′𝜕𝛿′)𝛿4(𝑥, 𝑥

′). (16.23)

Because this is also the differential equation satisfied by 𝐺𝛼
(𝛽′;𝛾′), and because the solutions are

chosen to satisfy the same boundary conditions, we have established the validity of Eq. (16.21).

The identity of Eq. (16.22) follows simply from the fact that 𝑔𝛾
′𝛿′𝐺𝛼𝛽

𝛾′𝛿′ and 𝑔
𝛼𝛽𝐺 satisfy the

same tensorial wave equation in a Ricci-flat spacetime.
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16.5 Singular and regular Green’s functions

We shall now construct singular and regular Green’s functions for the linearized gravitational field.
The treatment here parallels closely what was presented in Sections 14.5 and 15.5.

We begin by introducing the bitensor 𝐻𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) with properties

H1: 𝐻𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) satisfies the homogeneous wave equation,

�𝐻𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) + 2𝑅 𝛼 𝛽
𝛾 𝛿 (𝑥)𝐻𝛾𝛿

𝛾′𝛿′(𝑥, 𝑥
′) = 0; (16.24)

H2: 𝐻𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) is symmetric in its indices and arguments,

𝐻𝛾′𝛿′𝛼𝛽(𝑥
′, 𝑥) = 𝐻𝛼𝛽𝛾′𝛿′(𝑥, 𝑥

′); (16.25)

H3: 𝐻𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) agrees with the retarded Green’s function if 𝑥 is in the chronological future
of 𝑥′,

𝐻𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) = 𝐺 𝛼𝛽
+ 𝛾′𝛿′(𝑥, 𝑥

′) when 𝑥 ∈ 𝐼+(𝑥′); (16.26)

H4: 𝐻𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) agrees with the advanced Green’s function if 𝑥 is in the chronological past
of 𝑥′,

𝐻𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) = 𝐺 𝛼𝛽
− 𝛾′𝛿′(𝑥, 𝑥

′) when 𝑥 ∈ 𝐼−(𝑥′). (16.27)

It is easy to prove that property H4 follows from H2, H3, and the reciprocity relation (16.18)
satisfied by the retarded and advanced Green’s functions. That such a bitensor exists can be
argued along the same lines as those presented in Section 14.5.

Equipped with 𝐻𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) we define the singular Green’s function to be

𝐺 𝛼𝛽
S 𝛾′𝛿′(𝑥, 𝑥

′) =
1

2

[︁
𝐺 𝛼𝛽

+ 𝛾′𝛿′(𝑥, 𝑥
′) +𝐺 𝛼𝛽

− 𝛾′𝛿′(𝑥, 𝑥
′)−𝐻𝛼𝛽

𝛾′𝛿′(𝑥, 𝑥
′)
]︁
. (16.28)

This comes with the properties

S1: 𝐺 𝛼𝛽
S 𝛾′𝛿′(𝑥, 𝑥

′) satisfies the inhomogeneous wave equation,

�𝐺 𝛼𝛽
S 𝛾′𝛿′(𝑥, 𝑥

′) + 2𝑅 𝛼 𝛽
𝛾 𝛿 (𝑥)𝐺 𝛾𝛿

S 𝛾′𝛿′(𝑥, 𝑥
′) = −4𝜋𝑔

(𝛼
𝛾′(𝑥, 𝑥

′)𝑔
𝛽)
𝛿′(𝑥, 𝑥

′)𝛿4(𝑥, 𝑥
′); (16.29)

S2: 𝐺 𝛼𝛽
S 𝛾′𝛿′(𝑥, 𝑥

′) is symmetric in its indices and arguments,

𝐺S
𝛾′𝛿′𝛼𝛽(𝑥

′, 𝑥) = 𝐺S
𝛼𝛽𝛾′𝛿′(𝑥, 𝑥

′); (16.30)

S3: 𝐺 𝛼𝛽
S 𝛾′𝛿′(𝑥, 𝑥

′) vanishes if 𝑥 is in the chronological past or future of 𝑥′,

𝐺 𝛼𝛽
S 𝛾′𝛿′(𝑥, 𝑥

′) = 0 when 𝑥 ∈ 𝐼±(𝑥′). (16.31)

These can be established as consequences of H1 –H4 and the properties of the retarded and ad-
vanced Green’s functions.

The regular two-point function is then defined by

𝐺 𝛼𝛽
R 𝛾′𝛿′(𝑥, 𝑥

′) = 𝐺 𝛼𝛽
+ 𝛾′𝛿′(𝑥, 𝑥

′)−𝐺 𝛼𝛽
S 𝛾′𝛿′(𝑥, 𝑥

′), (16.32)

and it comes with the properties
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R1: 𝐺 𝛼𝛽
R 𝛾′𝛿′(𝑥, 𝑥

′) satisfies the homogeneous wave equation,

�𝐺 𝛼𝛽
R 𝛾′𝛿′(𝑥, 𝑥

′) + 2𝑅 𝛼 𝛽
𝛾 𝛿 (𝑥)𝐺 𝛾𝛿

R 𝛾′𝛿′(𝑥, 𝑥
′) = 0; (16.33)

R2: 𝐺 𝛼𝛽
R 𝛾′𝛿′(𝑥, 𝑥

′) agrees with the retarded Green’s function if 𝑥 is in the chronological future
of 𝑥′,

𝐺 𝛼𝛽
R 𝛾′𝛿′(𝑥, 𝑥

′) = 𝐺 𝛼𝛽
+ 𝛾′𝛿′(𝑥, 𝑥

′) when 𝑥 ∈ 𝐼+(𝑥′); (16.34)

R3: 𝐺 𝛼𝛽
R 𝛾′𝛿′(𝑥, 𝑥

′) vanishes if 𝑥 is in the chronological past of 𝑥′,

𝐺 𝛼𝛽
R 𝛾′𝛿′(𝑥, 𝑥

′) = 0 when 𝑥 ∈ 𝐼−(𝑥′). (16.35)

Those follow immediately from S1 –S3 and the properties of the retarded Green’s function.
When 𝑥 is restricted to the normal convex neighbourhood of 𝑥′, we have the explicit relations

𝐻𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′) = 𝑉 𝛼𝛽
𝛾′𝛿′(𝑥, 𝑥

′), (16.36)

𝐺 𝛼𝛽
S 𝛾′𝛿′(𝑥, 𝑥

′) =
1

2
𝑈𝛼𝛽

𝛾′𝛿′(𝑥, 𝑥
′)𝛿(𝜎)− 1

2
𝑉 𝛼𝛽

𝛾′𝛿′(𝑥, 𝑥
′)𝜃(𝜎), (16.37)

𝐺 𝛼𝛽
R 𝛾′𝛿′(𝑥, 𝑥

′) =
1

2
𝑈𝛼𝛽

𝛾′𝛿′(𝑥, 𝑥
′)
[︁
𝛿+(𝜎)− 𝛿−(𝜎)

]︁
+ 𝑉 𝛼𝛽

𝛾′𝛿′(𝑥, 𝑥
′)
[︁
𝜃+(−𝜎) +

1

2
𝜃(𝜎)

]︁
. (16.38)

From these we see clearly that the singular Green’s function does not distinguish between past
and future (property S2), and that its support excludes 𝐼±(𝑥′) (property S3). We see also that

the regular two-point function coincides with 𝐺 𝛼𝛽
+ 𝛾′𝛿′(𝑥, 𝑥

′) in 𝐼+(𝑥′) (property R2), and that its

support does not include 𝐼−(𝑥′) (property R3).
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Part IV: Motion of Point Particles

17 Motion of a scalar charge

17.1 Dynamics of a point scalar charge

A point particle carries a scalar charge 𝑞 and moves on a world line 𝛾 described by relations 𝑧𝜇(𝜆),
in which 𝜆 is an arbitrary parameter. The particle generates a scalar potential Φ(𝑥) and a field
Φ𝛼(𝑥) := ∇𝛼Φ(𝑥). The dynamics of the entire system is governed by the action

𝑆 = 𝑆field + 𝑆particle + 𝑆interaction, (17.1)

where 𝑆field is an action functional for a free scalar field in a spacetime with metric 𝑔𝛼𝛽 , 𝑆particle

is the action of a free particle moving on a world line 𝛾 in this spacetime, and 𝑆interaction is an
interaction term that couples the field to the particle.

The field action is given by

𝑆field = − 1

8𝜋

∫︁ (︀
𝑔𝛼𝛽Φ𝛼Φ𝛽 + 𝜉𝑅Φ2

)︀√−𝑔 𝑑4𝑥, (17.2)

where the integration is over all of spacetime; the field is coupled to the Ricci scalar 𝑅 by an
arbitrary constant 𝜉. The particle action is

𝑆particle = −𝑚0

∫︁
𝛾

𝑑𝜏, (17.3)

where 𝑚0 is the bare mass of the particle and 𝑑𝜏 =
√︀

−𝑔𝜇𝜈(𝑧)𝑧̇𝜇𝑧̇𝜈 𝑑𝜆 is the differential of proper
time along the world line; we use an overdot on 𝑧𝜇(𝜆) to indicate differentiation with respect to
the parameter 𝜆. Finally, the interaction term is given by

𝑆interaction = 𝑞

∫︁
𝛾

Φ(𝑧) 𝑑𝜏 = 𝑞

∫︁
Φ(𝑥)𝛿4(𝑥, 𝑧)

√−𝑔 𝑑4𝑥𝑑𝜏. (17.4)

Notice that both 𝑆particle and 𝑆interaction are invariant under a reparameterization 𝜆 → 𝜆′(𝜆) of
the world line.

Demanding that the total action be stationary under a variation 𝛿Φ(𝑥) of the field configuration
yields the wave equation (︀

�− 𝜉𝑅
)︀
Φ(𝑥) = −4𝜋𝜇(𝑥) (17.5)

for the scalar potential, with a charge density 𝜇(𝑥) defined by

𝜇(𝑥) = 𝑞

∫︁
𝛾

𝛿4(𝑥, 𝑧) 𝑑𝜏. (17.6)

These equations determine the field Φ𝛼(𝑥) once the motion of the scalar charge is specified. On the
other hand, demanding that the total action be stationary under a variation 𝛿𝑧𝜇(𝜆) of the world
line yields the equations of motion

𝑚(𝜏)
𝐷𝑢𝜇

𝑑𝜏
= 𝑞
(︀
𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀
Φ𝜈(𝑧) (17.7)

for the scalar charge. We have here adopted 𝜏 as the parameter on the world line, and introduced
the four-velocity 𝑢𝜇(𝜏) := 𝑑𝑧𝜇/𝑑𝜏 . The dynamical mass that appears in Eq. (17.7) is defined by
𝑚(𝜏) := 𝑚0 − 𝑞Φ(𝑧), which can also be expressed in differential form as

𝑑𝑚

𝑑𝜏
= −𝑞Φ𝜇(𝑧)𝑢

𝜇. (17.8)
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It should be clear that Eqs. (17.7) and (17.8) are valid only in a formal sense, because the scalar
potential obtained from Eqs. (17.5) and (17.6) diverges on the world line. Before we can make
sense of these equations we have to analyze the field’s singularity structure near the world line.

17.2 Retarded potential near the world line

The retarded solution to Eq. (17.5) is Φ(𝑥) =
∫︀
𝐺+(𝑥, 𝑥

′)𝜇(𝑥′)
√
𝑔′ 𝑑4𝑥′, where 𝐺+(𝑥, 𝑥

′) is the
retarded Green’s function introduced in Section 14. After substitution of Eq. (17.6) we obtain

Φ(𝑥) = 𝑞

∫︁
𝛾

𝐺+(𝑥, 𝑧) 𝑑𝜏, (17.9)

in which 𝑧(𝜏) gives the description of the world line 𝛾. Because the retarded Green’s function is
defined globally in the entire spacetime, Eq. (17.9) applies to any field point 𝑥.

x

<

>

v

u

Figure 9: The region within the dashed boundary represents the normal convex neighbourhood of the
point 𝑥. The world line 𝛾 enters the neighbourhood at proper time 𝜏< and exits at proper time 𝜏>. Also
shown are the retarded point 𝑧(𝑢) and the advanced point 𝑧(𝑣).

We now specialize Eq. (17.9) to a point 𝑥 near the world line; see Figure 9. We let 𝒩 (𝑥) be
the normal convex neighbourhood of this point, and we assume that the world line traverses 𝒩 (𝑥).
Let 𝜏< be the value of the proper-time parameter at which 𝛾 enters 𝒩 (𝑥) from the past, and let
𝜏> be its value when the world line leaves 𝒩 (𝑥). Then Eq. (17.9) can be broken up into the three
integrals

Φ(𝑥) = 𝑞

∫︁ 𝜏<

−∞
𝐺+(𝑥, 𝑧) 𝑑𝜏 + 𝑞

∫︁ 𝜏>

𝜏<

𝐺+(𝑥, 𝑧) 𝑑𝜏 + 𝑞

∫︁ ∞

𝜏>

𝐺+(𝑥, 𝑧) 𝑑𝜏.

The third integration vanishes because 𝑥 is then in the past of 𝑧(𝜏), and 𝐺+(𝑥, 𝑧) = 0. For
the second integration, 𝑥 is the normal convex neighbourhood of 𝑧(𝜏), and the retarded Green’s
function can be expressed in the Hadamard form produced in Section 14.2. This gives∫︁ 𝜏>

𝜏<

𝐺+(𝑥, 𝑧) 𝑑𝜏 =

∫︁ 𝜏>

𝜏<

𝑈(𝑥, 𝑧)𝛿+(𝜎) 𝑑𝜏 +

∫︁ 𝜏>

𝜏<

𝑉 (𝑥, 𝑧)𝜃+(−𝜎) 𝑑𝜏,
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and to evaluate this we refer back to Section 10 and let 𝑥′ := 𝑧(𝑢) be the retarded point associated
with 𝑥; these points are related by 𝜎(𝑥, 𝑥′) = 0 and 𝑟 := 𝜎𝛼′𝑢𝛼

′
is the retarded distance between

𝑥 and the world line. We resume the index convention of Section 10: to tensors at 𝑥 we assign
indices 𝛼, 𝛽, etc.; to tensors at 𝑥′ we assign indices 𝛼′, 𝛽′, etc.; and to tensors at a generic point
𝑧(𝜏) on the world line we assign indices 𝜇, 𝜈, etc.

To perform the first integration we change variables from 𝜏 to 𝜎, noticing that 𝜎 increases as
𝑧(𝜏) passes through 𝑥′. The change of 𝜎 on the world line is given by 𝑑𝜎 := 𝜎(𝑥, 𝑧+𝑑𝑧)−𝜎(𝑥, 𝑧) =
𝜎𝜇𝑢

𝜇 𝑑𝜏 , and we find that the first integral evaluates to 𝑈(𝑥, 𝑧)/(𝜎𝜇𝑢
𝜇) with 𝑧 identified with 𝑥′.

The second integration is cut off at 𝜏 = 𝑢 by the step function, and we obtain our final expression
for the retarded potential of a point scalar charge:

Φ(𝑥) =
𝑞

𝑟
𝑈(𝑥, 𝑥′) + 𝑞

∫︁ 𝑢

𝜏<

𝑉 (𝑥, 𝑧) 𝑑𝜏 + 𝑞

∫︁ 𝜏<

−∞
𝐺+(𝑥, 𝑧) 𝑑𝜏. (17.10)

This expression applies to a point 𝑥 sufficiently close to the world line that there exists a nonempty
intersection between 𝒩 (𝑥) and 𝛾.

17.3 Field of a scalar charge in retarded coordinates

When we differentiate the potential of Eq. (17.10) we must keep in mind that a variation in 𝑥
induces a variation in 𝑥′ because the new points 𝑥+ 𝛿𝑥 and 𝑥′ + 𝛿𝑥′ must also be linked by a null
geodesic – you may refer back to Section 10.2 for a detailed discussion. This means, for example,
that the total variation of 𝑈(𝑥, 𝑥′) is 𝛿𝑈 = 𝑈(𝑥 + 𝛿𝑥, 𝑥′ + 𝛿𝑥′) − 𝑈(𝑥, 𝑥′) = 𝑈;𝛼𝛿𝑥

𝛼 + 𝑈;𝛼′𝑢𝛼
′
𝛿𝑢.

The gradient of the scalar potential is therefore given by

Φ𝛼(𝑥) = − 𝑞

𝑟2
𝑈(𝑥, 𝑥′)𝜕𝛼𝑟 +

𝑞

𝑟
𝑈;𝛼(𝑥, 𝑥

′) +
𝑞

𝑟
𝑈;𝛼′(𝑥, 𝑥′)𝑢𝛼

′
𝜕𝛼𝑢+ 𝑞𝑉 (𝑥, 𝑥′)𝜕𝛼𝑢+Φtail

𝛼 (𝑥), (17.11)

where the “tail integral” is defined by

Φtail
𝛼 (𝑥) = 𝑞

∫︁ 𝑢

𝜏<

∇𝛼𝑉 (𝑥, 𝑧) 𝑑𝜏 + 𝑞

∫︁ 𝜏<

−∞
∇𝛼𝐺+(𝑥, 𝑧) 𝑑𝜏

= 𝑞

∫︁ 𝑢−

−∞
∇𝛼𝐺+(𝑥, 𝑧) 𝑑𝜏. (17.12)

In the second form of the definition we integrate ∇𝛼𝐺+(𝑥, 𝑧) from 𝜏 = −∞ to almost 𝜏 = 𝑢, but
we cut the integration short at 𝜏 = 𝑢− := 𝑢− 0+ to avoid the singular behaviour of the retarded
Green’s function at 𝜎 = 0. This limiting procedure gives rise to the first form of the definition,
with the advantage that the integral need not be broken up into contributions that refer to 𝒩 (𝑥)
and its complement, respectively.

We shall now expand Φ𝛼(𝑥) in powers of 𝑟, and express the results in terms of the retarded
coordinates (𝑢, 𝑟,Ω𝑎) introduced in Section 10. It will be convenient to decompose Φ𝛼(𝑥) in the
tetrad (𝑒𝛼0 , 𝑒

𝛼
𝑎 ) that is obtained by parallel transport of (𝑢𝛼

′
, 𝑒𝛼

′

𝑎 ) on the null geodesic that links 𝑥
to 𝑥′ := 𝑧(𝑢); this construction is detailed in Section 10. The expansion relies on Eq. (10.29) for
𝜕𝛼𝑢, Eq. (10.31) for 𝜕𝛼𝑟, and we shall need

𝑈(𝑥, 𝑥′) = 1 +
1

12
𝑟2
(︀
𝑅00 + 2𝑅0𝑎Ω

𝑎 +𝑅𝑎𝑏Ω
𝑎Ω𝑏

)︀
+𝑂(𝑟3), (17.13)

which follows from Eq. (14.10) and the relation 𝜎𝛼′
= −𝑟(𝑢𝛼′

+ Ω𝑎𝑒𝛼
′

𝑎 ) first encountered in
Eq. (10.7); recall that

𝑅00(𝑢) = 𝑅𝛼′𝛽′𝑢𝛼
′
𝑢𝛽

′
, 𝑅0𝑎(𝑢) = 𝑅𝛼′𝛽′𝑢𝛼

′
𝑒𝛽

′

𝑎 , 𝑅𝑎𝑏(𝑢) = 𝑅𝛼′𝛽′𝑒𝛼
′

𝑎 𝑒
𝛽′

𝑏
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are frame components of the Ricci tensor evaluated at 𝑥′. We shall also need the expansions

𝑈;𝛼(𝑥, 𝑥
′) =

1

6
𝑟𝑔𝛼

′

𝛼

(︀
𝑅𝛼′0 +𝑅𝛼′𝑏Ω

𝑏
)︀
+𝑂(𝑟2) (17.14)

and

𝑈;𝛼′(𝑥, 𝑥′)𝑢𝛼
′
= −1

6
𝑟
(︀
𝑅00 +𝑅0𝑎Ω

𝑎
)︀
+𝑂(𝑟2) (17.15)

which follow from Eqs. (14.11); recall from Eq. (10.4) that the parallel propagator can be expressed
as 𝑔𝛼

′

𝛼 = 𝑢𝛼
′
𝑒0𝛼 + 𝑒𝛼

′

𝑎 𝑒
𝑎
𝛼. And finally, we shall need

𝑉 (𝑥, 𝑥′) =
1

12

(︀
1− 6𝜉

)︀
𝑅+𝑂(𝑟), (17.16)

a relation that was first established in Eq. (14.13); here 𝑅 := 𝑅(𝑢) is the Ricci scalar evaluated at
𝑥′.

Collecting all these results gives

Φ0(𝑢, 𝑟,Ω
𝑎) := Φ𝛼(𝑥)𝑒

𝛼
0 (𝑥)

=
𝑞

𝑟
𝑎𝑎Ω

𝑎 +
1

2
𝑞𝑅𝑎0𝑏0Ω

𝑎Ω𝑏 +
1

12

(︀
1− 6𝜉

)︀
𝑞𝑅+Φtail

0 +𝑂(𝑟), (17.17)

Φ𝑎(𝑢, 𝑟,Ω
𝑎) := Φ𝛼(𝑥)𝑒

𝛼
𝑎 (𝑥)

= − 𝑞

𝑟2
Ω𝑎 −

𝑞

𝑟
𝑎𝑏Ω

𝑏Ω𝑎 −
1

3
𝑞𝑅𝑏0𝑐0Ω

𝑏Ω𝑐Ω𝑎 −
1

6
𝑞
(︀
𝑅𝑎0𝑏0Ω

𝑏 −𝑅𝑎𝑏0𝑐Ω
𝑏Ω𝑐
)︀

+
1

12
𝑞
[︀
𝑅00 −𝑅𝑏𝑐Ω

𝑏Ω𝑐 − (1− 6𝜉)𝑅
]︀
Ω𝑎 +

1

6
𝑞
(︀
𝑅𝑎0 +𝑅𝑎𝑏Ω

𝑏
)︀
+Φtail

𝑎 +𝑂(𝑟),(17.18)

where 𝑎𝑎 = 𝑎𝛼′𝑒𝛼
′

𝑎 are the frame components of the acceleration vector,

𝑅𝑎0𝑏0(𝑢) = 𝑅𝛼′𝛾′𝛽′𝛿′𝑒
𝛼′

𝑎 𝑢
𝛾′
𝑒𝛽

′

𝑏 𝑢
𝛿′ , 𝑅𝑎𝑏0𝑐(𝑢) = 𝑅𝛼′𝛾′𝛽′𝛿′𝑒

𝛼′

𝑎 𝑒
𝛾′

𝑏 𝑢
𝛽′
𝑒𝛿

′

𝑐

are frame components of the Riemann tensor evaluated at 𝑥′, and

Φtail
0 (𝑢) = Φtail

𝛼′ (𝑥′)𝑢𝛼
′
, Φtail

𝑎 (𝑢) = Φtail
𝛼′ (𝑥′)𝑒𝛼

′

𝑎 (17.19)

are the frame components of the tail integral evaluated at 𝑥′. Equations (17.17) and (17.18) show
clearly that Φ𝛼(𝑥) is singular on the world line: the field diverges as 𝑟−2 when 𝑟 → 0, and many
of the terms that stay bounded in the limit depend on Ω𝑎 and therefore possess a directional
ambiguity at 𝑟 = 0.

17.4 Field of a scalar charge in Fermi normal coordinates

The gradient of the scalar potential can also be expressed in the Fermi normal coordinates of
Section 9. To effect this translation we make 𝑥̄ := 𝑧(𝑡) the new reference point on the world line.
We resume here the notation of Section 11 and assign indices 𝛼̄, 𝛽, . . . to tensors at 𝑥̄. The Fermi
normal coordinates are denoted (𝑡, 𝑠, 𝜔𝑎), and we let (𝑒𝛼0 , 𝑒

𝛼
𝑎 ) be the tetrad at 𝑥 that is obtained

by parallel transport of (𝑢𝛼̄, 𝑒𝛼̄𝑎 ) on the spacelike geodesic that links 𝑥 to 𝑥̄.
Our first task is to decompose Φ𝛼(𝑥) in the tetrad (𝑒𝛼0 , 𝑒

𝛼
𝑎 ), thereby defining Φ̄0 := Φ𝛼𝑒

𝛼
0 and

Φ̄𝑎 := Φ𝛼𝑒
𝛼
𝑎 . For this purpose we use Eqs. (11.7), (11.8), (17.17), and (17.18) to obtain

Φ̄0 =
[︁
1 +𝑂(𝑟2)

]︁
Φ0 +

[︁
𝑟
(︀
1− 𝑎𝑏Ω

𝑏
)︀
𝑎𝑎 +

1

2
𝑟2𝑎̇𝑎 +

1

2
𝑟2𝑅𝑎

0𝑏0Ω
𝑏 +𝑂(𝑟3)

]︁
Φ𝑎

= −1

2
𝑞𝑎̇𝑎Ω

𝑎 +
1

12
(1− 6𝜉)𝑞𝑅+ Φ̄tail

0 +𝑂(𝑟)
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and

Φ̄𝑎 =
[︁
𝛿𝑏𝑎 +

1

2
𝑟2𝑎𝑏𝑎𝑎 −

1

2
𝑟2𝑅𝑏

𝑎0𝑐Ω
𝑐 +𝑂(𝑟3)

]︁
Φ𝑏 +

[︁
𝑟𝑎𝑎 +𝑂(𝑟2)

]︁
Φ0

= − 𝑞

𝑟2
Ω𝑎 −

𝑞

𝑟
𝑎𝑏Ω

𝑏Ω𝑎 +
1

2
𝑞𝑎𝑏Ω

𝑏𝑎𝑎 −
1

3
𝑞𝑅𝑏0𝑐0Ω

𝑏Ω𝑐Ω𝑎 −
1

6
𝑞𝑅𝑎0𝑏0Ω

𝑏 − 1

3
𝑞𝑅𝑎𝑏0𝑐Ω

𝑏Ω𝑐

+
1

12
𝑞
[︀
𝑅00 −𝑅𝑏𝑐Ω

𝑏Ω𝑐 − (1− 6𝜉)𝑅
]︀
Ω𝑎 +

1

6
𝑞
(︀
𝑅𝑎0 +𝑅𝑎𝑏Ω

𝑏
)︀
+ Φ̄tail

𝑎 +𝑂(𝑟),

where all frame components are still evaluated at 𝑥′, except for Φ̄tail
0 and Φ̄tail

𝑎 which are evaluated
at 𝑥̄.

We must still translate these results into the Fermi normal coordinates (𝑡, 𝑠, 𝜔𝑎). For this we
involve Eqs. (11.4), (11.5), and (11.6), from which we deduce, for example,

1

𝑟2
Ω𝑎 =

1

𝑠2
𝜔𝑎 +

1

2𝑠
𝑎𝑎 −

3

2𝑠
𝑎𝑏𝜔

𝑏𝜔𝑎 −
3

4
𝑎𝑏𝜔

𝑏𝑎𝑎 +
15

8

(︀
𝑎𝑏𝜔

𝑏
)︀2
𝜔𝑎 +

3

8
𝑎̇0𝜔𝑎 −

1

3
𝑎̇𝑎

+ 𝑎̇𝑏𝜔
𝑏𝜔𝑎 +

1

6
𝑅𝑎0𝑏0𝜔

𝑏 − 1

2
𝑅𝑏0𝑐0𝜔

𝑏𝜔𝑐𝜔𝑎 −
1

3
𝑅𝑎𝑏0𝑐𝜔

𝑏𝜔𝑐 +𝑂(𝑠)

and
1

𝑟
𝑎𝑏Ω

𝑏Ω𝑎 =
1

𝑠
𝑎𝑏𝜔

𝑏𝜔𝑎 +
1

2
𝑎𝑏𝜔

𝑏𝑎𝑎 −
3

2

(︀
𝑎𝑏𝜔

𝑏
)︀2
𝜔𝑎 −

1

2
𝑎̇0𝜔𝑎 − 𝑎̇𝑏𝜔

𝑏𝜔𝑎 +𝑂(𝑠),

in which all frame components (on the right-hand side of these relations) are now evaluated at
𝑥̄; to obtain the second relation we expressed 𝑎𝑎(𝑢) as 𝑎𝑎(𝑡) − 𝑠𝑎̇𝑎(𝑡) + 𝑂(𝑠2) since according to
Eq. (11.4), 𝑢 = 𝑡− 𝑠+𝑂(𝑠2).

Collecting these results yields

Φ̄0(𝑡, 𝑠, 𝜔
𝑎) := Φ𝛼(𝑥)𝑒

𝛼
0 (𝑥)

= −1

2
𝑞𝑎̇𝑎𝜔

𝑎 +
1

12
(1− 6𝜉)𝑞𝑅+ Φ̄tail

0 +𝑂(𝑠), (17.20)

Φ̄𝑎(𝑡, 𝑠, 𝜔
𝑎) := Φ𝛼(𝑥)𝑒

𝛼
𝑎 (𝑥)

= − 𝑞

𝑠2
𝜔𝑎 −

𝑞

2𝑠

(︀
𝑎𝑎 − 𝑎𝑏𝜔

𝑏𝜔𝑎

)︀
+

3

4
𝑞𝑎𝑏𝜔

𝑏𝑎𝑎 −
3

8
𝑞
(︀
𝑎𝑏𝜔

𝑏
)︀2
𝜔𝑎 +

1

8
𝑞𝑎̇0𝜔𝑎 +

1

3
𝑞𝑎̇𝑎

− 1

3
𝑞𝑅𝑎0𝑏0𝜔

𝑏 +
1

6
𝑞𝑅𝑏0𝑐0𝜔

𝑏𝜔𝑐𝜔𝑎 +
1

12
𝑞
[︀
𝑅00 −𝑅𝑏𝑐𝜔

𝑏𝜔𝑐 − (1− 6𝜉)𝑅
]︀
𝜔𝑎

+
1

6
𝑞
(︀
𝑅𝑎0 +𝑅𝑎𝑏𝜔

𝑏
)︀
+ Φ̄tail

𝑎 +𝑂(𝑠). (17.21)

In these expressions, 𝑎𝑎(𝑡) = 𝑎𝛼̄𝑒
𝛼̄
𝑎 are the frame components of the acceleration vector evaluated

at 𝑥̄, 𝑎̇0(𝑡) = 𝑎̇𝛼̄𝑢
𝛼̄ and 𝑎̇𝑎(𝑡) = 𝑎̇𝛼̄𝑒

𝛼̄
𝑎 are frame components of its covariant derivative, 𝑅𝑎0𝑏0(𝑡) =

𝑅𝛼̄𝛾𝛽𝛿𝑒
𝛼̄
𝑎𝑢

𝛾𝑒𝛽𝑏 𝑢
𝛿 are frame components of the Riemann tensor evaluated at 𝑥̄,

𝑅00(𝑡) = 𝑅𝛼̄𝛽𝑢
𝛼̄𝑢𝛽 , 𝑅0𝑎(𝑡) = 𝑅𝛼̄𝛽𝑢

𝛼̄𝑒𝛽𝑎 , 𝑅𝑎𝑏(𝑡) = 𝑅𝛼̄𝛽𝑒
𝛼̄
𝑎𝑒

𝛽
𝑏

are frame components of the Ricci tensor, and 𝑅(𝑡) is the Ricci scalar evaluated at 𝑥̄. Finally, we
have that

Φ̄tail
0 (𝑡) = Φtail

𝛼̄ (𝑥̄)𝑢𝛼̄, Φ̄tail
𝑎 (𝑡) = Φtail

𝛼̄ (𝑥̄)𝑒𝛼̄𝑎 (17.22)

are the frame components of the tail integral – see Eq. (17.12) – evaluated at 𝑥̄ := 𝑧(𝑡).
We shall now compute the averages of Φ̄0 and Φ̄𝑎 over 𝑆(𝑡, 𝑠), a two-surface of constant 𝑡

and 𝑠; these will represent the mean value of the field at a fixed proper distance away from the
world line, as measured in a reference frame that is momentarily comoving with the particle.
The two-surface is charted by angles 𝜃𝐴 (𝐴 = 1, 2) and it is described, in the Fermi normal
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coordinates, by the parametric relations 𝑥̂𝑎 = 𝑠𝜔𝑎(𝜃𝐴); a canonical choice of parameterization is
𝜔𝑎 = (sin 𝜃 cos𝜑, sin 𝜃 sin𝜑, cos 𝜃). Introducing the transformation matrices 𝜔𝑎

𝐴 := 𝜕𝜔𝑎/𝜕𝜃𝐴, we
find from Eq. (9.16) that the induced metric on 𝑆(𝑡, 𝑠) is given by

𝑑𝑠2 = 𝑠2
[︁
𝜔𝐴𝐵 − 1

3
𝑠2𝑅𝐴𝐵 +𝑂(𝑠3)

]︁
𝑑𝜃𝐴𝑑𝜃𝐵 , (17.23)

where 𝜔𝐴𝐵 := 𝛿𝑎𝑏𝜔
𝑎
𝐴𝜔

𝑏
𝐵 is the metric of the unit two-sphere, and where 𝑅𝐴𝐵 := 𝑅𝑎𝑐𝑏𝑑𝜔

𝑎
𝐴𝜔

𝑐𝜔𝑏
𝐵𝜔

𝑑

depends on 𝑡 and the angles 𝜃𝐴. From this we infer that the element of surface area is given by

𝑑𝒜 = 𝑠2
[︁
1− 1

6
𝑠2𝑅𝑐

𝑎𝑐𝑏(𝑡)𝜔
𝑎𝜔𝑏 +𝑂(𝑠3)

]︁
𝑑𝜔, (17.24)

where 𝑑𝜔 =
√︀
det[𝜔𝐴𝐵 ] 𝑑

2𝜃 is an element of solid angle – in the canonical parameterization,
𝑑𝜔 = sin 𝜃 𝑑𝜃𝑑𝜑. Integration of Eq. (17.24) produces the total surface area of 𝑆(𝑡, 𝑠), and 𝒜 =
4𝜋𝑠2[1− 1

18𝑠
2𝑅𝑎𝑏

𝑎𝑏 +𝑂(𝑠3)].
The averaged fields are defined by⟨︀

Φ̄0

⟩︀
(𝑡, 𝑠) =

1

𝒜

∮︁
𝑆(𝑡,𝑠)

Φ̄0(𝑡, 𝑠, 𝜃
𝐴) 𝑑𝒜,

⟨︀
Φ̄𝑎

⟩︀
(𝑡, 𝑠) =

1

𝒜

∮︁
𝑆(𝑡,𝑠)

Φ̄𝑎(𝑡, 𝑠, 𝜃
𝐴) 𝑑𝒜, (17.25)

where the quantities to be integrated are scalar functions of the Fermi normal coordinates. The
results

1

4𝜋

∮︁
𝜔𝑎 𝑑𝜔 = 0,

1

4𝜋

∮︁
𝜔𝑎𝜔𝑏 𝑑𝜔 =

1

3
𝛿𝑎𝑏,

1

4𝜋

∮︁
𝜔𝑎𝜔𝑏𝜔𝑐 𝑑𝜔 = 0, (17.26)

are easy to establish, and we obtain⟨︀
Φ̄0

⟩︀
=

1

12
(1− 6𝜉)𝑞𝑅+ Φ̄tail

0 +𝑂(𝑠), (17.27)⟨︀
Φ̄𝑎

⟩︀
= − 𝑞

3𝑠
𝑎𝑎 +

1

3
𝑞𝑎̇𝑎 +

1

6
𝑞𝑅𝑎0 + Φ̄tail

𝑎 +𝑂(𝑠). (17.28)

The averaged field is still singular on the world line. Regardless, we shall take the formal limit
𝑠 → 0 of the expressions displayed in Eqs. (17.27) and (17.28). In the limit the tetrad (𝑒𝛼0 , 𝑒

𝛼
𝑎 )

reduces to (𝑢𝛼̄, 𝑒𝛼̄𝑎 ), and we can reconstruct the field at 𝑥̄ by invoking the completeness relations
𝛿𝛼̄

𝛽
= −𝑢𝛼̄𝑢𝛽 + 𝑒𝛼̄𝑎𝑒

𝑎
𝛽
. We thus obtain

⟨︀
Φ𝛼̄

⟩︀
= lim

𝑠→0

(︂
− 𝑞

3𝑠

)︂
𝑎𝛼̄ − 1

12
(1− 6𝜉)𝑞𝑅𝑢𝛼̄ + 𝑞

(︀
𝑔𝛼̄𝛽 + 𝑢𝛼̄𝑢𝛽

)︀(︂1

3
𝑎̇𝛽 +

1

6
𝑅𝛽

𝛾𝑢
𝛾

)︂
+Φtail

𝛼̄ , (17.29)

where the tail integral can be copied from Eq. (17.12),

Φtail
𝛼̄ (𝑥̄) = 𝑞

∫︁ 𝑡−

−∞
∇𝛼̄𝐺+(𝑥̄, 𝑧) 𝑑𝜏. (17.30)

The tensors appearing in Eq. (17.29) all refer to 𝑥̄ := 𝑧(𝑡), which now stands for an arbitrary point
on the world line 𝛾.

17.5 Singular and regular fields

The singular potential

ΦS(𝑥) = 𝑞

∫︁
𝛾

𝐺S(𝑥, 𝑧) 𝑑𝜏 (17.31)
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is the (unphysical) solution to Eqs. (17.5) and (17.6) that is obtained by adopting the singular
Green’s function of Eq. (14.30) instead of the retarded Green’s function. As we shall see, the
resulting singular field ΦS

𝛼(𝑥) reproduces the singular behaviour of the retarded solution; the dif-
ference, ΦR

𝛼(𝑥) = Φ𝛼(𝑥)− ΦS
𝛼(𝑥), is smooth on the world line.

To evaluate the integral of Eq. (17.31) we assume once more that 𝑥 is sufficiently close to 𝛾 that
the world line traverses 𝒩 (𝑥); refer back to Figure 9. As before we let 𝜏< and 𝜏> be the values of
the proper-time parameter at which 𝛾 enters and leaves 𝒩 (𝑥), respectively. Then Eq. (17.31) can
be broken up into the three integrals

ΦS(𝑥) = 𝑞

∫︁ 𝜏<

−∞
𝐺S(𝑥, 𝑧) 𝑑𝜏 + 𝑞

∫︁ 𝜏>

𝜏<

𝐺S(𝑥, 𝑧) 𝑑𝜏 + 𝑞

∫︁ ∞

𝜏>

𝐺S(𝑥, 𝑧) 𝑑𝜏.

The first integration vanishes because 𝑥 is then in the chronological future of 𝑧(𝜏), and 𝐺S(𝑥, 𝑧) = 0
by Eq. (14.21). Similarly, the third integration vanishes because 𝑥 is then in the chronological past
of 𝑧(𝜏). For the second integration, 𝑥 is the normal convex neighbourhood of 𝑧(𝜏), the singular
Green’s function can be expressed in the Hadamard form of Eq. (14.32), and we have∫︁ 𝜏>

𝜏<

𝐺S(𝑥, 𝑧) 𝑑𝜏 =
1

2

∫︁ 𝜏>

𝜏<

𝑈(𝑥, 𝑧)𝛿+(𝜎) 𝑑𝜏 +
1

2

∫︁ 𝜏>

𝜏<

𝑈(𝑥, 𝑧)𝛿−(𝜎) 𝑑𝜏 −
1

2

∫︁ 𝜏>

𝜏<

𝑉 (𝑥, 𝑧)𝜃(𝜎) 𝑑𝜏.

To evaluate these we re-introduce the retarded point 𝑥′ := 𝑧(𝑢) and let 𝑥′′ := 𝑧(𝑣) be the advanced
point associated with 𝑥; we recall from Section 11.4 that these points are related by 𝜎(𝑥, 𝑥′′) = 0
and that 𝑟adv := −𝜎𝛼′′𝑢𝛼

′′
is the advanced distance between 𝑥 and the world line.

To perform the first integration we change variables from 𝜏 to 𝜎, noticing that 𝜎 increases
as 𝑧(𝜏) passes through 𝑥′; the integral evaluates to 𝑈(𝑥, 𝑥′)/𝑟. We do the same for the second
integration, but we notice now that 𝜎 decreases as 𝑧(𝜏) passes through 𝑥′′; the integral evaluates
to 𝑈(𝑥, 𝑥′′)/𝑟adv. The third integration is restricted to the interval 𝑢 ≤ 𝜏 ≤ 𝑣 by the step function,
and we obtain our final expression for the singular potential of a point scalar charge:

ΦS(𝑥) =
𝑞

2𝑟
𝑈(𝑥, 𝑥′) +

𝑞

2𝑟adv
𝑈(𝑥, 𝑥′′)− 1

2
𝑞

∫︁ 𝑣

𝑢

𝑉 (𝑥, 𝑧) 𝑑𝜏. (17.32)

We observe that ΦS(𝑥) depends on the state of motion of the scalar charge between the retarded
time 𝑢 and the advanced time 𝑣; contrary to what was found in Section 17.2 for the retarded
potential, there is no dependence on the particle’s remote past.

We use the techniques of Section 17.3 to differentiate the potential of Eq. (17.32). We find

ΦS
𝛼(𝑥) = − 𝑞

2𝑟2
𝑈(𝑥, 𝑥′)𝜕𝛼𝑟 −

𝑞

2𝑟adv2
𝑈(𝑥, 𝑥′′)𝜕𝛼𝑟adv +

𝑞

2𝑟
𝑈;𝛼(𝑥, 𝑥

′) +
𝑞

2𝑟
𝑈;𝛼′(𝑥, 𝑥′)𝑢𝛼

′
𝜕𝛼𝑢

+
𝑞

2𝑟adv
𝑈;𝛼(𝑥, 𝑥

′′) +
𝑞

2𝑟adv
𝑈;𝛼′′(𝑥, 𝑥′′)𝑢𝛼

′′
𝜕𝛼𝑣 +

1

2
𝑞𝑉 (𝑥, 𝑥′)𝜕𝛼𝑢− 1

2
𝑞𝑉 (𝑥, 𝑥′′)𝜕𝛼𝑣

− 1

2
𝑞

∫︁ 𝑣

𝑢

∇𝛼𝑉 (𝑥, 𝑧) 𝑑𝜏, (17.33)

and we would like to express this as an expansion in powers of 𝑟. For this we shall rely on results
already established in Section 17.3, as well as additional expansions that will involve the advanced
point 𝑥′′. Those we develop now.

We recall first that a relation between retarded and advanced times was worked out in Eq. (11.12),
that an expression for the advanced distance was displayed in Eq. (11.13), and that Eqs. (11.14)
and (11.15) give expansions for 𝜕𝛼𝑣 and 𝜕𝛼𝑟adv, respectively.

To derive an expansion for 𝑈(𝑥, 𝑥′′) we follow the general method of Section 11.4 and define a
function 𝑈(𝜏) := 𝑈(𝑥, 𝑧(𝜏)) of the proper-time parameter on 𝛾. We have that

𝑈(𝑥, 𝑥′′) := 𝑈(𝑣) = 𝑈(𝑢+Δ′) = 𝑈(𝑢) + 𝑈̇(𝑢)Δ′ +
1

2
𝑈̈(𝑢)Δ′2 +𝑂

(︀
Δ′3)︀,
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where overdots indicate differentiation with respect to 𝜏 , and where Δ′ := 𝑣−𝑢. The leading term
𝑈(𝑢) := 𝑈(𝑥, 𝑥′) was worked out in Eq. (17.13), and the derivatives of 𝑈(𝜏) are given by

𝑈̇(𝑢) = 𝑈;𝛼′𝑢𝛼
′
= −1

6
𝑟
(︀
𝑅00 +𝑅0𝑎Ω

𝑎
)︀
+𝑂(𝑟2)

and

𝑈̈(𝑢) = 𝑈;𝛼′𝛽′𝑢𝛼
′
𝑢𝛽

′
+ 𝑈;𝛼′𝑎𝛼

′
=

1

6
𝑅00 +𝑂(𝑟),

according to Eqs. (17.15) and (14.11). Combining these results together with Eq. (11.12) for Δ′

gives

𝑈(𝑥, 𝑥′′) = 1 +
1

12
𝑟2
(︀
𝑅00 − 2𝑅0𝑎Ω

𝑎 +𝑅𝑎𝑏Ω
𝑎Ω𝑏

)︀
+𝑂(𝑟3), (17.34)

which should be compared with Eq. (17.13). It should be emphasized that in Eq. (17.34) and all
equations below, the frame components of the Ricci tensor are evaluated at the retarded point
𝑥′ := 𝑧(𝑢), and not at the advanced point. The preceding computation gives us also an expansion
for 𝑈;𝛼′′𝑢𝛼

′′
:= 𝑈̇(𝑣) = 𝑈̇(𝑢) + 𝑈̈(𝑢)Δ′ +𝑂(Δ′2). This becomes

𝑈;𝛼′′(𝑥, 𝑥′′)𝑢𝛼
′′
=

1

6
𝑟
(︀
𝑅00 −𝑅0𝑎Ω

𝑎
)︀
+𝑂(𝑟2), (17.35)

which should be compared with Eq. (17.15).
We proceed similarly to derive an expansion for 𝑈;𝛼(𝑥, 𝑥

′′). Here we introduce the functions

𝑈𝛼(𝜏) := 𝑈;𝛼(𝑥, 𝑧(𝜏)) and express 𝑈;𝛼(𝑥, 𝑥
′′) as 𝑈𝛼(𝑣) = 𝑈𝛼(𝑢) + 𝑈̇𝛼(𝑢)Δ

′ + 𝑂(Δ′2). The leading
term 𝑈𝛼(𝑢) := 𝑈;𝛼(𝑥, 𝑥

′) was computed in Eq. (17.14), and

𝑈̇𝛼(𝑢) = 𝑈;𝛼𝛽′𝑢𝛽
′
= −1

6
𝑔𝛼

′

𝛼𝑅𝛼′0 +𝑂(𝑟)

follows from Eq. (14.11). Combining these results together with Eq. (11.12) for Δ′ gives

𝑈;𝛼(𝑥, 𝑥
′′) = −1

6
𝑟𝑔𝛼

′

𝛼

(︀
𝑅𝛼′0 −𝑅𝛼′𝑏Ω

𝑏
)︁
+𝑂(𝑟2), (17.36)

and this should be compared with Eq. (17.14).
The last expansion we shall need is

𝑉 (𝑥, 𝑥′′) =
1

12

(︀
1− 6𝜉

)︀
𝑅+𝑂(𝑟), (17.37)

which follows at once from Eq. (17.16) and the fact that 𝑉 (𝑥, 𝑥′′) − 𝑉 (𝑥, 𝑥′) = 𝑂(𝑟); the Ricci
scalar is evaluated at the retarded point 𝑥′.

It is now a straightforward (but tedious) matter to substitute these expansions (all of them!)
into Eq. (17.33) and obtain the projections of the singular field ΦS

𝛼(𝑥) in the same tetrad (𝑒𝛼0 , 𝑒
𝛼
𝑎 )

that was employed in Section 17.3. This gives

ΦS
0(𝑢, 𝑟,Ω

𝑎) := ΦS
𝛼(𝑥)𝑒

𝛼
0 (𝑥)

=
𝑞

𝑟
𝑎𝑎Ω

𝑎 +
1

2
𝑞𝑅𝑎0𝑏0Ω

𝑎Ω𝑏 +𝑂(𝑟), (17.38)

ΦS
𝑎(𝑢, 𝑟,Ω

𝑎) := ΦS
𝛼(𝑥)𝑒

𝛼
𝑎 (𝑥)

= − 𝑞

𝑟2
Ω𝑎 −

𝑞

𝑟
𝑎𝑏Ω

𝑏Ω𝑎 −
1

3
𝑞𝑎̇𝑎 −

1

3
𝑞𝑅𝑏0𝑐0Ω

𝑏Ω𝑐Ω𝑎 −
1

6
𝑞
(︀
𝑅𝑎0𝑏0Ω

𝑏 −𝑅𝑎𝑏0𝑐Ω
𝑏Ω𝑐
)︀

+
1

12
𝑞
[︀
𝑅00 −𝑅𝑏𝑐Ω

𝑏Ω𝑐 − (1− 6𝜉)𝑅
]︀
Ω𝑎 +

1

6
𝑞𝑅𝑎𝑏Ω

𝑏, (17.39)
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in which all frame components are evaluated at the retarded point 𝑥′ := 𝑧(𝑢). Comparison of these
expressions with Eqs. (17.17) and (17.18) reveals that the retarded and singular fields share the
same singularity structure.

The difference between the retarded field of Eqs. (17.17), (17.18) and the singular field of
Eqs. (17.38), (17.39) defines the regular field ΦR

𝛼(𝑥). Its frame components are

ΦR
0 =

1

12
(1− 6𝜉)𝑞𝑅+Φtail

0 +𝑂(𝑟), (17.40)

ΦR
𝑎 =

1

3
𝑞𝑎̇𝑎 +

1

6
𝑞𝑅𝑎0 +Φtail

𝑎 +𝑂(𝑟), (17.41)

and we see that ΦR
𝛼(𝑥) is a regular vector field on the world line. There is therefore no obstacle

in evaluating the regular field directly at 𝑥 = 𝑥′, where the tetrad (𝑒𝛼0 , 𝑒
𝛼
𝑎 ) becomes (𝑢𝛼

′
, 𝑒𝛼

′

𝑎 ).
Reconstructing the field at 𝑥′ from its frame components, we obtain

ΦR
𝛼′(𝑥′) = − 1

12
(1− 6𝜉)𝑞𝑅𝑢𝛼′ + 𝑞

(︀
𝑔𝛼′𝛽′ + 𝑢𝛼′𝑢𝛽′

)︀(︂1

3
𝑎̇𝛽

′
+

1

6
𝑅𝛽′

𝛾′𝑢
𝛾′
)︂
+Φtail

𝛼′ , (17.42)

where the tail term can be copied from Eq. (17.12),

Φtail
𝛼′ (𝑥′) = 𝑞

∫︁ 𝑢−

−∞
∇𝛼′𝐺+(𝑥

′, 𝑧) 𝑑𝜏. (17.43)

The tensors appearing in Eq. (17.42) all refer to the retarded point 𝑥′ := 𝑧(𝑢), which now stands
for an arbitrary point on the world line 𝛾.

17.6 Equations of motion

The retarded field Φ𝛼(𝑥) of a point scalar charge is singular on the world line, and this behaviour
makes it difficult to understand how the field is supposed to act on the particle and affect its motion.
The field’s singularity structure was analyzed in Sections 17.3 and 17.4, and in Section 17.5 it was
shown to originate from the singular field ΦS

𝛼(𝑥); the regular field ΦR
𝛼(𝑥) = Φ𝛼(𝑥) − ΦS

𝛼(𝑥) was
then shown to be regular on the world line.

To make sense of the retarded field’s action on the particle we temporarily model the scalar
charge not as a point particle, but as a small hollow shell that appears spherical when observed in
a reference frame that is momentarily comoving with the particle; the shell’s radius is 𝑠0 in Fermi
normal coordinates, and it is independent of the angles contained in the unit vector 𝜔𝑎. The net
force acting at proper time 𝜏 on this hollow shell is the average of 𝑞Φ𝛼(𝜏, 𝑠0, 𝜔

𝑎) over the surface
of the shell. Assuming that the field on the shell is equal to the field of a point particle evaluated
at 𝑠 = 𝑠0, and ignoring terms that disappear in the limit 𝑠0 → 0, we obtain from Eq. (17.29)

𝑞
⟨︀
Φ𝜇

⟩︀
= −(𝛿𝑚)𝑎𝜇 − 1

12
(1− 6𝜉)𝑞2𝑅𝑢𝜇 + 𝑞2

(︀
𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀(︂1

3
𝑎̇𝜈 +

1

6
𝑅𝜈

𝜆𝑢
𝜆

)︂
+ 𝑞Φtail

𝜇 , (17.44)

where

𝛿𝑚 := lim
𝑠0→0

𝑞2

3𝑠0
(17.45)

is formally a divergent quantity and

𝑞Φtail
𝜇 = 𝑞2

∫︁ 𝜏−

−∞
∇𝜇𝐺+

(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑑𝜏 ′ (17.46)
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is the tail part of the force; all tensors in Eq. (17.44) are evaluated at an arbitrary point 𝑧(𝜏) on
the world line.

Substituting Eqs. (17.44) and (17.46) into Eq. (17.7) gives rise to the equations of motion

(︀
𝑚+ 𝛿𝑚)𝑎𝜇 = 𝑞2

(︀
𝛿𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀[︃1
3
𝑎̇𝜈 +

1

6
𝑅𝜈

𝜆𝑢
𝜆 +

∫︁ 𝜏−

−∞
∇𝜈𝐺+

(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑑𝜏 ′

]︃
(17.47)

for the scalar charge, with 𝑚 := 𝑚0−𝑞Φ(𝑧) denoting the (also formally divergent) dynamical mass
of the particle. We see that 𝑚 and 𝛿𝑚 combine in Eq. (17.47) to form the particle’s observed
mass 𝑚obs, which is taken to be finite and to give a true measure of the particle’s inertia. All
diverging quantities have thus disappeared into the process of mass renormalization. Substituting
Eqs. (17.44) and (17.46) into Eq. (17.8), in which we replace 𝑚 by 𝑚obs = 𝑚 + 𝛿𝑚, returns an
expression for the rate of change of the observed mass,

𝑑𝑚obs

𝑑𝜏
= − 1

12
(1− 6𝜉)𝑞2𝑅− 𝑞2𝑢𝜇

∫︁ 𝜏−

−∞
∇𝜇𝐺+

(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑑𝜏 ′. (17.48)

That the observed mass is not conserved is a remarkable property of the dynamics of a scalar
charge in a curved spacetime. Physically, this corresponds to the fact that in a spacetime with a
time-dependent metric, a scalar charge radiates monopole waves and the radiated energy comes at
the expense of the particle’s inertial mass.

We must confess that the derivation of the equations of motion outlined above returns the wrong
expression for the self-energy of a spherical shell of scalar charge. We obtained 𝛿𝑚 = 𝑞2/(3𝑠0),
while the correct expression is 𝛿𝑚 = 𝑞2/(2𝑠0); we are wrong by a factor of 2/3. We believe that this
discrepancy originates in a previously stated assumption, that the field on the shell (as produced
by the shell itself) is equal to the field of a point particle evaluated at 𝑠 = 𝑠0. We believe that this
assumption is in fact wrong, and that a calculation of the field actually produced by a spherical
shell would return the correct expression for 𝛿𝑚. We also believe, however, that except for the
diverging terms that determine 𝛿𝑚, the difference between the shell’s field and the particle’s field
should vanish in the limit 𝑠0 → 0. Our conclusion is therefore that while our expression for 𝛿𝑚 is
admittedly incorrect, the statement of the equations of motion is reliable.

Apart from the term proportional to 𝛿𝑚, the averaged field of Eq. (17.44) has exactly the same
form as the regular field of Eq. (17.42), which we re-express as

𝑞ΦR
𝜇 = − 1

12
(1− 6𝜉)𝑞2𝑅𝑢𝜇 + 𝑞2

(︀
𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀(︂1

3
𝑎̇𝜈 +

1

6
𝑅𝜈

𝜆𝑢
𝜆

)︂
+ 𝑞Φtail

𝜇 . (17.49)

The force acting on the point particle can therefore be thought of as originating from the regular
field, while the singular field simply contributes to the particle’s inertia. After mass renormaliza-
tion, Eqs. (17.47) and (17.48) are equivalent to the statements

𝑚𝑎𝜇 = 𝑞
(︀
𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀
ΦR

𝜈 (𝑧),
𝑑𝑚

𝑑𝜏
= −𝑞𝑢𝜇ΦR

𝜇 (𝑧), (17.50)

where we have dropped the superfluous label “obs” on the particle’s observed mass. Another
argument in support of the claim that the motion of the particle should be affected by the regular
field only was presented in Section 14.5.

The equations of motion displayed in Eqs. (17.47) and (17.48) are third-order differential equa-
tions for the functions 𝑧𝜇(𝜏). It is well known that such a system of equations admits many
unphysical solutions, such as runaway situations in which the particle’s acceleration increases ex-
ponentially with 𝜏 , even in the absence of any external force [56, 101]. And indeed, our equations
of motion do not yet incorporate an external force which presumably is mostly responsible for the
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particle’s acceleration. Both defects can be cured in one stroke. We shall take the point of view, the
only admissible one in a classical treatment, that a point particle is merely an idealization for an
extended object whose internal structure – the details of its charge distribution – can be considered
to be irrelevant. This view automatically implies that our equations are meant to provide only an
approximate description of the object’s motion. It can then be shown [112, 70] that within the
context of this approximation, it is consistent to replace, on the right-hand side of the equations of
motion, any occurrence of the acceleration vector by 𝑓𝜇ext/𝑚, where 𝑓𝜇ext is the external force acting
on the particle. Because 𝑓𝜇ext is a prescribed quantity, differentiation of the external force does not
produce higher derivatives of the functions 𝑧𝜇(𝜏), and the equations of motion are properly of the
second order.

We shall strengthen this conclusion in Part V of the review, when we consider the motion of
an extended body in a curved external spacetime. While the discussion there will concern the
gravitational self-force, many of the lessons learned in Part V apply just as well to the case of a
scalar (or electric) charge. And the main lesson is this: It is natural – indeed it is an imperative
– to view an equation of motion such as Eq. (17.47) as an expansion of the acceleration in powers
of 𝑞2, and it is therefore appropriate – indeed imperative – to insert the zeroth-order expression
for 𝑎̇𝜈 within the term of order 𝑞2. The resulting expression for the acceleration is then valid up
to correction terms of order 𝑞4. Omitting these error terms, we shall write, in final analysis, the
equations of motion in the form

𝑚
𝐷𝑢𝜇

𝑑𝜏
= 𝑓𝜇ext + 𝑞2

(︀
𝛿𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀[︃ 1

3𝑚

𝐷𝑓𝜈ext
𝑑𝜏

+
1

6
𝑅𝜈

𝜆𝑢
𝜆 +

∫︁ 𝜏−

−∞
∇𝜈𝐺+

(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑑𝜏 ′

]︃
(17.51)

and
𝑑𝑚

𝑑𝜏
= − 1

12
(1− 6𝜉)𝑞2𝑅− 𝑞2𝑢𝜇

∫︁ 𝜏−

−∞
∇𝜇𝐺+

(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑑𝜏 ′, (17.52)

where𝑚 denotes the observed inertial mass of the scalar charge, and where all tensors are evaluated
at 𝑧(𝜏). We recall that the tail integration must be cut short at 𝜏 ′ = 𝜏− := 𝜏 − 0+ to avoid the
singular behaviour of the retarded Green’s function at coincidence; this procedure was justified at
the beginning of Section 17.3. Equations (17.51) and (17.52) were first derived by Theodore C.
Quinn in 2000 [149]. In his paper Quinn also establishes that the total work done by the scalar
self-force matches the amount of energy radiated away by the particle.

18 Motion of an electric charge

18.1 Dynamics of a point electric charge

A point particle carries an electric charge 𝑒 and moves on a world line 𝛾 described by relations
𝑧𝜇(𝜆), in which 𝜆 is an arbitrary parameter. The particle generates a vector potential 𝐴𝛼(𝑥) and
an electromagnetic field 𝐹𝛼𝛽(𝑥) = ∇𝛼𝐴𝛽 −∇𝛽𝐴𝛼. The dynamics of the entire system is governed
by the action

𝑆 = 𝑆field + 𝑆particle + 𝑆interaction, (18.1)

where 𝑆field is an action functional for a free electromagnetic field in a spacetime with metric 𝑔𝛼𝛽 ,
𝑆particle is the action of a free particle moving on a world line 𝛾 in this spacetime, and 𝑆interaction

is an interaction term that couples the field to the particle.
The field action is given by

𝑆field = − 1

16𝜋

∫︁
𝐹𝛼𝛽𝐹

𝛼𝛽√−𝑔 𝑑4𝑥, (18.2)
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where the integration is over all of spacetime. The particle action is

𝑆particle = −𝑚
∫︁
𝛾

𝑑𝜏, (18.3)

where 𝑚 is the bare mass of the particle and 𝑑𝜏 =
√︀
−𝑔𝜇𝜈(𝑧)𝑧̇𝜇𝑧̇𝜈 𝑑𝜆 is the differential of proper

time along the world line; we use an overdot to indicate differentiation with respect to the parameter
𝜆. Finally, the interaction term is given by

𝑆interaction = 𝑒

∫︁
𝛾

𝐴𝜇(𝑧)𝑧̇
𝜇 𝑑𝜆 = 𝑒

∫︁
𝐴𝛼(𝑥)𝑔

𝛼
𝜇(𝑥, 𝑧)𝑧̇

𝜇𝛿4(𝑥, 𝑧)
√−𝑔 𝑑4𝑥𝑑𝜆. (18.4)

Notice that both 𝑆particle and 𝑆interaction are invariant under a reparameterization 𝜆 → 𝜆′(𝜆) of
the world line.

Demanding that the total action be stationary under a variation 𝛿𝐴𝛼(𝑥) of the vector potential
yields Maxwell’s equations

𝐹𝛼𝛽
;𝛽 = 4𝜋𝑗𝛼 (18.5)

with a current density 𝑗𝛼(𝑥) defined by

𝑗𝛼(𝑥) = 𝑒

∫︁
𝛾

𝑔𝛼𝜇(𝑥, 𝑧)𝑧̇
𝜇𝛿4(𝑥, 𝑧) 𝑑𝜆. (18.6)

These equations determine the electromagnetic field 𝐹𝛼𝛽 once the motion of the electric charge
is specified. On the other hand, demanding that the total action be stationary under a variation
𝛿𝑧𝜇(𝜆) of the world line yields the equations of motion

𝑚
𝐷𝑢𝜇

𝑑𝜏
= 𝑒𝐹𝜇

𝜈(𝑧)𝑢
𝜈 (18.7)

for the electric charge. We have adopted 𝜏 as the parameter on the world line, and introduced the
four-velocity 𝑢𝜇(𝜏) := 𝑑𝑧𝜇/𝑑𝜏 .

The electromagnetic field 𝐹𝛼𝛽 is invariant under a gauge transformation of the form 𝐴𝛼 →
𝐴𝛼 +∇𝛼Λ, in which Λ(𝑥) is an arbitrary scalar function. This function can always be chosen so
that the vector potential satisfies the Lorenz gauge condition,

∇𝛼𝐴
𝛼 = 0. (18.8)

Under this condition the Maxwell equations of Eq. (18.5) reduce to a wave equation for the vector
potential,

�𝐴𝛼 −𝑅𝛼
𝛽𝐴

𝛽 = −4𝜋𝑗𝛼, (18.9)

where � = 𝑔𝛼𝛽∇𝛼∇𝛽 is the wave operator and 𝑅𝛼
𝛽 is the Ricci tensor. Having adopted 𝜏 as the

parameter on the world line, we can re-express the current density of Eq. (18.6) as

𝑗𝛼(𝑥) = 𝑒

∫︁
𝛾

𝑔𝛼𝜇(𝑥, 𝑧)𝑢
𝜇𝛿4(𝑥, 𝑧) 𝑑𝜏, (18.10)

and we shall use Eqs. (18.9) and (18.10) to determine the electromagnetic field of a point electric
charge. The motion of the particle is in principle determined by Eq. (18.7), but because the vector
potential obtained from Eq. (18.9) is singular on the world line, these equations have only formal
validity. Before we can make sense of them we will have to analyze the field’s singularity structure
near the world line. The calculations to be carried out parallel closely those presented in Section 17
for the case of a scalar charge; the details will therefore be kept to a minimum and the reader is
referred to Section 17 for additional information.
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18.2 Retarded potential near the world line

The retarded solution to Eq. (18.9) is 𝐴𝛼(𝑥) =
∫︀
𝐺 𝛼

+𝛽′(𝑥, 𝑥′)𝑗𝛽
′
(𝑥′)

√
𝑔′ 𝑑4𝑥′, where 𝐺 𝛼

+𝛽′(𝑥, 𝑥′) is
the retarded Green’s function introduced in Section 15. After substitution of Eq. (18.10) we obtain

𝐴𝛼(𝑥) = 𝑒

∫︁
𝛾

𝐺 𝛼
+𝜇(𝑥, 𝑧)𝑢

𝜇 𝑑𝜏, (18.11)

in which 𝑧𝜇(𝜏) gives the description of the world line 𝛾 and 𝑢𝜇(𝜏) = 𝑑𝑧𝜇/𝑑𝜏 . Because the retarded
Green’s function is defined globally in the entire spacetime, Eq. (18.11) applies to any field point
𝑥.

We now specialize Eq. (18.11) to a point 𝑥 close to the world line. We let 𝒩 (𝑥) be the normal
convex neighbourhood of this point, and we assume that the world line traverses 𝒩 (𝑥); refer back
to Figure 9. As in Section 17.2 we let 𝜏< and 𝜏> be the values of the proper-time parameter at
which 𝛾 enters and leaves 𝒩 (𝑥), respectively. Then Eq. (18.11) can be expressed as

𝐴𝛼(𝑥) = 𝑒

∫︁ 𝜏<

−∞
𝐺 𝛼

+𝜇(𝑥, 𝑧)𝑢
𝜇 𝑑𝜏 + 𝑒

∫︁ 𝜏>

𝜏<

𝐺 𝛼
+𝜇(𝑥, 𝑧)𝑢

𝜇 𝑑𝜏 + 𝑒

∫︁ ∞

𝜏>

𝐺 𝛼
+𝜇(𝑥, 𝑧)𝑢

𝜇 𝑑𝜏.

The third integration vanishes because 𝑥 is then in the past of 𝑧(𝜏), and 𝐺 𝛼
+𝜇(𝑥, 𝑧) = 0. For

the second integration, 𝑥 is the normal convex neighbourhood of 𝑧(𝜏), and the retarded Green’s
function can be expressed in the Hadamard form produced in Section 15.2. This gives∫︁ 𝜏>

𝜏<

𝐺 𝛼
+𝜇(𝑥, 𝑧)𝑢

𝜇 𝑑𝜏 =

∫︁ 𝜏>

𝜏<

𝑈𝛼
𝜇(𝑥, 𝑧)𝑢

𝜇𝛿+(𝜎) 𝑑𝜏 +

∫︁ 𝜏>

𝜏<

𝑉 𝛼
𝜇(𝑥, 𝑧)𝑢

𝜇𝜃+(−𝜎) 𝑑𝜏,

and to evaluate this we let 𝑥′ := 𝑧(𝑢) be the retarded point associated with 𝑥; these points are
related by 𝜎(𝑥, 𝑥′) = 0 and 𝑟 := 𝜎𝛼′𝑢𝛼

′
is the retarded distance between 𝑥 and the world line. To

perform the first integration we change variables from 𝜏 to 𝜎, noticing that 𝜎 increases as 𝑧(𝜏)
passes through 𝑥′; the integral evaluates to 𝑈𝛼

𝛽′𝑢𝛽
′
/𝑟. The second integration is cut off at 𝜏 = 𝑢

by the step function, and we obtain our final expression for the vector potential of a point electric
charge:

𝐴𝛼(𝑥) =
𝑒

𝑟
𝑈𝛼

𝛽′(𝑥, 𝑥′)𝑢𝛽
′
+ 𝑒

∫︁ 𝑢

𝜏<

𝑉 𝛼
𝜇(𝑥, 𝑧)𝑢

𝜇 𝑑𝜏 + 𝑒

∫︁ 𝜏<

−∞
𝐺 𝛼

+𝜇(𝑥, 𝑧)𝑢
𝜇 𝑑𝜏. (18.12)

This expression applies to a point 𝑥 sufficiently close to the world line that there exists a nonempty
intersection between 𝒩 (𝑥) and 𝛾.

18.3 Electromagnetic field in retarded coordinates

When we differentiate the vector potential of Eq. (18.12) we must keep in mind that a variation
in 𝑥 induces a variation in 𝑥′, because the new points 𝑥+ 𝛿𝑥 and 𝑥′ + 𝛿𝑥′ must also be linked by a
null geodesic. Taking this into account, we find that the gradient of the vector potential is given
by

∇𝛽𝐴𝛼(𝑥) = − 𝑒

𝑟2
𝑈𝛼𝛽′𝑢𝛽

′
𝜕𝛽𝑟+

𝑒

𝑟
𝑈𝛼𝛽′;𝛽𝑢

𝛽′
+
𝑒

𝑟

(︁
𝑈𝛼𝛽′;𝛾′𝑢𝛽

′
𝑢𝛾

′
+𝑈𝛼𝛽′𝑎𝛽

′
)︁
𝜕𝛽𝑢+𝑒𝑉𝛼𝛽′𝑢𝛽

′
𝜕𝛽𝑢+𝐴

tail
𝛼𝛽 (𝑥),

(18.13)
where the “tail integral” is defined by

𝐴tail
𝛼𝛽 (𝑥) = 𝑒

∫︁ 𝑢

𝜏<

∇𝛽𝑉𝛼𝜇(𝑥, 𝑧)𝑢
𝜇 𝑑𝜏 + 𝑒

∫︁ 𝜏<

−∞
∇𝛽𝐺+𝛼𝜇(𝑥, 𝑧)𝑢

𝜇 𝑑𝜏

= 𝑒

∫︁ 𝑢−

−∞
∇𝛽𝐺+𝛼𝜇(𝑥, 𝑧)𝑢

𝜇 𝑑𝜏. (18.14)
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The second form of the definition, in which we integrate the gradient of the retarded Green’s
function from 𝜏 = −∞ to 𝜏 = 𝑢− := 𝑢 − 0+ to avoid the singular behaviour of the retarded
Green’s function at 𝜎 = 0, is equivalent to the first form.

We shall now expand 𝐹𝛼𝛽 = ∇𝛼𝐴𝛽 −∇𝛽𝐴𝛼 in powers of 𝑟, and express the result in terms of
the retarded coordinates (𝑢, 𝑟,Ω𝑎) introduced in Section 10. It will be convenient to decompose
the electromagnetic field in the tetrad (𝑒𝛼0 , 𝑒

𝛼
𝑎 ) that is obtained by parallel transport of (𝑢𝛼

′
, 𝑒𝛼

′

𝑎 )
on the null geodesic that links 𝑥 to 𝑥′ := 𝑧(𝑢); this construction is detailed in Section 10. We
recall from Eq. (10.4) that the parallel propagator can be expressed as 𝑔𝛼

′

𝛼 = 𝑢𝛼
′
𝑒0𝛼 + 𝑒𝛼

′

𝑎 𝑒
𝑎
𝛼. The

expansion relies on Eq. (10.29) for 𝜕𝛼𝑢, Eq. (10.31) for 𝜕𝛼𝑟, and we shall need

𝑈𝛼𝛽′𝑢𝛽
′
= 𝑔𝛼

′

𝛼

[︂
𝑢𝛼′ +

1

12
𝑟2
(︀
𝑅00 + 2𝑅0𝑎Ω

𝑎 +𝑅𝑎𝑏Ω
𝑎Ω𝑏

)︀
𝑢𝛼′ +𝑂(𝑟3)

]︂
, (18.15)

which follows from Eq. (15.10) and the relation 𝜎𝛼′
= −𝑟(𝑢𝛼′

+ Ω𝑎𝑒𝛼
′

𝑎 ) first encountered in
Eq. (10.7). We shall also need the expansions

𝑈𝛼𝛽′;𝛽𝑢
𝛽′

= −1

2
𝑟𝑔𝛼

′

𝛼𝑔
𝛽′

𝛽

[︂
𝑅𝛼′0𝛽′0 +𝑅𝛼′0𝛽′𝑐Ω

𝑐 − 1

3

(︀
𝑅𝛽′0 +𝑅𝛽′𝑐Ω

𝑐
)︀
𝑢𝛼′ +𝑂(𝑟)

]︂
(18.16)

and

𝑈𝛼𝛽′;𝛾′𝑢𝛽
′
𝑢𝛾

′
+ 𝑈𝛼𝛽′𝑎𝛽

′
= 𝑔𝛼

′

𝛼

[︂
𝑎𝛼′ +

1

2
𝑟𝑅𝛼′0𝑏0Ω

𝑏 − 1

6
𝑟
(︀
𝑅00 +𝑅0𝑏Ω

𝑏
)︀
𝑢𝛼′ +𝑂(𝑟2)

]︂
(18.17)

that follow from Eqs. (15.10) – (15.12). And finally, we shall need

𝑉𝛼𝛽′𝑢𝛽
′
= −1

2
𝑔𝛼

′

𝛼

[︂
𝑅𝛼′0 −

1

6
𝑅𝑢𝛼′ +𝑂(𝑟)

]︂
, (18.18)

a relation that was first established in Eq. (15.14).
Collecting all these results gives

𝐹𝑎0(𝑢, 𝑟,Ω
𝑎) := 𝐹𝛼𝛽(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
0 (𝑥)

=
𝑒

𝑟2
Ω𝑎 −

𝑒

𝑟

(︀
𝑎𝑎 − 𝑎𝑏Ω

𝑏Ω𝑎

)︀
+

1

3
𝑒𝑅𝑏0𝑐0Ω

𝑏Ω𝑐Ω𝑎 −
1

6
𝑒
(︀
5𝑅𝑎0𝑏0Ω

𝑏 +𝑅𝑎𝑏0𝑐Ω
𝑏Ω𝑐
)︀

+
1

12
𝑒
(︀
5𝑅00 +𝑅𝑏𝑐Ω

𝑏Ω𝑐 +𝑅
)︀
Ω𝑎 +

1

3
𝑒𝑅𝑎0 −

1

6
𝑒𝑅𝑎𝑏Ω

𝑏 + 𝐹 tail
𝑎0 +𝑂(𝑟), (18.19)

𝐹𝑎𝑏(𝑢, 𝑟,Ω
𝑎) := 𝐹𝛼𝛽(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
𝑏 (𝑥)

=
𝑒

𝑟

(︀
𝑎𝑎Ω𝑏 − Ω𝑎𝑎𝑏

)︀
+

1

2
𝑒
(︀
𝑅𝑎0𝑏𝑐 −𝑅𝑏0𝑎𝑐 +𝑅𝑎0𝑐0Ω𝑏 − Ω𝑎𝑅𝑏0𝑐0

)︀
Ω𝑐

− 1

2
𝑒
(︀
𝑅𝑎0Ω𝑏 − Ω𝑎𝑅𝑏0

)︀
+ 𝐹 tail

𝑎𝑏 +𝑂(𝑟), (18.20)

where
𝐹 tail
𝑎0 = 𝐹 tail

𝛼′𝛽′(𝑥′)𝑒𝛼
′

𝑎 𝑢
𝛽′
, 𝐹 tail

𝑎𝑏 = 𝐹 tail
𝛼′𝛽′(𝑥′)𝑒𝛼

′

𝑎 𝑒
𝛽′

𝑏 (18.21)

are the frame components of the tail integral; this is obtained from Eq. (18.14) evaluated at 𝑥′:

𝐹 tail
𝛼′𝛽′(𝑥′) = 2𝑒

∫︁ 𝑢−

−∞
∇[𝛼′𝐺+𝛽′]𝜇(𝑥

′, 𝑧)𝑢𝜇 𝑑𝜏. (18.22)

It should be emphasized that in Eqs. (18.19) and (18.20), all frame components are evaluated at
the retarded point 𝑥′ := 𝑧(𝑢) associated with 𝑥; for example, 𝑎𝑎 := 𝑎𝑎(𝑢) := 𝑎𝛼′𝑒𝛼

′

𝑎 . It is clear
from these equations that the electromagnetic field 𝐹𝛼𝛽(𝑥) is singular on the world line.
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18.4 Electromagnetic field in Fermi normal coordinates

We now wish to express the electromagnetic field in the Fermi normal coordinates of Section 9; as
before those will be denoted (𝑡, 𝑠, 𝜔𝑎). The translation will be carried out as in Section 17.4, and
we will decompose the field in the tetrad (𝑒𝛼0 , 𝑒

𝛼
𝑎 ) that is obtained by parallel transport of (𝑢𝛼̄, 𝑒𝛼̄𝑎 )

on the spacelike geodesic that links 𝑥 to the simultaneous point 𝑥̄ := 𝑧(𝑡).

Our first task is to decompose 𝐹𝛼𝛽(𝑥) in the tetrad (𝑒𝛼0 , 𝑒
𝛼
𝑎 ), thereby defining 𝐹𝑎0 := 𝐹𝛼𝛽𝑒

𝛼
𝑎𝑒

𝛽
0

and 𝐹𝑎𝑏 := 𝐹𝛼𝛽𝑒
𝛼
𝑎𝑒

𝛽
𝑏 . For this purpose we use Eqs. (11.7), (11.8), (18.19), and (18.20) to obtain

𝐹𝑎0 =
𝑒

𝑟2
Ω𝑎 −

𝑒

𝑟

(︀
𝑎𝑎 − 𝑎𝑏Ω

𝑏Ω𝑎

)︀
+

1

2
𝑒𝑎𝑏Ω

𝑏𝑎𝑎 +
1

2
𝑒𝑎̇0Ω𝑎 −

5

6
𝑒𝑅𝑎0𝑏0Ω

𝑏 +
1

3
𝑒𝑅𝑏0𝑐0Ω

𝑏Ω𝑐Ω𝑎

+
1

3
𝑒𝑅𝑎𝑏0𝑐Ω

𝑏Ω𝑐 +
1

12
𝑒
(︀
5𝑅00 +𝑅𝑏𝑐Ω

𝑏Ω𝑐 +𝑅
)︀
Ω𝑎 +

1

3
𝑒𝑅𝑎0 −

1

6
𝑒𝑅𝑎𝑏Ω

𝑏 + 𝐹 tail
𝑎0 +𝑂(𝑟)

and

𝐹𝑎𝑏 =
1

2
𝑒
(︀
Ω𝑎𝑎̇𝑏 − 𝑎̇𝑎Ω𝑏

)︀
+

1

2
𝑒
(︀
𝑅𝑎0𝑏𝑐 −𝑅𝑏0𝑎𝑐

)︀
Ω𝑐 − 1

2
𝑒
(︀
𝑅𝑎0Ω𝑏 − Ω𝑎𝑅𝑏0

)︀
+ 𝐹 tail

𝑎𝑏 +𝑂(𝑟),

where all frame components are still evaluated at 𝑥′, except for

𝐹 tail
𝑎0 := 𝐹 tail

𝛼̄𝛽 (𝑥̄)𝑒𝛼̄𝑎𝑢
𝛽 , 𝐹 tail

𝑎𝑏 := 𝐹 tail
𝛼̄𝛽 (𝑥̄)𝑒𝛼̄𝑎𝑒

𝛽
𝑏 ,

which are evaluated at 𝑥̄.
We must still translate these results into the Fermi normal coordinates (𝑡, 𝑠, 𝜔𝑎). For this we

involve Eqs. (11.4), (11.5), and (11.6), and we recycle some computations that were first carried
out in Section 17.4. After some algebra, we arrive at

𝐹𝑎0(𝑡, 𝑠, 𝜔
𝑎) := 𝐹𝛼𝛽(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
0 (𝑥)

=
𝑒

𝑠2
𝜔𝑎 −

𝑒

2𝑠

(︀
𝑎𝑎 + 𝑎𝑏𝜔

𝑏𝜔𝑎

)︀
+

3

4
𝑒𝑎𝑏𝜔

𝑏𝑎𝑎 +
3

8
𝑒
(︀
𝑎𝑏𝜔

𝑏
)︀2
𝜔𝑎 +

3

8
𝑒𝑎̇0𝜔𝑎 +

2

3
𝑒𝑎̇𝑎

− 2

3
𝑒𝑅𝑎0𝑏0𝜔

𝑏 − 1

6
𝑒𝑅𝑏0𝑐0𝜔

𝑏𝜔𝑐𝜔𝑎 +
1

12
𝑒
(︀
5𝑅00 +𝑅𝑏𝑐𝜔

𝑏𝜔𝑐 +𝑅
)︀
𝜔𝑎

+
1

3
𝑒𝑅𝑎0 −

1

6
𝑒𝑅𝑎𝑏𝜔

𝑏 + 𝐹 tail
𝑎0 +𝑂(𝑠), (18.23)

𝐹𝑎𝑏(𝑡, 𝑠, 𝜔
𝑎) := 𝐹𝛼𝛽(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
𝑏 (𝑥)

=
1

2
𝑒
(︀
𝜔𝑎𝑎̇𝑏 − 𝑎̇𝑎𝜔𝑏

)︀
+

1

2
𝑒
(︀
𝑅𝑎0𝑏𝑐 −𝑅𝑏0𝑎𝑐

)︀
𝜔𝑐 − 1

2
𝑒
(︀
𝑅𝑎0𝜔𝑏 − 𝜔𝑎𝑅𝑏0

)︀
+ 𝐹 tail

𝑎𝑏 +𝑂(𝑠), (18.24)

where all frame components are now evaluated at 𝑥̄ := 𝑧(𝑡); for example, 𝑎𝑎 := 𝑎𝑎(𝑡) := 𝑎𝛼̄𝑒
𝛼̄
𝑎 .

Our next task is to compute the averages of 𝐹𝑎0 and 𝐹𝑎𝑏 over 𝑆(𝑡, 𝑠), a two-surface of constant
𝑡 and 𝑠. These are defined by⟨︀

𝐹𝑎0

⟩︀
(𝑡, 𝑠) =

1

𝒜

∮︁
𝑆(𝑡,𝑠)

𝐹𝑎0(𝑡, 𝑠, 𝜔
𝑎) 𝑑𝒜,

⟨︀
𝐹𝑎𝑏

⟩︀
(𝑡, 𝑠) =

1

𝒜

∮︁
𝑆(𝑡,𝑠)

𝐹𝑎𝑏(𝑡, 𝑠, 𝜔
𝑎) 𝑑𝒜, (18.25)

where 𝑑𝒜 is the element of surface area on 𝑆(𝑡, 𝑠), and 𝒜 =
∮︀
𝑑𝒜. Using the methods developed

in Section 17.4, we find ⟨︀
𝐹𝑎0

⟩︀
= −2𝑒

3𝑠
𝑎𝑎 +

2

3
𝑒𝑎̇𝑎 +

1

3
𝑒𝑅𝑎0 + 𝐹 tail

𝑎0 +𝑂(𝑠), (18.26)⟨︀
𝐹𝑎𝑏

⟩︀
= 𝐹 tail

𝑎𝑏 +𝑂(𝑠). (18.27)
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The averaged field is singular on the world line, but we nevertheless take the formal limit 𝑠 → 0
of the expressions displayed in Eqs. (18.26) and (18.27). In the limit the tetrad (𝑒𝛼0 , 𝑒

𝛼
𝑎 ) becomes

(𝑢𝛼̄, 𝑒𝛼̄𝑎 ), and we can easily reconstruct the field at 𝑥̄ from its frame components. We thus obtain

⟨︀
𝐹𝛼̄𝛽

⟩︀
= lim

𝑠→0

(︂
−4𝑒

3𝑠

)︂
𝑢[𝛼̄𝑎𝛽] + 2𝑒𝑢[𝛼̄

(︀
𝑔𝛽]𝛾 + 𝑢𝛽]𝑢𝛾

)︀(︂2

3
𝑎̇𝛾 +

1

3
𝑅𝛾

𝛿
𝑢𝛿
)︂
+ 𝐹 tail

𝛼̄𝛽 , (18.28)

where the tail term can be copied from Eq. (18.22),

𝐹 tail
𝛼̄𝛽 (𝑥̄) = 2𝑒

∫︁ 𝑡−

−∞
∇[𝛼̄𝐺+𝛽]𝜇(𝑥̄, 𝑧)𝑢

𝜇 𝑑𝜏. (18.29)

The tensors appearing in Eq. (18.28) all refer to 𝑥̄ := 𝑧(𝑡), which now stands for an arbitrary point
on the world line 𝛾.

18.5 Singular and regular fields

The singular vector potential

𝐴𝛼
S (𝑥) = 𝑒

∫︁
𝛾

𝐺 𝛼
S𝜇(𝑥, 𝑧)𝑢

𝜇 𝑑𝜏 (18.30)

is the (unphysical) solution to Eqs. (18.9) and (18.10) that is obtained by adopting the singular
Green’s function of Eq. (15.24) instead of the retarded Green’s function. We will see that the sin-
gular field 𝐹 S

𝛼𝛽 reproduces the singular behaviour of the retarded solution, and that the difference,

𝐹R
𝛼𝛽 = 𝐹𝛼𝛽 − 𝐹 S

𝛼𝛽 , is smooth on the world line.
To evaluate the integral of Eq. (18.30) we assume once more that 𝑥 is sufficiently close to 𝛾 that

the world line traverses 𝒩 (𝑥); refer back to Figure 9. As before we let 𝜏< and 𝜏> be the values
of the proper-time parameter at which 𝛾 enters and leaves 𝒩 (𝑥), respectively. Then Eq. (18.30)
becomes

𝐴𝛼
S (𝑥) = 𝑒

∫︁ 𝜏<

−∞
𝐺 𝛼

S𝜇(𝑥, 𝑧)𝑢
𝜇 𝑑𝜏 + 𝑒

∫︁ 𝜏>

𝜏<

𝐺 𝛼
S𝜇(𝑥, 𝑧)𝑢

𝜇 𝑑𝜏 + 𝑒

∫︁ ∞

𝜏>

𝐺 𝛼
S𝜇(𝑥, 𝑧)𝑢

𝜇 𝑑𝜏.

The first integration vanishes because 𝑥 is then in the chronological future of 𝑧(𝜏), and 𝐺 𝛼
S𝜇(𝑥, 𝑧) =

0 by Eq. (15.27). Similarly, the third integration vanishes because 𝑥 is then in the chronological
past of 𝑧(𝜏). For the second integration, 𝑥 is the normal convex neighbourhood of 𝑧(𝜏), the singular
Green’s function can be expressed in the Hadamard form of Eq. (15.33), and we have∫︁ 𝜏>

𝜏<

𝐺 𝛼
S𝜇(𝑥, 𝑧)𝑢

𝜇 𝑑𝜏 =
1

2

∫︁ 𝜏>

𝜏<

𝑈𝛼
𝜇(𝑥, 𝑧)𝑢

𝜇𝛿+(𝜎) 𝑑𝜏 +
1

2

∫︁ 𝜏>

𝜏<

𝑈𝛼
𝜇(𝑥, 𝑧)𝑢

𝜇𝛿−(𝜎) 𝑑𝜏

− 1

2

∫︁ 𝜏>

𝜏<

𝑉 𝛼
𝜇(𝑥, 𝑧)𝑢

𝜇𝜃(𝜎) 𝑑𝜏.

To evaluate these we let 𝑥′ := 𝑧(𝑢) and 𝑥′′ := 𝑧(𝑣) be the retarded and advanced points associated
with 𝑥, respectively. To perform the first integration we change variables from 𝜏 to 𝜎, noticing
that 𝜎 increases as 𝑧(𝜏) passes through 𝑥′; the integral evaluates to 𝑈𝛼

𝛽′𝑢𝛽
′
/𝑟. We do the same for

the second integration, but we notice now that 𝜎 decreases as 𝑧(𝜏) passes through 𝑥′′; the integral
evaluates to 𝑈𝛼

𝛽′′𝑢𝛽
′′
/𝑟adv, where 𝑟adv := −𝜎𝛼′′𝑢𝛼

′′
is the advanced distance between 𝑥 and the

world line. The third integration is restricted to the interval 𝑢 ≤ 𝜏 ≤ 𝑣 by the step function, and
we obtain the expression

𝐴𝛼
S (𝑥) =

𝑒

2𝑟
𝑈𝛼

𝛽′𝑢𝛽
′
+

𝑒

2𝑟adv
𝑈𝛼

𝛽′′𝑢𝛽
′′ − 1

2
𝑒

∫︁ 𝑣

𝑢

𝑉 𝛼
𝜇(𝑥, 𝑧)𝑢

𝜇 𝑑𝜏 (18.31)
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for the singular vector potential.
Differentiation of Eq. (18.31) yields

∇𝛽𝐴
S
𝛼(𝑥) = − 𝑒

2𝑟2
𝑈𝛼𝛽′𝑢𝛽

′
𝜕𝛽𝑟 −

𝑒

2𝑟adv2
𝑈𝛼𝛽′′𝑢𝛽

′′
𝜕𝛽𝑟adv +

𝑒

2𝑟
𝑈𝛼𝛽′;𝛽𝑢

𝛽′

+
𝑒

2𝑟

(︁
𝑈𝛼𝛽′;𝛾′𝑢𝛽

′
𝑢𝛾

′
+ 𝑈𝛼𝛽′𝑎𝛽

′
)︁
𝜕𝛽𝑢+

𝑒

2𝑟adv
𝑈𝛼𝛽′′;𝛽𝑢

𝛽′′

+
𝑒

2𝑟adv

(︁
𝑈𝛼𝛽′′;𝛾′′𝑢𝛽

′′
𝑢𝛾

′′
+ 𝑈𝛼𝛽′′𝑎𝛽

′′
)︁
𝜕𝛽𝑣 +

1

2
𝑒𝑉𝛼𝛽′𝑢𝛽

′
𝜕𝛽𝑢

− 1

2
𝑒𝑉𝛼𝛽′′𝑢𝛽

′′
𝜕𝛽𝑣 −

1

2
𝑒

∫︁ 𝑣

𝑢

∇𝛽𝑉𝛼𝜇(𝑥, 𝑧)𝑢
𝜇 𝑑𝜏, (18.32)

and we would like to express this as an expansion in powers of 𝑟. For this we will rely on results
already established in Section 18.3, as well as additional expansions that will involve the advanced
point 𝑥′′. We recall that a relation between retarded and advanced times was worked out in
Eq. (11.12), that an expression for the advanced distance was displayed in Eq. (11.13), and that
Eqs. (11.14) and (11.15) give expansions for 𝜕𝛼𝑣 and 𝜕𝛼𝑟adv, respectively.

To derive an expansion for 𝑈𝛼𝛽′′𝑢𝛽
′′
we follow the general method of Section 11.4 and introduce

the functions 𝑈𝛼(𝜏) := 𝑈𝛼𝜇(𝑥, 𝑧)𝑢
𝜇. We have that

𝑈𝛼𝛽′′𝑢𝛽
′′
:= 𝑈𝛼(𝑣) = 𝑈𝛼(𝑢) + 𝑈̇𝛼(𝑢)Δ

′ +
1

2
𝑈̈𝛼(𝑢)Δ

′2 +𝑂
(︀
Δ′3)︀,

where overdots indicate differentiation with respect to 𝜏 , and Δ′ := 𝑣 − 𝑢. The leading term
𝑈𝛼(𝑢) := 𝑈𝛼𝛽′𝑢𝛽

′
was worked out in Eq. (18.15), and the derivatives of 𝑈𝛼(𝜏) are given by

𝑈̇𝛼(𝑢) = 𝑈𝛼𝛽′;𝛾′𝑢𝛽
′
𝑢𝛾

′
+ 𝑈𝛼𝛽′𝑎𝛽

′
= 𝑔𝛼

′

𝛼

[︂
𝑎𝛼′ +

1

2
𝑟𝑅𝛼′0𝑏0Ω

𝑏 − 1

6
𝑟
(︀
𝑅00 +𝑅0𝑏Ω

𝑏
)︀
𝑢𝛼′ +𝑂(𝑟2)

]︂
and

𝑈̈𝛼(𝑢) = 𝑈𝛼𝛽′;𝛾′𝛿′𝑢
𝛽′
𝑢𝛾

′
𝑢𝛿

′
+ 𝑈𝛼𝛽′;𝛾′

(︀
2𝑎𝛽

′
𝑢𝛾

′
+ 𝑢𝛽

′
𝑎𝛾

′)︀
+ 𝑈𝛼𝛽′ 𝑎̇𝛽

′
= 𝑔𝛼

′

𝛼

[︂
𝑎̇𝛼′ +

1

6
𝑅00𝑢𝛼′ +𝑂(𝑟)

]︂
,

according to Eqs. (18.17) and (15.12). Combining these results together with Eq. (11.12) for Δ′

gives

𝑈𝛼𝛽′′𝑢𝛽
′′
= 𝑔𝛼

′

𝛼

[︂
𝑢𝛼′ + 2𝑟

(︀
1− 𝑟𝑎𝑏Ω

𝑏
)︀
𝑎𝛼′ + 2𝑟2𝑎̇𝛼′ + 𝑟2𝑅𝛼′0𝑏0Ω

𝑏

+
1

12
𝑟2
(︀
𝑅00 − 2𝑅0𝑎Ω

𝑎 +𝑅𝑎𝑏Ω
𝑎Ω𝑏

)︀
𝑢𝛼′ +𝑂(𝑟3)

]︂
, (18.33)

which should be compared with Eq. (18.15). It should be emphasized that in Eq. (18.33) and
all equations below, all frame components are evaluated at the retarded point 𝑥′, and not at the
advanced point. The preceding computation gives us also an expansion for

𝑈𝛼𝛽′′;𝛾′′𝑢𝛽
′′
𝑢𝛾

′′
+ 𝑈𝛼𝛽′′𝑎𝛽

′′
:= 𝑈̇𝛼(𝑣) = 𝑈̇𝛼(𝑢) + 𝑈̈𝛼(𝑢)Δ

′ +𝑂(Δ′2),

which becomes

𝑈𝛼𝛽′′;𝛾′′𝑢𝛽
′′
𝑢𝛾

′′
+𝑈𝛼𝛽′′𝑎𝛽

′′
= 𝑔𝛼

′

𝛼

[︂
𝑎𝛼′+2𝑟𝑎̇𝛼′+

1

2
𝑟𝑅𝛼′0𝑏0Ω

𝑏+
1

6
𝑟
(︀
𝑅00−𝑅0𝑏Ω

𝑏
)︀
𝑢𝛼′+𝑂(𝑟2)

]︂
, (18.34)

and which should be compared with Eq. (18.17).
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We proceed similarly to derive an expansion for 𝑈𝛼𝛽′′;𝛽𝑢
𝛽′′

. Here we introduce the functions

𝑈𝛼𝛽(𝜏) := 𝑈𝛼𝜇;𝛽𝑢
𝜇 and express 𝑈𝛼𝛽′′;𝛽𝑢

𝛽′′
as 𝑈𝛼𝛽(𝑣) = 𝑈𝛼𝛽(𝑢) + 𝑈̇𝛼𝛽(𝑢)Δ

′ +𝑂(Δ′2). The leading

term 𝑈𝛼𝛽(𝑢) := 𝑈𝛼𝛽′;𝛽𝑢
𝛽′

was computed in Eq. (18.16), and

𝑈̇𝛼𝛽(𝑢) = 𝑈𝛼𝛽′;𝛽𝛾′𝑢𝛽
′
𝑢𝛾

′
+ 𝑈𝛼𝛽′;𝛽𝑎

𝛽′
=

1

2
𝑔𝛼

′

𝛼𝑔
𝛽′

𝛽

[︂
𝑅𝛼′0𝛽′0 −

1

3
𝑢𝛼′𝑅𝛽′0 +𝑂(𝑟)

]︂
follows from Eq. (15.11). Combining these results together with Eq. (11.12) for Δ′ gives

𝑈𝛼𝛽′′;𝛽𝑢
𝛽′′

=
1

2
𝑟𝑔𝛼

′

𝛼𝑔
𝛽′

𝛽

[︂
𝑅𝛼′0𝛽′0 −𝑅𝛼′0𝛽′𝑐Ω

𝑐 − 1

3

(︀
𝑅𝛽′0 −𝑅𝛽′𝑐Ω

𝑐
)︀
𝑢𝛼′ +𝑂(𝑟)

]︂
, (18.35)

and this should be compared with Eq. (18.16). The last expansion we shall need is

𝑉𝛼𝛽′′𝑢𝛽
′′
= −1

2
𝑔𝛼

′

𝛼

[︂
𝑅𝛼′0 −

1

6
𝑅𝑢𝛼′ +𝑂(𝑟)

]︂
, (18.36)

which follows at once from Eq. (18.18).
It is now a straightforward (but still tedious) matter to substitute these expansions into

Eq. (18.32) to obtain the projections of the singular electromagnetic field 𝐹 S
𝛼𝛽 = ∇𝛼𝐴

S
𝛽 − ∇𝛽𝐴

S
𝛼

in the same tetrad (𝑒𝛼0 , 𝑒
𝛼
𝑎 ) that was employed in Section 18.3. This gives

𝐹 S
𝑎0(𝑢, 𝑟,Ω

𝑎) := 𝐹 S
𝛼𝛽(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
0 (𝑥)

=
𝑒

𝑟2
Ω𝑎 −

𝑒

𝑟

(︀
𝑎𝑎 − 𝑎𝑏Ω

𝑏Ω𝑎

)︀
− 2

3
𝑒𝑎̇𝑎 +

1

3
𝑒𝑅𝑏0𝑐0Ω

𝑏Ω𝑐Ω𝑎 −
1

6
𝑒
(︀
5𝑅𝑎0𝑏0Ω

𝑏 +𝑅𝑎𝑏0𝑐Ω
𝑏Ω𝑐
)︀

+
1

12
𝑒
(︀
5𝑅00 +𝑅𝑏𝑐Ω

𝑏Ω𝑐 +𝑅
)︀
Ω𝑎 −

1

6
𝑒𝑅𝑎𝑏Ω

𝑏 +𝑂(𝑟), (18.37)

𝐹 S
𝑎𝑏(𝑢, 𝑟,Ω

𝑎) := 𝐹 S
𝛼𝛽(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
𝑏 (𝑥)

=
𝑒

𝑟

(︀
𝑎𝑎Ω𝑏 − Ω𝑎𝑎𝑏

)︀
+

1

2
𝑒
(︀
𝑅𝑎0𝑏𝑐 −𝑅𝑏0𝑎𝑐 +𝑅𝑎0𝑐0Ω𝑏 − Ω𝑎𝑅𝑏0𝑐0

)︀
Ω𝑐

− 1

2
𝑒
(︀
𝑅𝑎0Ω𝑏 − Ω𝑎𝑅𝑏0

)︀
+𝑂(𝑟), (18.38)

in which all frame components are evaluated at the retarded point 𝑥′. Comparison of these expres-
sions with Eqs. (18.19) and (18.20) reveals that the retarded and singular fields share the same
singularity structure.

The difference between the retarded field of Eqs. (18.19), (18.20) and the singular field of
Eqs. (18.37), (18.38) defines the regular field 𝐹R

𝛼𝛽(𝑥). Its tetrad components are

𝐹R
𝑎0 =

2

3
𝑒𝑎̇𝑎 +

1

3
𝑒𝑅𝑎0 + 𝐹 tail

𝑎0 +𝑂(𝑟), (18.39)

𝐹R
𝑎𝑏 = 𝐹 tail

𝑎𝑏 +𝑂(𝑟), (18.40)

and we see that 𝐹R
𝛼𝛽 is a regular tensor field on the world line. There is therefore no obstacle

in evaluating the regular field directly at 𝑥 = 𝑥′, where the tetrad (𝑒𝛼0 , 𝑒
𝛼
𝑎 ) becomes (𝑢𝛼

′
, 𝑒𝛼

′

𝑎 ).
Reconstructing the field at 𝑥′ from its frame components, we obtain

𝐹R
𝛼′𝛽′(𝑥′) = 2𝑒𝑢[𝛼′

(︀
𝑔𝛽′]𝛾′ + 𝑢𝛽′]𝑢𝛾′

)︀(︂2

3
𝑎̇𝛾

′
+

1

3
𝑅𝛾′

𝛿′𝑢
𝛿′
)︂
+ 𝐹 tail

𝛼′𝛽′ , (18.41)

where the tail term can be copied from Eq. (18.22),

𝐹 tail
𝛼′𝛽′(𝑥′) = 2𝑒

∫︁ 𝑢−

−∞
∇[𝛼′𝐺+𝛽′]𝜇(𝑥

′, 𝑧)𝑢𝜇 𝑑𝜏. (18.42)

The tensors appearing in Eq. (18.41) all refer to the retarded point 𝑥′ := 𝑧(𝑢), which now stands
for an arbitrary point on the world line 𝛾.
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18.6 Equations of motion

The retarded field 𝐹𝛼𝛽 of a point electric charge is singular on the world line, and this behaviour
makes it difficult to understand how the field is supposed to act on the particle and exert a force.
The field’s singularity structure was analyzed in Sections 18.3 and 18.4, and in Section 18.5 it was
shown to originate from the singular field 𝐹 S

𝛼𝛽 ; the regular field 𝐹R
𝛼𝛽 = 𝐹𝛼𝛽 −𝐹 S

𝛼𝛽 was then shown
to be regular on the world line.

To make sense of the retarded field’s action on the particle we follow the discussion of Sec-
tion 17.6 and temporarily picture the electric charge as a spherical hollow shell; the shell’s radius
is 𝑠0 in Fermi normal coordinates, and it is independent of the angles contained in the unit vec-
tor 𝜔𝑎. The net force acting at proper time 𝜏 on this shell is proportional to the average of
𝐹𝛼𝛽(𝜏, 𝑠0, 𝜔

𝑎) over the shell’s surface. Assuming that the field on the shell is equal to the field of
a point particle evaluated at 𝑠 = 𝑠0, and ignoring terms that disappear in the limit 𝑠0 → 0, we
obtain from Eq. (18.28)

𝑒
⟨︀
𝐹𝜇𝜈

⟩︀
𝑢𝜈 = −(𝛿𝑚)𝑎𝜇 + 𝑒2

(︀
𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀(︂2

3
𝑎̇𝜈 +

1

3
𝑅𝜈

𝜆𝑢
𝜆

)︂
+ 𝑒𝐹 tail

𝜇𝜈 𝑢
𝜈 , (18.43)

where

𝛿𝑚 := lim
𝑠0→0

2𝑒2

3𝑠0
(18.44)

is formally a divergent quantity and

𝑒𝐹 tail
𝜇𝜈 𝑢

𝜈 = 2𝑒2𝑢𝜈
∫︁ 𝜏−

−∞
∇[𝜇𝐺+𝜈]𝜆′

(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑢𝜆

′
𝑑𝜏 ′ (18.45)

is the tail part of the force; all tensors in Eq. (18.43) are evaluated at an arbitrary point 𝑧(𝜏) on
the world line.

Substituting Eqs. (18.43) and (18.45) into Eq. (18.7) gives rise to the equations of motion

(︀
𝑚+𝛿𝑚)𝑎𝜇 = 𝑒2

(︀
𝛿𝜇𝜈 +𝑢

𝜇𝑢𝜈
)︀(︂2

3
𝑎̇𝜈 +

1

3
𝑅𝜈

𝜆𝑢
𝜆

)︂
+2𝑒2𝑢𝜈

∫︁ 𝜏−

−∞
∇[𝜇𝐺

𝜈]
+𝜆′

(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑢𝜆

′
𝑑𝜏 ′ (18.46)

for the electric charge, with 𝑚 denoting the (also formally divergent) bare mass of the particle. We
see that 𝑚 and 𝛿𝑚 combine in Eq. (18.46) to form the particle’s observed mass 𝑚obs, which is finite
and gives a true measure of the particle’s inertia. All diverging quantities have thus disappeared
into the procedure of mass renormalization.

We must confess, as we did in the case of the scalar self-force, that the derivation of the equations
of motion outlined above returns the wrong expression for the self-energy of a spherical shell of
electric charge. We obtained 𝛿𝑚 = 2𝑒2/(3𝑠0), while the correct expression is 𝛿𝑚 = 𝑒2/(2𝑠0); we
are wrong by a factor of 4/3. As before we believe that this discrepancy originates in a previously
stated assumption, that the field on the shell (as produced by the shell itself) is equal to the field
of a point particle evaluated at 𝑠 = 𝑠0. We believe that this assumption is in fact wrong, and that
a calculation of the field actually produced by a spherical shell would return the correct expression
for 𝛿𝑚. We also believe, however, that except for the diverging terms that determine 𝛿𝑚, the
difference between the shell’s field and the particle’s field should vanish in the limit 𝑠0 → 0. Our
conclusion is therefore that while our expression for 𝛿𝑚 is admittedly incorrect, the statement of
the equations of motion is reliable.

Apart from the term proportional to 𝛿𝑚, the averaged force of Eq. (18.43) has exactly the same
form as the force that arises from the regular field of Eq. (18.41), which we express as

𝑒𝐹R
𝜇𝜈𝑢

𝜈 = 𝑒2
(︀
𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀(︂2

3
𝑎̇𝜈 +

1

3
𝑅𝜈

𝜆𝑢
𝜆

)︂
+ 𝑒𝐹 tail

𝜇𝜈 𝑢
𝜈 . (18.47)
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The force acting on the point particle can therefore be thought of as originating from the regular
field, while the singular field simply contributes to the particle’s inertia. After mass renormaliza-
tion, Eq. (18.46) is equivalent to the statement

𝑚𝑎𝜇 = 𝑒𝐹R
𝜇𝜈(𝑧)𝑢

𝜈 , (18.48)

where we have dropped the superfluous label “obs” on the particle’s observed mass.

For the final expression of the equations of motion we follow the discussion of Section 17.6 and
allow an external force 𝑓𝜇ext to act on the particle, and we replace, on the right-hand side of the
equations, the acceleration vector by 𝑓𝜇ext/𝑚. This produces

𝑚
𝐷𝑢𝜇

𝑑𝜏
= 𝑓𝜇ext + 𝑒2

(︀
𝛿𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀(︂ 2

3𝑚

𝐷𝑓𝜈ext
𝑑𝜏

+
1

3
𝑅𝜈

𝜆𝑢
𝜆

)︂
+ 2𝑒2𝑢𝜈

∫︁ 𝜏−

−∞
∇[𝜇𝐺

𝜈]
+𝜆′

(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑢𝜆

′
𝑑𝜏 ′,

(18.49)
in which 𝑚 denotes the observed inertial mass of the electric charge and all tensors are evaluated
at 𝑧(𝜏), the current position of the particle on the world line; the primed indices in the tail integral
refer to the point 𝑧(𝜏 ′), which represents a prior position. We recall that the integration must be
cut short at 𝜏 ′ = 𝜏− := 𝜏 − 0+ to avoid the singular behaviour of the retarded Green’s function
at coincidence; this procedure was justified at the beginning of Section 18.3. Equation (18.49)
was first derived (without the Ricci-tensor term) by Bryce S. DeWitt and Robert W. Brehme in
1960 [54], and then corrected by J.M. Hobbs in 1968 [95]. An alternative derivation was produced
by Theodore C. Quinn and Robert M. Wald in 1997 [150]. In a subsequent publication [151], Quinn
and Wald proved that the total work done by the electromagnetic self-force matches the energy
radiated away by the particle.

19 Motion of a point mass

19.1 Dynamics of a point mass

Introduction

In this section we consider the motion of a point particle of mass 𝑚 subjected to its own gravi-
tational field in addition to an external field. The particle moves on a world line 𝛾 in a curved
spacetime whose background metric 𝑔𝛼𝛽 is assumed to be a vacuum solution to the Einstein field
equations. We shall suppose that 𝑚 is small, so that the perturbation ℎ𝛼𝛽 created by the particle
can also be considered to be small. In the final analysis we shall find that ℎ𝛼𝛽 obeys a linear wave
equation in the background spacetime, and this linearization of the field equations will allow us to
fit the problem of determining the motion of a point mass within the general framework developed
in Sections 17 and 18. We shall find that 𝛾 is not a geodesic of the background spacetime because
ℎ𝛼𝛽 acts on the particle and produces an acceleration proportional to 𝑚; the motion is geodesic in
the test-mass limit only.

While we can make the problem fit within the general framework, it is important to understand
that the problem of motion in gravitation is conceptually very different from the versions encoun-
tered previously in the case of a scalar or electromagnetic field. In these cases, the field equations
satisfied by the scalar potential Φ or the vector potential 𝐴𝛼 are fundamentally linear; in general
relativity the field equations satisfied by ℎ𝛼𝛽 are fundamentally nonlinear, and this makes a major
impact on the formulation of the problem. (In all cases the coupled problem of determining the
field and the motion of the particle is nonlinear.) Another difference resides with the fact that in
the previous cases, the field equations and the law of motion could be formulated independently
of each other (because the action functional could be varied independently with respect to the
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field and the world line); in general relativity the law of motion follows from energy-momentum
conservation, which is itself a consequence of the field equations.

The dynamics of a point mass in general relativity must therefore be formulated with care.
We shall describe a formal approach to this problem, based on the fiction that the spacetime of a
point particle can be constructed exactly in general relativity. (This is indeed a fiction, because it
is known [80] that the metric of a point particle, as described by a Dirac distribution on a world
line, is much too singular to be defined as a distribution in spacetime. The construction, however,
makes distributional sense at the level of the linearized theory.) The outcome of this approach will
be an approximate formulation of the equations of motion that relies on a linearization of the field
equations, and which turns out to be closely analogous to the scalar and electromagnetic cases
encountered previously. We shall put the motion of a small mass on a much sounder foundation
in Part V, where we take 𝑚 to be a (small) extended body instead of a point particle.

Exact formulation

Let a point particle of mass 𝑚 move on a world line 𝛾 in a curved spacetime with metric g𝛼𝛽 . This
is the exact metric of the perturbed spacetime, and it depends on 𝑚 as well as all other relevant
parameters. At a later stage of the discussion g𝛼𝛽 will be expressed as sum of a “background”
part 𝑔𝛼𝛽 that is independent of 𝑚, and a “perturbation” part ℎ𝛼𝛽 that contains the dependence
on 𝑚. The world line is described by relations 𝑧𝜇(𝜆) in which 𝜆 is an arbitrary parameter – this
will later be identified with proper time 𝜏 in the background spacetime. We use sans-serif symbols
to denote tensors that refer to the perturbed spacetime; tensors in the background spacetime will
be denoted, as usual, by italic symbols.

The particle’s action functional is

𝑆particle = −𝑚
∫︁
𝛾

√︀
−g𝜇𝜈 𝑧̇𝜇𝑧̇𝜈 𝑑𝜆 (19.1)

where 𝑧̇𝜇 = 𝑑𝑧𝜇/𝑑𝜆 is tangent to the world line and the metric is evaluated at 𝑧. We assume that
the particle provides the only source of matter in the spacetime – an explanation will be provided
below – so that the Einstein field equations take the form of

G𝛼𝛽 = 8𝜋T𝛼𝛽 , (19.2)

where G𝛼𝛽 is the Einstein tensor constructed from g𝛼𝛽 and

T𝛼𝛽(𝑥) = 𝑚

∫︁
𝛾

g𝛼𝜇(𝑥, 𝑧)g
𝛽
𝜈(𝑥, 𝑧)𝑧̇

𝜇𝑧̇𝜈√︀
−g𝜇𝜈 𝑧̇𝜇𝑧̇𝜈

𝛿4(𝑥, 𝑧) 𝑑𝜆 (19.3)

is the particle’s energy-momentum tensor, obtained by functional differentiation of 𝑆particle with
respect to g𝛼𝛽(𝑥); the parallel propagators appear naturally by expressing g𝜇𝜈 as g𝛼𝜇g

𝛽
𝜈g𝛼𝛽 .

On a formal level the metric g𝛼𝛽 is obtained by solving the Einstein field equations, and the
world line is determined by the equations of energy-momentum conservation, which follow from
the field equations. From Eqs. (5.14), (13.3), and (19.3) we obtain

∇𝛽T
𝛼𝛽 = 𝑚

∫︁
𝛾

𝑑

𝑑𝜆

(︂
g𝛼𝜇𝑧̇

𝜇√︀
−g𝜇𝜈 𝑧̇𝜇𝑧̇𝜈

)︂
𝛿4(𝑥, 𝑧) 𝑑𝜆,

and additional manipulations reduce this to

∇𝛽T
𝛼𝛽 = 𝑚

∫︁
𝛾

g𝛼𝜇√︀
−g𝜇𝜈 𝑧̇𝜇𝑧̇𝜈

(︂
D𝑧̇𝜇

𝑑𝜆
− k𝑧̇𝜇

)︂
𝛿4(𝑥, 𝑧) 𝑑𝜆, (19.4)
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where D𝑧̇𝜇/𝑑𝜆 is the covariant acceleration and k is a scalar field on the world line. Energy-
momentum conservation therefore produces the geodesic equation

D𝑧̇𝜇

𝑑𝜆
= k𝑧̇𝜇, (19.5)

and

k :=
1√︀

−g𝜇𝜈 𝑧̇𝜇𝑧̇𝜈
𝑑

𝑑𝜆

√︀
−g𝜇𝜈 𝑧̇𝜇𝑧̇𝜈 (19.6)

measures the failure of 𝜆 to be an affine parameter on the geodesic 𝛾.

Decomposition into background and perturbation

At this stage we begin treating 𝑚 as a small quantity, and we write

g𝛼𝛽 = 𝑔𝛼𝛽 + ℎ𝛼𝛽 , (19.7)

with 𝑔𝛼𝛽 denoting the 𝑚 → 0 limit of the metric g𝛼𝛽 , and ℎ𝛼𝛽 containing the dependence on 𝑚.
We shall refer to 𝑔𝛼𝛽 as the “metric of the background spacetime” and to ℎ𝛼𝛽 as the “perturbation”
produced by the particle. We insist, however, that no approximation is introduced at this stage;
the perturbation ℎ𝛼𝛽 is the exact difference between the exact metric g𝛼𝛽 and the background
metric 𝑔𝛼𝛽 . Below we shall use the background metric to lower and raise indices.

We introduce the tensor field
𝐶𝛼

𝛽𝛾 := Γ𝛼𝛽𝛾 − Γ𝛼
𝛽𝛾 (19.8)

as the exact difference between Γ𝛼𝛽𝛾 , the connection compatible with the exact metric g𝛼𝛽 , and Γ𝛼
𝛽𝛾 ,

the connection compatible with the background metric 𝑔𝛼𝛽 . A covariant differentiation indicated
by ;𝛼 will refer to Γ𝛼

𝛽𝛾 , while a covariant differentiation indicated by ∇𝛼 will continue to refer to
Γ𝛼𝛽𝛾 .

We express the exact Einstein tensor as

G𝛼𝛽 = 𝐺𝛼𝛽 [𝑔] + 𝛿𝐺𝛼𝛽 [𝑔, ℎ] + Δ𝐺𝛼𝛽 [𝑔, ℎ], (19.9)

where 𝐺𝛼𝛽 is the Einstein tensor of the background spacetime, which is assumed to vanish. The
second term 𝛿𝐺𝛼𝛽 is the linearized Einstein operator defined by

𝛿𝐺𝛼𝛽 := −1

2

(︀
�𝛾𝛼𝛽 + 2𝑅 𝛼 𝛽

𝛾 𝛿 𝛾𝛾𝛿
)︀
+

1

2

(︀
𝛾𝛼𝛾 𝛽

;𝛾 + 𝛾𝛽𝛾 𝛼
;𝛾 − 𝑔𝛼𝛽𝛾𝛾𝛿;𝛾𝛿

)︀
, (19.10)

where �𝛾𝛼𝛽 := 𝑔𝛾𝛿𝛾𝛼𝛽;𝛾𝛿 is the wave operator in the background spacetime, and

𝛾𝛼𝛽 := ℎ𝛼𝛽 − 1

2
𝑔𝛼𝛽
(︀
𝑔𝛾𝛿ℎ

𝛾𝛿
)︀

(19.11)

is the “trace-reversed” metric perturbation (with all indices raised with the background metric).
The third term Δ𝐺𝛼𝛽 contains the remaining nonlinear pieces that are excluded from 𝛿𝐺𝛼𝛽 .

Field equations and conservation statement

The exact Einstein field equations can be expressed as

𝛿𝐺𝛼𝛽 = 8𝜋𝑇𝛼𝛽
eff , (19.12)

where the effective energy-momentum tensor is defined by

𝑇𝛼𝛽
eff := T𝛼𝛽 − 1

8𝜋
Δ𝐺𝛼𝛽 . (19.13)
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Because 𝛿𝐺𝛼𝛽 satisfies the Bianchi-like identities 𝛿𝐺𝛼𝛽
;𝛽 = 0, the effective energy-momentum tensor

is conserved in the background spacetime:

𝑇𝛼𝛽
eff ;𝛽 = 0. (19.14)

This statement is equivalent to ∇𝛽T
𝛼𝛽 = 0, as can be inferred from the equations ∇𝛽G

𝛼𝛽 = G𝛼𝛽
;𝛽+

𝐶𝛼
𝛾𝛽G

𝛾𝛽+𝐶𝛽
𝛾𝛽G

𝛼𝛾 , ∇𝛽T
𝛼𝛽 = T𝛼𝛽

;𝛽+𝐶
𝛼
𝛾𝛽T

𝛾𝛽+𝐶𝛽
𝛾𝛽T

𝛼𝛾 , and the definition of 𝑇𝛼𝛽
eff . Equation (19.14),

in turn, is equivalent to Eq. (19.5), which states that the motion of the point particle is geodesic
in the perturbed spacetime.

Integration of the field equations

Eq. (19.12) expresses the full and exact content of Einstein’s field equations. It is written in such
a way that the left-hand side is linear in the perturbation ℎ𝛼𝛽 , while the right-hand side contains
all nonlinear terms. It may be viewed formally as a set of linear differential equations for ℎ𝛼𝛽 with

a specified source term 𝑇𝛼𝛽
eff . This equation is of mixed hyperbolic-elliptic type, and as such it is a

poor starting point for the selection of retarded solutions that enforce a strict causal link between
the source and the field. This inadequacy, however, can be remedied by imposing the Lorenz gauge
condition

𝛾𝛼𝛽;𝛽 = 0, (19.15)

which converts 𝛿𝐺𝛼𝛽 into a strictly hyperbolic differential operator. In this gauge the field equations
become

�𝛾𝛼𝛽 + 2𝑅 𝛼 𝛽
𝛾 𝛿 𝛾𝛾𝛿 = −16𝜋𝑇𝛼𝛽

eff . (19.16)

This is a tensorial wave equation formulated in the background spacetime, and while the left-hand
side is manifestly linear in ℎ𝛼𝛽 , the right-hand side continues to incorporate all nonlinear terms.
Equations (19.15) and (19.16) still express the full content of the exact field equations.

A formal solution to Eq. (19.16) is

𝛾𝛼𝛽(𝑥) = 4

∫︁
𝐺 𝛼𝛽

+ 𝛾′𝛿′(𝑥, 𝑥
′)𝑇 𝛾′𝛿′

eff (𝑥′)
√︀
−𝑔′ 𝑑4𝑥′, (19.17)

where 𝐺 𝛼𝛽
+ 𝛾′𝛿′(𝑥, 𝑥

′) is the retarded Green’s function introduced in Section 16. With the help of
Eq. (16.21), it is easy to show that

𝛾𝛼𝛽;𝛽 = 4

∫︁
𝐺 𝛼

+𝛾′𝑇
𝛾′𝛿′

eff ;𝛿′

√︀
−𝑔′ 𝑑4𝑥′ (19.18)

follows directly from Eq. (19.17); 𝐺 𝛼
+ 𝛾′(𝑥, 𝑥′) is the electromagnetic Green’s function introduced in

Section 15. This equation indicates that the Lorenz gauge condition is automatically enforced when
the conservation equation 𝑇𝛼𝛽

eff ;𝛽 = 0 is imposed. Conversely, Eq. (19.18) implies that �(𝛾𝛼𝛽;𝛽) =

−16𝜋𝑇𝛼𝛽
eff ;𝛽 , which indicates that imposition of 𝛾𝛼𝛽;𝛽 = 0 automatically enforces the conservation

equation. There is a one-to-one correspondence between the conservation equation and the Lorenz
gauge condition.

The split of the Einstein field equations into a wave equation and a gauge condition directly
tied to the conservation of the effective energy-momentum tensor is a most powerful tool, because
it allows us to disentangle the problems of obtaining ℎ𝛼𝛽 and determining the motion of the
particle. This comes about because the wave equation can be solved first, independently of the
gauge condition, for a particle moving on an arbitrary world line 𝛾; the world line is determined
next, by imposing the Lorenz gauge condition on the solution to the wave equation. More precisely
stated, the source term 𝑇𝛼𝛽

eff for the wave equation can be evaluated for any world line 𝛾, without
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demanding that the effective energy-momentum tensor be conserved, and without demanding that
𝛾 be a geodesic of the perturbed spacetime. Solving the wave equation then returns ℎ𝛼𝛽 [𝛾] as a
functional of the arbitrary world line, and the metric is not yet fully specified. Because imposing the
Lorenz gauge condition is equivalent to imposing conservation of the effective energy-momentum
tensor, inserting ℎ𝛼𝛽 [𝛾] within Eq. (19.15) finally determines 𝛾, and forces it to be a geodesic of
the perturbed spacetime. At this stage the full set of Einstein field equations is accounted for, and
the metric is fully specified as a tensor field in spacetime. The split of the field equations into a
wave equation and a gauge condition is key to the formulation of the gravitational self-force; in
this specific context the Lorenz gauge is conferred a preferred status among all choices of gauge.

An important question to be addressed is how the wave equation is to be integrated. A method
of principle, based on the assumed smallness of 𝑚 and ℎ𝛼𝛽 , is suggested by post-Minkowskian
theory [180, 26]. One proceeds by iterations. In the first iterative stage, one fixes 𝛾 and sub-

stitutes ℎ𝛼𝛽0 = 0 within 𝑇𝛼𝛽
eff ; evaluation of the integral in Eq. (19.17) returns the first-order

approximation ℎ𝛼𝛽1 [𝛾] = 𝑂(𝑚) for the perturbation. In the second stage ℎ𝛼𝛽1 is inserted within

𝑇𝛼𝛽
eff and Eq. (19.17) returns the second-order approximation ℎ𝛼𝛽2 [𝛾] = 𝑂(𝑚,𝑚2) for the perturba-

tion. Assuming that this procedure can be repeated at will and produces an adequate asymptotic
series for the exact perturbation, the iterations are stopped when the 𝑛th-order approximation
ℎ𝛼𝛽𝑛 [𝛾] = 𝑂(𝑚,𝑚2, · · · ,𝑚𝑛) is deemed to be sufficiently accurate. The world line is then deter-
mined, to order 𝑚𝑛, by subjecting the approximated field to the Lorenz gauge condition. It is to be
noted that the procedure necessarily produces an approximation of the field, and an approximation
of the motion, because the number of iterations is necessarily finite. This is the only source of
approximation in our formulation of the dynamics of a point mass.

Equations of motion

Conservation of energy-momentum implies Eq. (19.5), which states that the motion of the point
mass is geodesic in the perturbed spacetime. The equation is expressed in terms of the exact
connection Γ𝛼𝛽𝛾 , and with the help of Eq. (19.8) it can be re-written in terms of the background

connection Γ𝛼
𝛽𝛾 . We get 𝐷𝑧̇𝜇/𝑑𝜆 = −𝐶𝜇

𝜈𝜆𝑧̇
𝜈 𝑧̇𝜆 + k𝑧̇𝜇, where the left-hand side is the covariant

acceleration in the background spacetime, and k is given by Eq. (19.6). At this stage the arbitrary
parameter 𝜆 can be identified with proper time 𝜏 in the background spacetime. With this choice
the equations of motion become

𝑎𝜇 = −𝐶𝜇
𝜈𝜆𝑢

𝜈𝑢𝜆 + k𝑢𝜇, (19.19)

where 𝑢𝜇 := 𝑑𝑧𝜇/𝑑𝜏 is the velocity vector in the background spacetime, 𝑎𝜇 := 𝐷𝑢𝜇/𝑑𝜏 the covariant
acceleration, and

k =
1√︀

1− ℎ𝜇𝜈𝑢𝜇𝑢𝜈
𝑑

𝑑𝜏

√︀
1− ℎ𝜇𝜈𝑢𝜇𝑢𝜈 . (19.20)

Eq. (19.19) is an exact statement of the equations of motion. It expresses the fact that while
the motion is geodesic in the perturbed spacetime, it may be viewed as accelerated motion in the
background spacetime. Because ℎ𝛼𝛽 is calculated as an expansion in powers of 𝑚, the acceleration
also is eventually obtained as an expansion in powers of 𝑚. Here, in keeping with the preceding
sections, we will use order-reduction to make that expansion well-behaved; in Part V of the review,
we will formulate the expansion more clearly as part of more systematic approach.

Implementation to first order in m

While our formulation of the dynamics of a point mass is in principle exact, any practical im-
plementation will rely on an approximation method. As we saw previously, the most immediate
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source of approximation concerns the number of iterations involved in the integration of the wave
equation. Here we perform a single iteration and obtain the perturbation ℎ𝛼𝛽 and the equations
of motion to first order in the mass 𝑚.

In a first iteration of the wave equation we fix 𝛾 and set Δ𝐺𝛼𝛽 = 0, T𝛼𝛽 = 𝑇𝛼𝛽 , where

𝑇𝛼𝛽 = 𝑚

∫︁
𝛾

𝑔𝛼𝜇(𝑥, 𝑧)𝑔
𝛽
𝜈(𝑥, 𝑧)𝑢

𝜇𝑢𝜈 𝛿4(𝑥, 𝑧) 𝑑𝜏 (19.21)

is the particle’s energy-momentum tensor in the background spacetime. This implies that 𝑇𝛼𝛽
eff =

𝑇𝛼𝛽 , and Eq. (19.16) becomes

�𝛾𝛼𝛽 + 2𝑅 𝛼 𝛽
𝛾 𝛿 𝛾𝛾𝛿 = −16𝜋𝑇𝛼𝛽 +𝑂(𝑚2). (19.22)

Its solution is

𝛾𝛼𝛽(𝑥) = 4𝑚

∫︁
𝛾

𝐺 𝛼𝛽
+ 𝜇𝜈(𝑥, 𝑧)𝑢

𝜇𝑢𝜈 𝑑𝜏 +𝑂(𝑚2), (19.23)

and from this we obtain ℎ𝛼𝛽 . Equation (19.8) gives rise to 𝐶𝛼
𝛽𝛾 = 1

2 (ℎ
𝛼
𝛽;𝛾+ℎ

𝛼
𝛾;𝛽−ℎ ;𝛼

𝛽𝛾 )+𝑂(𝑚2),

and from Eq. (19.20) we obtain k = − 1
2ℎ𝜈𝜆;𝜌𝑢

𝜈𝑢𝜆𝑢𝜌−ℎ𝜈𝜆𝑢𝜈𝑎𝜆+𝑂(𝑚2); we can discard the second
term because it is clear that the acceleration will be of order 𝑚. Inserting these results within
Eq. (19.19), we obtain

𝑎𝜇 = −1

2

(︁
ℎ𝜇𝜈;𝜆 + ℎ𝜇𝜆;𝜈 − ℎ ;𝜇

𝜈𝜆 + 𝑢𝜇ℎ𝜈𝜆;𝜌𝑢
𝜌
)︁
𝑢𝜈𝑢𝜆 +𝑂(𝑚2). (19.24)

We express this in the equivalent form

𝑎𝜇 = −1

2

(︀
𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀(︀
2ℎ𝜈𝜆;𝜌 − ℎ𝜆𝜌;𝜈

)︀
𝑢𝜆𝑢𝜌 +𝑂(𝑚2) (19.25)

to emphasize the fact that the acceleration is orthogonal to the velocity vector.
It should be clear that Eq. (19.25) is valid only in a formal sense, because the potentials obtained

from Eqs. (19.23) diverge on the world line. To make sense of these equations we will proceed as
in Sections 17 and 18 with a careful analysis of the field’s singularity structure; regularization will
produce a well-defined version of Eq. (19.25). Our formulation of the dynamics of a point mass
makes it clear that a proper implementation requires that the wave equation of Eq. (19.22) and
the equations of motion of Eq. (19.25) be integrated simultaneously, in a self-consistent manner.

Failure of a strictly linearized formulation

In the preceding discussion we started off with an exact formulation of the problem of motion
for a small mass 𝑚 in a background spacetime with metric 𝑔𝛼𝛽 , but eventually boiled it down to
an implementation accurate to first order in 𝑚. Would it not be simpler and more expedient to
formulate the problem directly to first order? The answer is a resounding no: By doing so we
would be driven toward a grave inconsistency; the nonlinear formulation is absolutely necessary if
one wishes to contemplate a self-consistent integration of Eqs. (19.22) and (19.25).

A strictly linearized formulation of the problem would be based on the field equations 𝛿𝐺𝛼𝛽 =
8𝜋𝑇𝛼𝛽 , where 𝑇𝛼𝛽 is the energy-momentum tensor of Eq. (19.21). The Bianchi-like identities

𝛿𝐺𝛼𝛽
;𝛽 = 0 dictate that 𝑇𝛼𝛽 must be conserved in the background spacetime, and a calculation

identical to the one leading to Eq. (19.5) would reveal that the particle’s motion must be geodesic
in the background spacetime. In the strictly linearized formulation, therefore, the gravitational
potentials of Eq. (19.23) must be sourced by a particle moving on a geodesic, and there is no
opportunity for these potentials to exert a self-force. To get the self-force, one must provide
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a formulation that extends beyond linear order. To be sure, one could persist in adopting the
linearized formulation and “save the phenomenon” by relaxing the conservation equation. In
practice this could be done by adopting the solutions of Eq. (19.23), demanding that the motion be

geodesic in the perturbed spacetime, and relaxing the linearized gauge condition to 𝛾𝛼𝛽;𝛽 = 𝑂(𝑚2).
While this prescription would produce the correct answer, it is largely ad hoc and does not come
with a clear justification. Our exact formulation provides much more control, at least in a formal
sense. We shall do even better in Part V.

An alternative formulation of the problem provided by Gralla and Wald [83] avoids the incon-
sistency by refraining from performing a self-consistent integration of Eqs. (19.22) and (19.25).
Instead of an expansion of the acceleration in powers of 𝑚, their approach is based on an expan-
sion of the world line itself, and it returns the equations of motion for a deviation vector which
describes the offset of the true world line relative to a reference geodesic. While this approach
is mathematically sound, it eventually breaks down as the deviation vector becomes large, and it
does not provide a justification of the self-consistent treatment of the equations.

The difference between the Gralla–Wald approach and a self-consistent one is the difference
between a regular expansion and a general one. In a regular expansion, all dependence on a small
quantity 𝑚 is expanded in powers:

ℎ𝛼𝛽(𝑥,𝑚) =
∞∑︁

𝑛=0

𝑚𝑛ℎ
(𝑛)
𝛼𝛽 (𝑥). (19.26)

In a general expansion, on the other hand, the functions ℎ
(𝑛)
𝛼𝛽 are allowed to retain some dependence

on the small quantity:

ℎ𝛼𝛽(𝑥,𝑚) =
∞∑︁

𝑛=0

𝑚𝑛ℎ
(𝑛)
𝛼𝛽 (𝑥,𝑚). (19.27)

Put simply, the goal of a general expansion is to expand only part of a function’s dependence on
a small quantity, while holding fixed some specific dependence that captures one or more of the
function’s essential features. In the self-consistent expansion that we advocate here, our iterative
solution returns

ℎ𝑁𝛼𝛽(𝑥,𝑚) =
𝑁∑︁

𝑛=0

𝑚𝑛ℎ
(𝑛)
𝛼𝛽 (𝑥; 𝛾(𝑚)), (19.28)

in which the functional dependence on the world line 𝛾 incorporates a dependence on the expansion
parameter 𝑚. We deliberately introduce this functional dependence on a mass-dependent world
line in order to maintain a meaningful and accurate description of the particle’s motion. Although
the regular expansion can be retrieved by further expanding the dependence within 𝛾(𝑚), the
reverse statement does not hold: the general expansion cannot be justified on the basis of the
regular one. The notion of a general expansion is at the core of singular perturbation theory [63,
96, 109, 111, 178, 145]. We shall return to these issues in our treatment of asymptotically small
bodies, and in particular, in Section 22.5 below.

Vacuum background spacetime

To conclude this subsection we should explain why it is desirable to restrict our discussion to
spacetimes that contain no matter except for the point particle. Suppose, in contradiction with
this assumption, that the background spacetime contains a distribution of matter around which the
particle is moving. (The corresponding vacuum situation has the particle moving around a black
hole. Notice that we are still assuming that the particle moves in a region of spacetime in which
there is no matter; the issue is whether we can allow for a distribution of matter somewhere else.)
Suppose also that the matter distribution is described by a collection of matter fields Ψ. Then the
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field equations satisfied by the matter have the schematic form 𝐸[Ψ; 𝑔] = 0, and the background
metric is determined by the Einstein field equations 𝐺[𝑔] = 8𝜋𝑀 [Ψ; 𝑔], in which 𝑀 [Ψ; 𝑔] stands
for the matter’s energy-momentum tensor. We now insert the point particle in the spacetime, and
recognize that this displaces the background solution (Ψ, 𝑔) to a new solution (Ψ + 𝛿Ψ, 𝑔 + 𝛿𝑔).
The perturbations are determined by the coupled set of equations 𝐸[Ψ + 𝛿Ψ; 𝑔 + 𝛿𝑔] = 0 and
𝐺[𝑔 + 𝛿𝑔] = 8𝜋𝑀 [Ψ + 𝛿Ψ; 𝑔 + 𝛿𝑔] + 8𝜋𝑇 [𝑔]. After linearization these take the form of

𝐸Ψ · 𝛿Ψ+ 𝐸𝑔 · 𝛿𝑔 = 0, 𝐺𝑔 · 𝛿𝑔 = 8𝜋
(︀
𝑀Ψ · 𝛿Ψ+𝑀𝑔 · 𝛿𝑔 + 𝑇

)︀
,

where 𝐸Ψ, 𝐸𝑔, 𝑀Φ, and 𝑀𝑔 are suitable differential operators acting on the perturbations. This
is a coupled set of partial differential equations for the perturbations 𝛿Ψ and 𝛿𝑔. These equations
are linear, but they are much more difficult to deal with than the single equation for 𝛿𝑔 that was
obtained in the vacuum case. And although it is still possible to solve the coupled set of equations
via a Green’s function technique, the degree of difficulty is such that we will not attempt this here.
We shall, therefore, continue to restrict our attention to the case of a point particle moving in a
vacuum (globally Ricci-flat) background spacetime.

19.2 Retarded potentials near the world line

Going back to Eq. (19.23), we have that the gravitational potentials associated with a point particle
of mass 𝑚 moving on world line 𝛾 are given by

𝛾𝛼𝛽(𝑥) = 4𝑚

∫︁
𝛾

𝐺 𝛼𝛽
+ 𝜇𝜈(𝑥, 𝑧)𝑢

𝜇𝑢𝜈 𝑑𝜏, (19.29)

up to corrections of order 𝑚2; here 𝑧𝜇(𝜏) gives the description of the world line, 𝑢𝜇 = 𝑑𝑧𝜇/𝑑𝜏 is

the velocity vector, and 𝐺 𝛼𝛽
+ 𝛾′𝛿′(𝑥, 𝑥

′) is the retarded Green’s function introduced in Section 16.
Because the retarded Green’s function is defined globally in the entire background spacetime,
Eq. (19.29) describes the gravitational perturbation created by the particle at any point 𝑥 in that
spacetime.

For a more concrete expression we take 𝑥 to be in a neighbourhood of the world line. The
manipulations that follow are very close to those performed in Section 17.2 for the case of a scalar
charge, and in Section 18.2 for the case of an electric charge. Because these manipulations are by
now familiar, it will be sufficient here to present only the main steps. There are two important
simplifications that occur in the case of a massive particle. First, it is clear that

𝑎𝜇 = 𝑂(𝑚) = 𝑎̇𝜇, (19.30)

and we will take the liberty of performing a pre-emptive order-reduction by dropping all terms
involving the acceleration vector when computing 𝛾𝛼𝛽 and 𝛾𝛼𝛽;𝛾 to first order in 𝑚; otherwise we
would arrive at an equation for the acceleration that would include an antidamping term − 11

3 𝑚𝑎̇
𝜇

[92, 93, 150]. Second, because we take 𝑔𝛼𝛽 to be a solution to the vacuum field equations, we are
also allowed to set

𝑅𝜇𝜈(𝑧) = 0 (19.31)

in our computations.
With the understanding that 𝑥 is close to the world line (refer back to Figure 9), we substitute

the Hadamard construction of Eq. (16.7) into Eq. (19.29) and integrate over the portion of 𝛾 that
is contained in 𝒩 (𝑥). The result is

𝛾𝛼𝛽(𝑥) =
4𝑚

𝑟
𝑈𝛼𝛽

𝛾′𝛿′(𝑥, 𝑥
′)𝑢𝛾

′
𝑢𝛿

′
+ 4𝑚

∫︁ 𝑢

𝜏<

𝑉 𝛼𝛽
𝜇𝜈(𝑥, 𝑧)𝑢

𝜇𝑢𝜈 𝑑𝜏 + 4𝑚

∫︁ 𝜏<

−∞
𝐺 𝛼𝛽

+ 𝜇𝜈(𝑥, 𝑧)𝑢
𝜇𝑢𝜈 𝑑𝜏,

(19.32)
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in which primed indices refer to the retarded point 𝑥′ := 𝑧(𝑢) associated with 𝑥, 𝑟 := 𝜎𝛼′𝑢𝛼
′
is the

retarded distance from 𝑥′ to 𝑥, and 𝜏< is the proper time at which 𝛾 enters 𝒩 (𝑥) from the past.

In the following subsections we shall refer to 𝛾𝛼𝛽(𝑥) as the gravitational potentials at 𝑥 produced
by a particle of mass 𝑚 moving on the world line 𝛾, and to 𝛾𝛼𝛽;𝛾(𝑥) as the gravitational field at
𝑥. To compute this is our next task.

19.3 Gravitational field in retarded coordinates

Keeping in mind that 𝑥′ and 𝑥 are related by 𝜎(𝑥, 𝑥′) = 0, a straightforward computation reveals
that the covariant derivatives of the gravitational potentials are given by

𝛾𝛼𝛽;𝛾(𝑥) = −4𝑚

𝑟2
𝑈𝛼𝛽𝛼′𝛽′𝑢𝛼

′
𝑢𝛽

′
𝜕𝛾𝑟 +

4𝑚

𝑟
𝑈𝛼𝛽𝛼′𝛽′;𝛾𝑢

𝛼′
𝑢𝛽

′
+

4𝑚

𝑟
𝑈𝛼𝛽𝛼′𝛽′;𝛾′𝑢𝛼

′
𝑢𝛽

′
𝑢𝛾

′
𝜕𝛾𝑢

+ 4𝑚𝑉𝛼𝛽𝛼′𝛽′𝑢𝛼
′
𝑢𝛽

′
𝜕𝛾𝑢+ 𝛾tail𝛼𝛽𝛾(𝑥), (19.33)

where the “tail integral” is defined by

𝛾tail𝛼𝛽𝛾(𝑥) = 4𝑚

∫︁ 𝑢

𝜏<

∇𝛾𝑉𝛼𝛽𝜇𝜈(𝑥, 𝑧)𝑢
𝜇𝑢𝜈 𝑑𝜏 + 4𝑚

∫︁ 𝜏<

−∞
∇𝛾𝐺+𝛼𝛽𝜇𝜈(𝑥, 𝑧)𝑢

𝜇𝑢𝜈 𝑑𝜏

= 4𝑚

∫︁ 𝑢−

−∞
∇𝛾𝐺+𝛼𝛽𝜇𝜈(𝑥, 𝑧)𝑢

𝜇𝑢𝜈 𝑑𝜏. (19.34)

The second form of the definition, in which the integration is cut short at 𝜏 = 𝑢− := 𝑢 − 0+ to
avoid the singular behaviour of the retarded Green’s function at 𝜎 = 0, is equivalent to the first
form.

We wish to express 𝛾𝛼𝛽;𝛾(𝑥) in the retarded coordinates of Section 10, as an expansion in
powers of 𝑟. For this purpose we decompose the field in the tetrad (𝑒𝛼0 , 𝑒

𝛼
𝑎 ) that is obtained

by parallel transport of (𝑢𝛼
′
, 𝑒𝛼

′

𝑎 ) on the null geodesic that links 𝑥 to 𝑥′; this construction is
detailed in Section 10. We recall from Eq. (10.4) that the parallel propagator can be expressed as
𝑔𝛼

′

𝛼 = 𝑢𝛼
′
𝑒0𝛼 + 𝑒𝛼

′

𝑎 𝑒
𝑎
𝛼. The expansion relies on Eq. (10.29) for 𝜕𝛾𝑢 and Eq. (10.31) for 𝜕𝛾𝑟, both

simplified by setting 𝑎𝑎 = 0. We shall also need

𝑈𝛼𝛽𝛼′𝛽′𝑢𝛼
′
𝑢𝛽

′
= 𝑔𝛼

′

(𝛼𝑔
𝛽′

𝛽)

[︁
𝑢𝛼′𝑢𝛽′ +𝑂(𝑟3)

]︁
, (19.35)

which follows from Eq. (16.13),

𝑈𝛼𝛽𝛼′𝛽′;𝛾𝑢
𝛼′
𝑢𝛽

′
= 𝑔𝛼

′

(𝛼𝑔
𝛽′

𝛽)𝑔
𝛾′

𝛾

[︁
−𝑟
(︀
𝑅𝛼′0𝛾′0 +𝑅𝛼′0𝛾′𝑑Ω

𝑑
)︀
𝑢𝛽′ +𝑂(𝑟2)

]︁
, (19.36)

𝑈𝛼𝛽𝛼′𝛽′;𝛾′𝑢𝛼
′
𝑢𝛽

′
𝑢𝛾

′
= 𝑔𝛼

′

(𝛼𝑔
𝛽′

𝛽)

[︁
𝑟𝑅𝛼′0𝑑0Ω

𝑑𝑢𝛽′ +𝑂(𝑟2)
]︁
, (19.37)

which follow from Eqs. (16.14) and (16.15), respectively, as well as the relation 𝜎𝛼′
= −𝑟(𝑢𝛼′

+
Ω𝑎𝑒𝛼

′

𝑎 ) first encountered in Eq. (10.7). And finally, we shall need

𝑉𝛼𝛽𝛼′𝛽′𝑢𝛼
′
𝑢𝛽

′
= 𝑔𝛼

′

(𝛼𝑔
𝛽′

𝛽)

[︁
𝑅𝛼′0𝛽′0 +𝑂(𝑟)

]︁
, (19.38)

which follows from Eq. (16.17).

Making these substitutions in Eq. (19.3) and projecting against various members of the tetrad
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gives

𝛾000(𝑢, 𝑟,Ω
𝑎) := 𝛾𝛼𝛽;𝛾(𝑥)𝑒

𝛼
0 (𝑥)𝑒

𝛽
0 (𝑥)𝑒

𝛾
0(𝑥) = 2𝑚𝑅𝑎0𝑏0Ω

𝑎Ω𝑏 + 𝛾tail000 +𝑂(𝑟), (19.39)

𝛾0𝑏0(𝑢, 𝑟,Ω
𝑎) := 𝛾𝛼𝛽;𝛾(𝑥)𝑒

𝛼
0 (𝑥)𝑒

𝛽
𝑏 (𝑥)𝑒

𝛾
0(𝑥) = −4𝑚𝑅𝑏0𝑐0Ω

𝑐 + 𝛾tail0𝑏0 +𝑂(𝑟), (19.40)

𝛾𝑎𝑏0(𝑢, 𝑟,Ω
𝑎) := 𝛾𝛼𝛽;𝛾(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
𝑏 (𝑥)𝑒

𝛾
0(𝑥) = 4𝑚𝑅𝑎0𝑏0 + 𝛾tail𝑎𝑏0 +𝑂(𝑟), (19.41)

𝛾00𝑐(𝑢, 𝑟,Ω
𝑎) := 𝛾𝛼𝛽;𝛾(𝑥)𝑒

𝛼
0 (𝑥)𝑒

𝛽
0 (𝑥)𝑒

𝛾
𝑐 (𝑥)

= −4𝑚

[︂(︁ 1

𝑟2
+

1

3
𝑅𝑎0𝑏0Ω

𝑎Ω𝑏
)︁
Ω𝑐 +

1

6
𝑅𝑐0𝑏0Ω

𝑏 − 1

6
𝑅𝑐𝑎0𝑏Ω

𝑎Ω𝑏

]︂
+ 𝛾tail00𝑐 +𝑂(𝑟),(19.42)

𝛾0𝑏𝑐(𝑢, 𝑟,Ω
𝑎) := 𝛾𝛼𝛽;𝛾(𝑥)𝑒

𝛼
0 (𝑥)𝑒

𝛽
𝑏 (𝑥)𝑒

𝛾
𝑐 (𝑥)

= 2𝑚
(︀
𝑅𝑏0𝑐0 +𝑅𝑏0𝑐𝑑Ω

𝑑 +𝑅𝑏0𝑑0Ω
𝑑Ω𝑐

)︀
+ 𝛾tail0𝑏𝑐 +𝑂(𝑟), (19.43)

𝛾𝑎𝑏𝑐(𝑢, 𝑟,Ω
𝑎) := 𝛾𝛼𝛽;𝛾(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
𝑏 (𝑥)𝑒

𝛾
𝑐 (𝑥) = −4𝑚𝑅𝑎0𝑏0Ω𝑐 + 𝛾tail𝑎𝑏𝑐 +𝑂(𝑟), (19.44)

where, for example, 𝑅𝑎0𝑏0(𝑢) := 𝑅𝛼′𝛾′𝛽′𝛿′𝑒
𝛼′

𝑎 𝑢
𝛾′
𝑒𝛽

′

𝑏 𝑢
𝛿′ are frame components of the Riemann tensor

evaluated at 𝑥′ := 𝑧(𝑢). We have also introduced the frame components of the tail part of the
gravitational field, which are obtained from Eq. (19.34) evaluated at 𝑥′ instead of 𝑥; for example,
𝛾tail000 = 𝑢𝛼

′
𝑢𝛽

′
𝑢𝛾

′
𝛾tail𝛼′𝛽′𝛾′(𝑥′). We may note here that while 𝛾00𝑐 is the only component of the

gravitational field that diverges when 𝑟 → 0, the other components are nevertheless singular
because of their dependence on the unit vector Ω𝑎; the only exception is 𝛾𝑎𝑏0, which is regular.

19.4 Gravitational field in Fermi normal coordinates

The translation of the results contained in Eqs. (19.39) – (19.44) into the Fermi normal coordinates
of Section 9 proceeds as in Sections 17.4 and 18.4, but is simplified by setting 𝑎𝑎 = 𝑎̇0 = 𝑎̇𝑎 = 0 in
Eqs. (11.7), (11.8), (11.4), (11.5), and (11.6) that relate the Fermi normal coordinates (𝑡, 𝑠, 𝜔𝑎) to
the retarded coordinates. We recall that the Fermi normal coordinates refer to a point 𝑥̄ := 𝑧(𝑡)
on the world line that is linked to 𝑥 by a spacelike geodesic that intersects 𝛾 orthogonally.

The translated results are

𝛾000(𝑡, 𝑠, 𝜔
𝑎) := 𝛾𝛼𝛽;𝛾(𝑥)𝑒

𝛼
0 (𝑥)𝑒

𝛽
0 (𝑥)𝑒

𝛾
0(𝑥) = 𝛾tail000 +𝑂(𝑠), (19.45)

𝛾0𝑏0(𝑡, 𝑠, 𝜔
𝑎) := 𝛾𝛼𝛽;𝛾(𝑥)𝑒

𝛼
0 (𝑥)𝑒

𝛽
𝑏 (𝑥)𝑒

𝛾
0(𝑥) = −4𝑚𝑅𝑏0𝑐0𝜔

𝑐 + 𝛾tail0𝑏0 +𝑂(𝑠), (19.46)

𝛾𝑎𝑏0(𝑡, 𝑠, 𝜔
𝑎) := 𝛾𝛼𝛽;𝛾(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
𝑏 (𝑥)𝑒

𝛾
0(𝑥) = 4𝑚𝑅𝑎0𝑏0 + 𝛾tail𝑎𝑏0 +𝑂(𝑠), (19.47)

𝛾00𝑐(𝑡, 𝑠, 𝜔
𝑎) := 𝛾𝛼𝛽;𝛾(𝑥)𝑒

𝛼
0 (𝑥)𝑒

𝛽
0 (𝑥)𝑒

𝛾
𝑐 (𝑥)

= −4𝑚

[︂(︁ 1

𝑠2
− 1

6
𝑅𝑎0𝑏0𝜔

𝑎𝜔𝑏
)︁
𝜔𝑐 +

1

3
𝑅𝑐0𝑏0𝜔

𝑏

]︂
+ 𝛾tail00𝑐 +𝑂(𝑠), (19.48)

𝛾0𝑏𝑐(𝑡, 𝑠, 𝜔
𝑎) := 𝛾𝛼𝛽;𝛾(𝑥)𝑒

𝛼
0 (𝑥)𝑒

𝛽
𝑏 (𝑥)𝑒

𝛾
𝑐 (𝑥) = 2𝑚

(︀
𝑅𝑏0𝑐0 +𝑅𝑏0𝑐𝑑𝜔

𝑑
)︀
+ 𝛾tail0𝑏𝑐 +𝑂(𝑠), (19.49)

𝛾𝑎𝑏𝑐(𝑡, 𝑠, 𝜔
𝑎) := 𝛾𝛼𝛽;𝛾(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
𝑏 (𝑥)𝑒

𝛾
𝑐 (𝑥) = −4𝑚𝑅𝑎0𝑏0𝜔𝑐 + 𝛾tail𝑎𝑏𝑐 +𝑂(𝑠), (19.50)

where all frame components are now evaluated at 𝑥̄ instead of 𝑥′.
It is then a simple matter to average these results over a two-surface of constant 𝑡 and 𝑠. Using

the area element of Eq. (17.24) and definitions analogous to those of Eq. (17.25), we obtain

⟨𝛾000⟩ = 𝛾tail000 +𝑂(𝑠), (19.51)

⟨𝛾0𝑏0⟩ = 𝛾tail0𝑏0 +𝑂(𝑠), (19.52)

⟨𝛾𝑎𝑏0⟩ = 4𝑚𝑅𝑎0𝑏0 + 𝛾tail𝑎𝑏0 +𝑂(𝑠), (19.53)

⟨𝛾00𝑐⟩ = 𝛾tail00𝑐 +𝑂(𝑠), (19.54)

⟨𝛾0𝑏𝑐⟩ = 2𝑚𝑅𝑏0𝑐0 + 𝛾tail0𝑏𝑐 +𝑂(𝑠), (19.55)

⟨𝛾𝑎𝑏𝑐⟩ = 𝛾tail𝑎𝑏𝑐 +𝑂(𝑠). (19.56)
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The averaged gravitational field is regular in the limit 𝑠→ 0, in which the tetrad (𝑒𝛼0 , 𝑒
𝛼
𝑎 ) coincides

with (𝑢𝛼̄, 𝑒𝛼̄𝑎 ). Reconstructing the field at 𝑥̄ from its frame components gives

⟨𝛾𝛼̄𝛽;𝛾⟩ = −4𝑚
(︁
𝑢(𝛼̄𝑅𝛽)𝛿𝛾𝜖 +𝑅𝛼̄𝛿𝛽𝜖𝑢𝛾

)︁
𝑢𝛿𝑢𝜖 + 𝛾tail𝛼̄𝛽𝛾 , (19.57)

where the tail term can be copied from Eq. (19.34),

𝛾tail𝛼̄𝛽𝛾(𝑥̄) = 4𝑚

∫︁ 𝑡−

−∞
∇𝛾𝐺+𝛼̄𝛽𝜇𝜈(𝑥̄, 𝑧)𝑢

𝜇𝑢𝜈 𝑑𝜏. (19.58)

The tensors that appear in Eq. (19.57) all refer to the simultaneous point 𝑥̄ := 𝑧(𝑡), which can now
be treated as an arbitrary point on the world line 𝛾.

19.5 Singular and regular fields

The singular gravitational potentials

𝛾𝛼𝛽S (𝑥) = 4𝑚

∫︁
𝛾

𝐺 𝛼𝛽
S 𝜇𝜈(𝑥, 𝑧)𝑢

𝜇𝑢𝜈 𝑑𝜏 (19.59)

are solutions to the wave equation of Eq. (19.22); the singular Green’s function was introduced in
Section 16.5. We will see that the singular field 𝛾S𝛼𝛽;𝛾 reproduces the singular behaviour of the

retarded solution near the world line, and that the difference, 𝛾R𝛼𝛽;𝛾 = 𝛾𝛼𝛽;𝛾 − 𝛾S𝛼𝛽;𝛾 , is smooth on
the world line.

To evaluate the integral of Eq. (19.59) we take 𝑥 to be close to the world line (see Figure 9),
and we invoke Eq. (16.31) as well as the Hadamard construction of Eq. (16.37). This gives

𝛾𝛼𝛽S (𝑥) =
2𝑚

𝑟
𝑈𝛼𝛽

𝛾′𝛿′𝑢
𝛾′
𝑢𝛿

′
+

2𝑚

𝑟adv
𝑈𝛼𝛽

𝛾′′𝛿′′𝑢
𝛾′′
𝑢𝛿

′′ − 2𝑚

∫︁ 𝑣

𝑢

𝑉 𝛼𝛽
𝜇𝜈(𝑥, 𝑧)𝑢

𝜇𝑢𝜈 𝑑𝜏, (19.60)

where primed indices refer to the retarded point 𝑥′ := 𝑧(𝑢), double-primed indices refer to the
advanced point 𝑥′′ := 𝑧(𝑣), and where 𝑟adv := −𝜎𝛼′′𝑢𝛼

′′
is the advanced distance between 𝑥 and

the world line.
Differentiation of Eq. (19.60) yields

𝛾S𝛼𝛽;𝛾(𝑥) = −2𝑚

𝑟2
𝑈𝛼𝛽𝛼′𝛽′𝑢𝛼

′
𝑢𝛽

′
𝜕𝛾𝑟 −

2𝑚

𝑟adv2
𝑈𝛼𝛽𝛼′′𝛽′′𝑢𝛼

′′
𝑢𝛽

′′
𝜕𝛾𝑟adv +

2𝑚

𝑟
𝑈𝛼𝛽𝛼′𝛽′;𝛾𝑢

𝛼′
𝑢𝛽

′

+
2𝑚

𝑟
𝑈𝛼𝛽𝛼′𝛽′;𝛾′𝑢𝛼

′
𝑢𝛽

′
𝑢𝛾

′
𝜕𝛾𝑢+

2𝑚

𝑟adv
𝑈𝛼𝛽𝛼′′𝛽′′;𝛾𝑢

𝛼′′
𝑢𝛽

′′
+

2𝑚

𝑟adv
𝑈𝛼𝛽𝛼′′𝛽′′;𝛾′′𝑢𝛼

′′
𝑢𝛽

′′
𝑢𝛾

′′
𝜕𝛾𝑣

+ 2𝑚𝑉𝛼𝛽𝛼′𝛽′𝑢𝛼
′
𝑢𝛽

′
𝜕𝛾𝑢− 2𝑚𝑉𝛼𝛽𝛼′′𝛽′′𝑢𝛼

′′
𝑢𝛽

′′
𝜕𝛾𝑣 − 2𝑚

∫︁ 𝑣

𝑢

∇𝛾𝑉𝛼𝛽𝜇𝜈(𝑥, 𝑧)𝑢
𝜇𝑢𝜈 𝑑𝜏,(19.61)

and we would like to express this as an expansion in powers of 𝑟. For this we will rely on results
already established in Section 19.3, as well as additional expansions that will involve the advanced
point 𝑥′′. We recall that a relation between retarded and advanced times was worked out in
Eq. (11.12), that an expression for the advanced distance was displayed in Eq. (11.13), and that
Eqs. (11.14) and (11.15) give expansions for 𝜕𝛾𝑣 and 𝜕𝛾𝑟adv, respectively; these results can be
simplified by setting 𝑎𝑎 = 𝑎̇0 = 𝑎̇𝑎 = 0, which is appropriate in this computation.

To derive an expansion for 𝑈𝛼𝛽𝛼′′𝛽′′𝑢𝛼
′′
𝑢𝛽

′′
we follow the general method of Section 11.4 and

introduce the functions 𝑈𝛼𝛽(𝜏) := 𝑈𝛼𝛽𝜇𝜈(𝑥, 𝑧)𝑢
𝜇𝑢𝜈 . We have that

𝑈𝛼𝛽𝛼′′𝛽′′𝑢𝛼
′′
𝑢𝛽

′′
:= 𝑈𝛼𝛽(𝑣) = 𝑈𝛼𝛽(𝑢) + 𝑈̇𝛼𝛽(𝑢)Δ

′ +
1

2
𝑈̈𝛼𝛽(𝑢)Δ

′2 +𝑂
(︀
Δ′3)︀,
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where overdots indicate differentiation with respect to 𝜏 and Δ′ := 𝑣 − 𝑢. The leading term
𝑈𝛼𝛽(𝑢) := 𝑈𝛼𝛽𝛼′𝛽′𝑢𝛼

′
𝑢𝛽

′
was worked out in Eq. (19.35), and the derivatives of 𝑈𝛼𝛽(𝜏) are given

by

𝑈̇𝛼𝛽(𝑢) = 𝑈𝛼𝛽𝛼′𝛽′;𝛾′𝑢𝛼
′
𝑢𝛽

′
𝑢𝛾

′
= 𝑔𝛼

′

(𝛼𝑔
𝛽′

𝛽)

[︁
𝑟𝑅𝛼′0𝑑0Ω

𝑑𝑢𝛽′ +𝑂(𝑟2)
]︁

and
𝑈̈𝛼𝛽(𝑢) = 𝑈𝛼𝛽𝛼′𝛽′;𝛾′𝛿′𝑢

𝛼′
𝑢𝛽

′
𝑢𝛾

′
𝑢𝛿

′
= 𝑂(𝑟),

according to Eqs. (19.37) and (16.15). Combining these results together with Eq. (11.12) for Δ′

gives

𝑈𝛼𝛽𝛼′′𝛽′′𝑢𝛼
′′
𝑢𝛽

′′
= 𝑔𝛼

′

(𝛼𝑔
𝛽′

𝛽)

[︁
𝑢𝛼′𝑢𝛽′ + 2𝑟2𝑅𝛼′0𝑑0Ω

𝑑𝑢𝛽′ +𝑂(𝑟3)
]︁
, (19.62)

which should be compared with Eq. (19.35). It should be emphasized that in Eq. (19.62) and
all equations below, all frame components are evaluated at the retarded point 𝑥′, and not at the
advanced point. The preceding computation gives us also an expansion for

𝑈𝛼𝛽𝛼′′𝛽′′;𝛾′′𝑢𝛼
′
𝑢𝛽

′′
𝑢𝛾

′′
= 𝑈̇𝛼𝛽(𝑢) + 𝑈̈𝛼𝛽(𝑢)Δ

′ +𝑂(Δ′2),

which becomes

𝑈𝛼𝛽𝛼′′𝛽′′;𝛾′′𝑢𝛼
′′
𝑢𝛽

′′
𝑢𝛾

′′
= 𝑔𝛼

′

(𝛼𝑔
𝛽′

𝛽)

[︁
𝑟𝑅𝛼′0𝑑0Ω

𝑑𝑢𝛽′ +𝑂(𝑟2)
]︁
, (19.63)

and which is identical to Eq. (19.37).
We proceed similarly to obtain an expansion for 𝑈𝛼𝛽𝛼′′𝛽′′;𝛾𝑢

𝛼′′
𝑢𝛽

′′
. Here we introduce the func-

tions 𝑈𝛼𝛽𝛾(𝜏) := 𝑈𝛼𝛽𝜇𝜈;𝛾𝑢
𝜇𝑢𝜈 and express 𝑈𝛼𝛽𝛼′′𝛽′′;𝛾𝑢

𝛼′′
𝑢𝛽

′′
as 𝑈𝛼𝛽𝛾(𝑣) = 𝑈𝛼𝛽𝛾(𝑢)+ 𝑈̇𝛼𝛽𝛾(𝑢)Δ

′+

𝑂(Δ′2). The leading term 𝑈𝛼𝛽𝛾(𝑢) := 𝑈𝛼𝛽𝛼′𝛽′;𝛾𝑢
𝛼′
𝑢𝛽

′
was computed in Eq. (19.36), and

𝑈̇𝛼𝛽𝛾(𝑢) = 𝑈𝛼𝛽𝛼′𝛽′;𝛾𝛾′𝑢𝛼
′
𝑢𝛽

′
𝑢𝛾

′
= 𝑔𝛼

′

(𝛼𝑔
𝛽′

𝛽)𝑔
𝛾′

𝛾

[︁
𝑅𝛼′0𝛾′0𝑢𝛽′ +𝑂(𝑟)

]︁
follows from Eq. (16.14). Combining these results together with Eq. (11.12) for Δ′ gives

𝑈𝛼𝛽𝛼′′𝛽′′;𝛾𝑢
𝛼′′
𝑢𝛽

′′
= 𝑔𝛼

′

(𝛼𝑔
𝛽′

𝛽)𝑔
𝛾′

𝛾

[︁
𝑟
(︀
𝑅𝛼′0𝛾′0 −𝑅𝛼′0𝛾′𝑑Ω

𝑑
)︀
𝑢𝛽′ +𝑂(𝑟2)

]︁
, (19.64)

and this should be compared with Eq. (19.36). The last expansion we shall need is

𝑉𝛼𝛽𝛼′′𝛽′′𝑢𝛼
′′
𝑢𝛽

′′
= 𝑔𝛼

′

(𝛼𝑔
𝛽′

𝛽)

[︁
𝑅𝛼′0𝛽′0 +𝑂(𝑟)

]︁
, (19.65)

which is identical to Eq. (19.38).
We obtain the frame components of the singular gravitational field by substituting these ex-

pansions into Eq. (19.61) and projecting against the tetrad (𝑒𝛼0 , 𝑒
𝛼
𝑎 ). After some algebra we arrive

at

𝛾S000(𝑢, 𝑟,Ω
𝑎) := 𝛾S𝛼𝛽;𝛾(𝑥)𝑒

𝛼
0 (𝑥)𝑒

𝛽
0 (𝑥)𝑒

𝛾
0(𝑥) = 2𝑚𝑅𝑎0𝑏0Ω

𝑎Ω𝑏 +𝑂(𝑟), (19.66)

𝛾S0𝑏0(𝑢, 𝑟,Ω
𝑎) := 𝛾S𝛼𝛽;𝛾(𝑥)𝑒

𝛼
0 (𝑥)𝑒

𝛽
𝑏 (𝑥)𝑒

𝛾
0(𝑥) = −4𝑚𝑅𝑏0𝑐0Ω

𝑐 +𝑂(𝑟), (19.67)

𝛾S𝑎𝑏0(𝑢, 𝑟,Ω
𝑎) := 𝛾S𝛼𝛽;𝛾(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
𝑏 (𝑥)𝑒

𝛾
0(𝑥) = 𝑂(𝑟), (19.68)

𝛾S00𝑐(𝑢, 𝑟,Ω
𝑎) := 𝛾S𝛼𝛽;𝛾(𝑥)𝑒

𝛼
0 (𝑥)𝑒

𝛽
0 (𝑥)𝑒

𝛾
𝑐 (𝑥)

= −4𝑚

[︂(︁ 1

𝑟2
+

1

3
𝑅𝑎0𝑏0Ω

𝑎Ω𝑏
)︁
Ω𝑐 +

1

6
𝑅𝑐0𝑏0Ω

𝑏 − 1

6
𝑅𝑐𝑎0𝑏Ω

𝑎Ω𝑏

]︂
+𝑂(𝑟), (19.69)

𝛾S0𝑏𝑐(𝑢, 𝑟,Ω
𝑎) := 𝛾S𝛼𝛽;𝛾(𝑥)𝑒

𝛼
0 (𝑥)𝑒

𝛽
𝑏 (𝑥)𝑒

𝛾
𝑐 (𝑥) = 2𝑚

(︀
𝑅𝑏0𝑐𝑑Ω

𝑑 +𝑅𝑏0𝑑0Ω
𝑑Ω𝑐

)︀
+𝑂(𝑟), (19.70)

𝛾S𝑎𝑏𝑐(𝑢, 𝑟,Ω
𝑎) := 𝛾S𝛼𝛽;𝛾(𝑥)𝑒

𝛼
𝑎 (𝑥)𝑒

𝛽
𝑏 (𝑥)𝑒

𝛾
𝑐 (𝑥) = −4𝑚𝑅𝑎0𝑏0Ω𝑐 +𝑂(𝑟), (19.71)
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in which all frame components are evaluated at the retarded point 𝑥′. Comparison of these ex-
pressions with Eqs. (19.39) – (19.44) reveals identical singularity structures for the retarded and
singular gravitational fields.

The difference between the retarded field of Eqs. (19.39) – (19.44) and the singular field of
Eqs. (19.66) – (19.71) defines the regular gravitational field 𝛾R𝛼𝛽;𝛾 . Its frame components are

𝛾R000 = 𝛾tail000 +𝑂(𝑟), (19.72)

𝛾R0𝑏0 = 𝛾tail0𝑏0 +𝑂(𝑟), (19.73)

𝛾R𝑎𝑏0 = 4𝑚𝑅𝑎0𝑏0 + 𝛾tail𝑎𝑏0 +𝑂(𝑟), (19.74)

𝛾R00𝑐 = 𝛾tail00𝑐 +𝑂(𝑟), (19.75)

𝛾R0𝑏𝑐 = 2𝑚𝑅𝑏0𝑐0 + 𝛾tail0𝑏𝑐 +𝑂(𝑟), (19.76)

𝛾R𝑎𝑏𝑐 = 𝛾tail𝑎𝑏𝑐 +𝑂(𝑟), (19.77)

and we see that 𝛾R𝛼𝛽;𝛾 is regular in the limit 𝑟 → 0. We may therefore evaluate the regular field

directly at 𝑥 = 𝑥′, where the tetrad (𝑒𝛼0 , 𝑒
𝛼
𝑎 ) coincides with (𝑢𝛼

′
, 𝑒𝛼

′

𝑎 ). After reconstructing the
field at 𝑥′ from its frame components, we obtain

𝛾R𝛼′𝛽′;𝛾′(𝑥′) = −4𝑚
(︁
𝑢(𝛼′𝑅𝛽′)𝛿′𝛾′𝜖′ +𝑅𝛼′𝛿′𝛽′𝜖′𝑢𝛾′

)︁
𝑢𝛿

′
𝑢𝜖

′
+ 𝛾tail𝛼′𝛽′𝛾′ , (19.78)

where the tail term can be copied from Eq. (19.34),

𝛾tail𝛼′𝛽′𝛾′(𝑥′) = 4𝑚

∫︁ 𝑢−

−∞
∇𝛾′𝐺+𝛼′𝛽′𝜇𝜈(𝑥

′, 𝑧)𝑢𝜇𝑢𝜈 𝑑𝜏. (19.79)

The tensors that appear in Eq. (19.79) all refer to the retarded point 𝑥′ := 𝑧(𝑢), which can now
be treated as an arbitrary point on the world line 𝛾.

19.6 Equations of motion

The retarded gravitational field 𝛾𝛼𝛽;𝛾 of a point particle is singular on the world line, and this
behaviour makes it difficult to understand how the field is supposed to act on the particle and
influence its motion. The field’s singularity structure was analyzed in Sections 19.3 and 19.4, and
in Section 19.5 it was shown to originate from the singular field 𝛾S𝛼𝛽;𝛾 ; the regular field 𝛾R𝛼𝛽;𝛾 was
then shown to be regular on the world line.

To make sense of the retarded field’s action on the particle we can follow the discussions of
Section 17.6 and 18.6 and postulate that the self gravitational field of the point particle is either
⟨𝛾𝜇𝜈;𝜆⟩, as worked out in Eq. (19.57), or 𝛾R𝜇𝜈;𝜆, as worked out in Eq. (19.78). These regularized
fields are both given by

𝛾reg𝜇𝜈;𝜆 = −4𝑚
(︁
𝑢(𝜇𝑅𝜈)𝜌𝜆𝜉 +𝑅𝜇𝜌𝜈𝜉𝑢𝜆

)︁
𝑢𝜌𝑢𝜉 + 𝛾tail𝜇𝜈𝜆 (19.80)

and

𝛾tail𝜇𝜈𝜆 = 4𝑚

∫︁ 𝜏−

−∞
∇𝜆𝐺+𝜇𝜈𝜇′𝜈′

(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑢𝜇

′
𝑢𝜈

′
𝑑𝜏 ′, (19.81)

in which all tensors are now evaluated at an arbitrary point 𝑧(𝜏) on the world line 𝛾.
The actual gravitational perturbation ℎ𝛼𝛽 is obtained by inverting Eq. (19.10), which leads to

ℎ𝜇𝜈;𝜆 = 𝛾𝜇𝜈;𝛾 − 1
2𝑔𝜇𝜈𝛾

𝜌
𝜌;𝜆. Substituting Eq. (19.80) yields

ℎreg𝜇𝜈;𝜆 = −4𝑚
(︁
𝑢(𝜇𝑅𝜈)𝜌𝜆𝜉 +𝑅𝜇𝜌𝜈𝜉𝑢𝜆

)︁
𝑢𝜌𝑢𝜉 + ℎtail𝜇𝜈𝜆, (19.82)
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where the tail term is given by the trace-reversed counterpart to Eq. (19.81):

ℎtail𝜇𝜈𝜆 = 4𝑚

∫︁ 𝜏−

−∞
∇𝜆

(︂
𝐺+𝜇𝜈𝜇′𝜈′ − 1

2
𝑔𝜇𝜈𝐺

𝜌
+ 𝜌𝜇′𝜈′

)︂(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑢𝜇

′
𝑢𝜈

′
𝑑𝜏 ′. (19.83)

When this regularized field is substituted into Eq. (19.13), we find that the terms that depend on
the Riemann tensor cancel out, and we are left with

𝐷𝑢𝜇

𝑑𝜏
= −1

2

(︀
𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀(︀
2ℎtail𝜈𝜆𝜌 − ℎtail𝜆𝜌𝜈

)︀
𝑢𝜆𝑢𝜌. (19.84)

We see that only the tail term is involved in the final form of the equations of motion. The tail
integral of Eq. (19.83) involves the current position 𝑧(𝜏) of the particle, at which all tensors with
unprimed indices are evaluated, as well as all prior positions 𝑧(𝜏 ′), at which all tensors with primed
indices are evaluated. The tail integral is cut short at 𝜏 ′ = 𝜏− := 𝜏 − 0+ to avoid the singular
behaviour of the retarded Green’s function at coincidence; this limiting procedure was justified at
the beginning of Section 19.3.

Eq. (19.84) was first derived by Yasushi Mino, Misao Sasaki, and Takahiro Tanaka in 1997 [130].
(An incomplete treatment had been given previously by Morette-DeWitt and Ging [133].) An
alternative derivation was then produced, also in 1997, by Theodore C. Quinn and Robert M.
Wald [150]. These equations are now known as the MiSaTaQuWa equations of motion, and other
derivations [83, 144], based on an extended-body approach, will be reviewed below in Part V. It
should be noted that Eq. (19.84) is formally equivalent to the statement that the point particle
moves on a geodesic in a spacetime with metric 𝑔𝛼𝛽 + ℎR𝛼𝛽 , where ℎ

R
𝛼𝛽 is the regular metric per-

turbation obtained by trace-reversal of the potentials 𝛾R𝛼𝛽 := 𝛾𝛼𝛽 − 𝛾S𝛼𝛽 ; this perturbed metric is
regular on the world line, and it is a solution to the vacuum field equations. This elegant inter-
pretation of the MiSaTaQuWa equations was proposed in 2003 by Steven Detweiler and Bernard
F. Whiting [53]. Quinn and Wald [151] have shown that under some conditions, the total work
done by the gravitational self-force is equal to the energy radiated (in gravitational waves) by the
particle.
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Part V: Motion of a Small Body

20 Point-particle limits and matched asymptotic expansions

The expansion presented in the previous section is based on an exact point-particle source. But in
the full, nonlinear theory, no distributional solution would exist for such a source [80]. Although
the expansion nevertheless yields a well-behaved linear approximation, it is ill-behaved beyond that
order, since the second- and higher-order Einstein tensors will contain products of delta functions,
which have no meaning as distributions. It may be possible to overcome this limitation using
more advanced methods such as Colombeau algebras [164], which allow for the multiplication of
distributions, but little work has been done to that end. Instead, the common approach, and the one
we shall pursue here, has been to abandon the fiction of a point particle in favor of considering an
asymptotically small body. As we shall see, we can readily generalize the self-consistent expansion
scheme to this case. Furthermore, we shall find that the results of the previous section are justified
by this approach: at linear order, the metric perturbation due to an asymptotically small body
is precisely that of a point particle moving on a world line with an acceleration given by the
MiSaTaQuWa equation (plus higher-order corrections).

In order for the body to be considered “small”, its mass and size must be much smaller than
all external lengthscales. We denote these external scales collectively as R, which we may define
to be the radius of curvature of the spacetime (were the small body removed from it) in the region
in which we seek an approximation. Given this definition, a typical component of the spacetime’s
Riemann tensor is equal to 1/R2 up to a numerical factor of order unity. Now, we consider a
family of metrics 𝑔𝛼𝛽(𝜀) containing a body whose mass scales as 𝜀 in the limit 𝜀 → 0; that is,
𝜀 ∼ 𝑚/R. If each member of the family is to contain a body of the same type, then the size of
the body must also approach zero with 𝜀. The precise scaling of size with 𝜀 is determined by the
type of body, but it is not generally relevant. What is relevant is the “gravitational size” – the
length scale determining the metric outside the body – and this size always scales linearly with
the mass. If the body is compact, as is a neutron star or a black hole, then its gravitational size
is also its actual linear size. In what remains, we assume that all lengths have been scaled by R,
such that we can write, for example, 𝑚 ≪ 1. Our goal is to determine the metric perturbation
and the equation of motion produced by the body in this limit.

Point-particle limits such as this have been used to derive equations of motion many times in the
past, including in derivations of geodesic motion at leading order [100, 79, 64] and in constructing
post-Newtonian limits [74]. Perhaps the most obvious means of approaching the problem is to first
work nonperturbatively, with a body of arbitrary size, and then take the limit. Using this approach
(though with some restrictions on the body’s size and compactness) and generalized definitions
of momenta, Harte has calculated the self-force in the case of scalar [89] and electromagnetic [90]
charge distributions in fixed backgrounds, following the earlier work of Dixon [57, 58, 59]. However,
while this approach is conceptually compelling, at this stage it applies only to material bodies, not
black holes, and has not yet been presented as part of a systematic expansion of the Einstein
equation. Here, we focus instead on a more general method.

Alternatively, one could take the opposite approach, essentially taking the limit first and then
trying to recover the higher-order effects, by treating the body as an effective point particle at
leading order, with finite size effects introduced as higher-order effective fields, as done by Galley
and Hu [76, 75]. However, while this approach is computationally efficient, allowing one to perform
high-order calculations with (relative) ease, it requires methods such as dimensional regularization
and mass renormalization in order to arrive at meaningful results. Because of these undesirable
requirements, we will not consider it here.

In the approach we review, we make use of the method of matched asymptotic expansions [46,
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47, 102, 103, 174, 130, 129, 2, 142, 49, 74, 170, 83, 82, 144, 145]. Broadly speaking, this method
consists of constructing two different asymptotic expansions, each valid in a specific region, and
combining them to form a global expansion. In the present context, the method begins with two
types of point-particle limits: an outer limit, in which 𝜀 → 0 at fixed coordinate values (we will
slightly modify this in a moment); and an inner limit, in which 𝜀→ 0 at fixed values of 𝑅̃ := 𝑅/𝜀,
where 𝑅 is a measure of radial distance from the body. In the outer limit, the body shrinks toward
zero size as all other distances remain roughly constant; in the inner limit, the small body keeps
a constant size while all other distances blow up toward infinity. Thus, the inner limit serves to
“zoom in” on a small region around the body. The outer limit can be expected to be valid in
regions where 𝑅 ∼ 1, while the inner limit can be expected to be valid in regions where 𝑅̃ ∼ 1 (or
𝑅 ∼ 𝜀), though both of these regions can be extended into larger domains.

More precisely, consider an exact solution g𝛼𝛽 on a manifold ℳ𝜀 with two coordinate systems:
a local coordinate system 𝑋𝛼 = (𝑇,𝑅,Θ𝐴) that is centered (in some approximate sense) on the
small body, and a global coordinate system 𝑥𝛼. For example, in an extreme-mass-ratio inspiral, the
local coordinates might be the Schwarzschild-type coordinates of the small body, and the global
coordinates might be the Boyer–Lindquist coordinates of the supermassive Kerr black hole. In the
outer limit, we expand g𝛼𝛽 for small 𝜀 while holding 𝑥𝛼 fixed. The leading-order solution in this
case is the background metric 𝑔𝛼𝛽 on a manifold ℳ𝐸 ; this is the external spacetime, which contains
no small body. It might, for example, be the spacetime of the supermassive black hole. In the
inner limit, we expand g𝛼𝛽 for small 𝜀 while holding (𝑇, 𝑅̃,Θ𝐴) fixed. The leading-order solution

in this case is the metric 𝑔body𝛼𝛽 on a manifold ℳ𝐼 ; this is the spacetime of the small body if it were
isolated (though it may include slow evolution due to its interaction with the external spacetime –
this will be discussed below). Note that ℳ𝐸 and ℳ𝐼 generically differ: in an extreme-mass-ratio
inspiral, for example, if the small body is a black hole, then ℳ𝐼 will contain a spacelike singularity
in the black hole’s interior, while ℳ𝐸 will be smooth at the “position” where the small black hole
would be. What we are interested in is that “position” – the world line in the smooth external
spacetime ℳ𝐸 that represents the motion of the small body. Note that this world line generically
appears only in the external spacetime, rather than as a curve in the exact spacetime (g𝛼𝛽 ,ℳ𝜀);
in fact, if the small body is a black hole, then obviously no such curve exists.

Determining this world line presents a fundamental problem. In the outer limit, the body
vanishes at 𝜀 = 0, leaving only a remnant, 𝜀-independent curve in ℳ𝐸 . (Outside any small
body, the metric will contain terms such as 𝑚/𝑅, such that in the limit 𝑚 → 0, the limit exists
everywhere except at 𝑅 = 0, which leaves a removable discontinuity in the external spacetime;
the removal of this discontinuity defines the remnant world line of the small body.) But the true
motion of the body will generically be 𝜀-dependent. If we begin with the remnant world line and
correct it with the effects of the self-force, for example, then the corrections must be small: they
are small deviation vectors defined on the remnant world line. Put another way, if we expand g𝛼𝛽
in powers of 𝜀, then all functions in it must similarly be expanded, including any representation of
the motion, and in particular, any representative world line. We would then have a representation
of the form 𝑧𝛼(𝑡, 𝜀) = 𝑧𝛼(0)(𝑡)+ 𝜀𝑧

𝛼
(1)(𝑡)+ . . ., where 𝑧

𝛼
(1)(𝑡) is a vector defined on the remnant curve

described by 𝑧𝛼(0)(𝑡). The remnant curve would be a geodesic, and the small corrections would

incorporate the self-force and finite-size effects [83] (see also [102]). However, because the body
will generically drift away from any such geodesic, the small corrections will generically grow large
with time, leading to the failure of the regular expansion. So we will modify this approach by
performing a self-consistent expansion in the outer limit, following the same scheme as presented
in the point-particle case. Refs. [144, 145, 143] contain far more detailed discussions of these points.

Regardless of whether the self-consistent expansion is used, the success of matched asymptotic
expansions relies on the buffer region defined by 𝜀 ≪ 𝑅 ≪ 1 (see Figure 10). In this region,
both the inner and outer expansions are valid. From the perspective of the outer expansion, this
corresponds to an asymptotically small region around the world line: 𝑅≪ 1. From the perspective
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of the inner expansion, it corresponds to asymptotic spatial infinity: 1/𝑅̃ = 𝜀/𝑅 ≪ 1. Because
both expansions are valid in this region, and because both are expansions of the same exact metric
g𝛼𝛽 and hence must “match,” by working in the buffer region we can use information from the
inner expansion to determine information about the outer expansion (or vice versa). We shall begin
by solving the Einstein equation in the buffer region, using information from the inner expansion
to determine the form of the external metric perturbation therein. In so doing, we shall determine
the acceleration of the small body’s world line. Finally, using the field values in the buffer region,
we shall construct a global solution for the metric perturbation.

In this calculation, the structure of the body is left unspecified. Our only condition is that part
of the buffer region must lie outside the body, because we wish to solve the Einstein field equations
in vacuum. This requires the body to be sufficiently compact. For example, our calculation
would fail for a diffuse body such as our Sun; likewise, it would fail if a body became tidally
disrupted. Although we will detail only the case of an uncharged body, the same techniques
would apply to charged bodies; Gralla et al. [82] have recently performed a similar calculation for
the electromagnetic self-force on an asymptotically small body in a flat background spacetime.
Using very different methods, Futamase et al. [73] have calculated equations of motion for an
asymptotically small charged black hole.

The structure of our discussion is as follows: In Section 21, we present the self-consistent
expansion of the Einstein equation. Next, in Section 22, we solve the equations in the buffer region
up to second order in the outer expansion. Last, in Section 23, we discuss the global solution in
the outer expansion and show that it is that of a point particle at first order. Over the course
of this calculation, we will take the opportunity to incorporate several details that we could have
accounted for in the point-particle case but opted to neglect for simplicity: an explicit expansion of
the acceleration vector that makes the self-consistent expansion properly systematic, and a finite
time domain that accounts for the fact that large errors eventually accumulate if the approximation
is truncated at any finite order. For more formal discussions of matched asymptotic expansions
in general relativity, see Refs. [104, 145]; the latter reference, in particular, discusses the method
as it pertains to the motion of small bodies. For background on the use of matched asymptotic
expansions in applied mathematics, see Refs. [63, 96, 109, 111, 178]; the text by Eckhaus [63]
provides the most rigorous treatment.

internal zone

external zone

Figure 10: A small body, represented by the black disk, is immersed in a background spacetime. The
internal zone is defined by 𝑅 ≪ 1, while the external zone is defined by 𝑅 ≫ 𝜀. Since 𝜀 ≪ 1, there exists
a buffer region defined by 𝜀 ≪ 𝑅 ≪ 1. In the buffer region 𝜀/𝑅 and 𝑅 are both small.
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21 Self-consistent expansion

21.1 Introduction

We wish to represent the motion of the body through the external background spacetime (𝑔𝛼𝛽 ,ℳ𝐸),
rather than through the exact spacetime (g𝛼𝛽 ,ℳ𝜀). In order to achieve this, we begin by surround-
ing the body with a (hollow, three-dimensional) world tube Γ embedded in the buffer region. We
define the tube to be a surface of constant radius 𝑠 = ℛ(𝜀) in Fermi normal coordinates centered
on a world line 𝛾 ⊂ ℳ𝐸 , though the exact definition of the tube is immaterial. Since there exists a
diffeomorphism between ℳ𝐸 and ℳ𝐼 in the buffer region, this defines a tube Γ𝐼 ⊂ ℳ𝐼 . Now, the
problem is the following: what equation of motion must 𝛾 satisfy in order for Γ𝐼 to be “centered”
about the body?

How shall we determine if the body lies at the centre of the tube’s interior? Since the tube is
close to the small body (relative to all external length scales), the metric on the tube is primarily
determined by the small body’s structure. Recall that the buffer region corresponds to an asymp-
totically large spatial distance in the inner expansion. Hence, on the tube, we can construct a
multipole expansion of the body’s field, with the form

∑︀
𝑅−𝑛 (or

∑︀
𝑠−𝑛 – we will assume 𝑠 ∼ 𝑅

in the buffer region). Although alternative definitions could be used, we define the tube to be
centered about the body if the mass dipole moment vanishes in this expansion. Note that this
is the typical approach in general relativity: Whereas in Newtonian mechanics one directly finds
the equation of motion for the centre of mass of a body, in general relativity one typically seeks a
world line about which the mass dipole of the body vanishes (or an equation of motion for the mass
dipole relative to a given nearby world line) [66, 152, 83, 144]. This definition of the world line is
sufficiently general to apply to a black hole. If the body is material, one could instead imagine a
centre-of-mass world line that lies in the interior of the body in the exact spacetime. This world
line would then be the basis of our self-consistent expansion. We use our more general definition
to cover both cases. See Ref. [173] and references therein for discussion of multipole expansions
in general relativity, see Refs. [173, 174] for discussions of mass-centered coordinates in the buffer
region, and see, e.g., Refs. [160, 65] for alternative definitions of centre of mass in general relativity.

As in the point-particle case, in order to determine the equation of motion of the world line,
we consider a family of metrics, now denoted 𝑔𝐸(𝑥, 𝜀; 𝛾), parametrized by 𝛾, such that when 𝛾 is
given by the correct equation of motion for a given value of 𝜀, we have 𝑔𝐸(𝑥, 𝜀; 𝛾(𝜀)) = g(𝑥). The
metric in the outer limit is, thus, taken to be the general expansion

g𝛼𝛽(𝑥, 𝜀) = 𝑔𝐸𝛼𝛽(𝑥, 𝜀; 𝛾) = 𝑔𝛼𝛽(𝑥) + ℎ𝛼𝛽(𝑥, 𝜀; 𝛾), (21.1)

where

ℎ𝛼𝛽(𝑥, 𝜀; 𝛾) =
∞∑︁

𝑛=1

𝜀𝑛ℎ
(𝑛)
𝛼𝛽 (𝑥; 𝛾). (21.2)

In the point-particle case, solving Einstein’s equations determined the equation of motion of the
particle’s world line; in this case, it will determine the world line 𝛾 for which the inner expansion
is mass-centered. In this self-consistent expansion, the perturbations produced by the body are
constructed about a fixed world line determined by the particular value of 𝜀 at which one seeks an
approximation.

In the remainder of this section, we present a sequence of perturbation equations that arise in
this expansion scheme, along with a complementary sequence for the inner expansion.

21.2 Field equations in outer expansion

In the outer expansion, we seek a solution in a vacuum region Ω outside of Γ. We specify Ω ⊂ ℳ𝐸

to be an open set consisting of the future domain of dependence of the spacelike initial-data surface
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Σ, excluding the interior of the world tube Γ. This implies that the future boundary of Ω is a null
surface 𝒥 . Refer to Figure 11 for an illustration. The boundary of the domain is 𝜕Ω := Γ∪𝒥 ∪Σ.
The spatial surface Σ is chosen to intersect Γ at the initial time 𝑡 = 0.

Γ

Σ

J

Figure 11: The spacetime region Ω is bounded by the union of the spacelike surface Σ, the timelike tube
Γ, and the null surface 𝒥 .

Historically, in derivations of the self-force, solutions to the perturbative field equations were
taken to be global in time, with tail integrals extended to negative infinity, as we wrote them in
the preceding sections. But as was first noted in Ref. [144], because the self-force drives long-term,
cumulative changes, any approximation truncated at a given order will be accurate to that order
only for a finite time; and this necessites working in a finite region such as Ω. This is also true
in the case of point charges and masses. For simplicity, we neglected this detail in the preceding
sections, but for completeness, we account for it here.

Field equations

Within this region, we follow the methods presented in the case of a point mass. We begin
by reformulating the Einstein equation such that it can be solved for an arbitrary world line. To
accomplish this, we assume that the Lorenz gauge can be imposed on the whole of ℎ𝛼𝛽 , everywhere
in Ω, such that 𝐿𝜇[ℎ] = 0. Here

𝐿𝜇[ℎ] :=

(︂
𝑔𝛼𝜇𝑔

𝛽𝜈 − 1

2
𝑔𝛼𝛽𝑔 𝜈

𝜇

)︂
∇𝜈ℎ𝛼𝛽 (21.3)

is the Lorenz-gauge operator that was first introduced in Sections 16.1 and 19.1; the condition
𝐿𝜇[ℎ] = 0 is the same statement as ∇𝜈𝛾

𝜇𝜈 = 0, where 𝛾𝜇𝜈 := ℎ𝜇𝜈 − 1
2𝑔𝜇𝜈𝑔

𝛼𝛽ℎ𝛼𝛽 is the “trace-
reversed” metric perturbation. We discuss the validity of this assumption below.

Just as in the case of a point mass, this choice of gauge reduces the vacuum Einstein equation
R𝜇𝜈 = 0 to a weakly nonlinear wave equation that can be expanded and solved at fixed 𝛾. However,
we now seek a solution only in the region Ω, where the energy-momentum tensor vanishes, so the
resulting sequence of wave equations reads

𝐸𝜇𝜈 [ℎ
(1)] = 0, (21.4)

𝐸𝜇𝜈 [ℎ
(2)] = 2𝛿2𝑅𝜇𝜈 [ℎ

(1)], (21.5)

...

where
𝐸𝜇𝜈 [ℎ] :=

(︀
𝑔𝛼𝜇𝑔

𝛽
𝜈∇𝛾∇𝛾 + 2𝑅 𝛼 𝛽

𝜇 𝜈

)︀
ℎ𝛼𝛽 (21.6)
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is the tensorial wave operator that was first introduced in Sections 16.1 and 19.1, and the second-
order Ricci tensor 𝛿2𝑅𝜇𝜈 , which is quadratic in its argument, is shown explicitly in Eq (A.1). More
generally, we can write the 𝑛th-order equation as

𝐸𝜇𝜈

[︀
ℎ(𝑛)

]︀
= 𝑆(𝑛)

𝜇𝜈

[︀
ℎ(1), . . . , ℎ(𝑛−1), 𝛾

]︀
, (21.7)

where the source term 𝑆
(𝑛)
𝜇𝜈 consists of nonlinear terms in the expansion of the Ricci tensor.

Again as in the case of a point particle, we can easily write down formal solutions to the
wave equations, for arbitrary 𝛾. Using the same methods as were used to derive the Kirchoff
representation in Section 16.3, we find

ℎ
(𝑛)
𝛼𝛽 =

1

4𝜋

∮︁
𝜕Ω

(︁
𝐺+

𝛼𝛽
𝛾′𝛿′∇𝜇′ℎ

(𝑛)
𝛾′𝛿′ − ℎ

(𝑛)
𝛾′𝛿′∇𝜇′𝐺+

𝛼𝛽
𝛾′𝛿′
)︁
𝑑𝑆𝜇′

+
1

4𝜋

∫︁
Ω

𝐺+
𝛼𝛽

𝛾′𝛿′𝑆
(𝑛)
𝛾′𝛿′𝑑𝑉

′. (21.8)

Because 𝒥 is a future null surface, the integral over it vanishes. Hence, this formal solution requires
only initial data on Σ and boundary data on Γ. Since Γ lies in the buffer region, the boundary
data on it is determined by information from the inner expansion.

One should note several important properties of these integral representations: First, 𝑥 must
lie in the interior of Ω; an alternative expression must be derived if 𝑥 lies on the boundary [153].
Second, the integral over the boundary is, in each case, a homogeneous solution to the wave
equation, while the integral over the volume is an inhomogeneous solution. Third, if the field at
the boundary satisfies the Lorenz gauge condition, then by virtue of the wave equation, it satisfies
the gauge condition everywhere; hence, imposing the gauge condition to some order in the buffer
region ensures that it is imposed to the same order everywhere.

While the integral representation is satisfied by any solution to the associated wave equation,
it does not provide a solution. That is, one cannot prescribe arbitrary boundary values on Γ and
then arrive at a solution. The reason is that the tube is a timelike boundary, which means that
field data on it can propagate forward in time and interfere with the data at a later time. However,

by applying the wave operator 𝐸𝛼𝛽 onto Eq. (21.8), we see that the integral representation of ℎ
(𝑛)
𝛼𝛽

is guaranteed to satisfy the wave equation at each point 𝑥 ∈ Ω. In other words, the problem
arises not in satisfying the wave equation in a pointwise sense, but in simultaneously satisfying
the boundary conditions. But since the tube is chosen to lie in the buffer region, these boundary
conditions can be supplied by the buffer-region expansion. And as we will discuss in Section 23,
because of the asymptotic smallness of the tube, the pieces of the buffer-region expansion diverging
as 𝑠−𝑛 are sufficient boundary data to fully determine the global solution.

Finally, just as in the point-particle case, in order to split the gauge condition into a set of
exactly solvable equations, we assume that the acceleration of 𝛾 possesses an expansion

𝑎𝜇(𝑡, 𝜀) = 𝑎𝜇(0)(𝑡) + 𝜀𝑎𝜇(1)(𝑡; 𝛾) + . . . . (21.9)

This leads to the set of equations

𝐿(0)
𝜇

[︀
ℎ(1)

]︀
= 0, (21.10)

𝐿(1)
𝜇

[︀
ℎ(1)

]︀
= −𝐿(0)

𝜇

[︀
ℎ(2)

]︀
, (21.11)

...

or, more generally, for 𝑛 > 0,

𝐿(𝑛)
𝜇

[︀
ℎ(1)

]︀
= −

𝑛∑︁
𝑚=1

𝐿(𝑛−𝑚)
𝜇

[︀
ℎ(𝑚+1)

]︀
. (21.12)
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In these expressions, 𝐿
(0)
𝜇 [𝑓 ] is the Lorenz-gauge operator acting on the tensor field 𝑓𝛼𝛽 evaluated

with 𝑎𝜇 = 𝑎𝜇(0), 𝐿
(1)
𝜇 [𝑓 ] consists of the terms in 𝐿𝜇[𝑓 ] that are linear in 𝑎

𝜇
(1), and 𝐿

(𝑛)
𝜇 [𝑓 ] contains the

terms linear in 𝑎(𝑛)𝜇, the combinations 𝑎(𝑛−1)𝜇𝑎(1)𝜈 , and so on. Imposing these gauge conditions
on the solutions to the wave equations will determine the acceleration of the world line. Although
we introduce an expansion of the acceleration vector in order to obtain a systematic sequence
of equations that can be solved exactly, such an expansion also trivially eliminates the need for
order-reduction of the resulting equations of motion, since it automatically leads to equations for
𝑎(1)𝜇 in terms of 𝑎(0)𝜇, 𝑎(2)𝜇 in terms of 𝑎(0)𝜇 and 𝑎(1)𝜇, and so on.

Gauge transformations and the Lorenz condition

The outer expansion is defined not only by holding 𝑥𝛼 fixed, but also by demanding that the mass
dipole of the body vanishes when calculated in coordinates centered on 𝛾. If we perform a gauge
transformation generated by a vector 𝜉(1)𝛼(𝑥; 𝛾), then the mass dipole will no longer vanish in
those coordinates. Hence, a new world line 𝛾′ must be constructed, such that the mass dipole
vanishes when calculated in coordinates centered on that new world line. In other words, in the
outer expansion we have the usual gauge freedom of regular perturbation theory, so long as the
world line is appropriately transformed as well: (ℎ𝛼𝛽 , 𝛾) → (ℎ′𝛼𝛽 , 𝛾

′). The transformation law for
the world line was first derived by Barack and Ori [17]; it was displayed in Eq. (1.49), and it will
be worked out again in Section 22.6.

Using this gauge freedom, we now justify, to some extent, the assumption that the Lorenz
gauge condition can be imposed on the entirety of ℎ𝛼𝛽 . If we begin with the metric in an arbitrary
gauge, then the gauge vectors 𝜀𝜉𝛼(1)[𝛾], 𝜀

2𝜉𝛼(2)[𝛾], etc., induce the transformation

ℎ𝛼𝛽 → ℎ′𝛼𝛽 = ℎ𝛼𝛽 +Δℎ𝛼𝛽

= ℎ𝛼𝛽 + 𝜀$𝜉(1)𝑔𝛼𝛽 + 1
2𝜀

2($𝜉(2) +$2
𝜉(1)

)𝑔𝛼𝛽 + 𝜀2$𝜉(1)ℎ
(1)
𝛼𝛽 +𝑂(𝜀3). (21.13)

If ℎ′𝛼𝛽 is to satisfy the gauge condition 𝐿𝜇[ℎ
′], then 𝜉 must satisfy 𝐿𝜇[Δℎ] = −𝐿𝜇[ℎ]. After a trivial

calculation, this equation becomes∑︁
𝑛>0

𝜀𝑛

𝑛!
�𝜉𝛼(𝑛) = −𝜀𝐿𝛼

[︀
ℎ(1)

]︀
− 𝜀2𝐿𝛼

[︀
ℎ(2)

]︀
− 𝜀2𝐿𝛼

[︀
1
2$

2
𝜉(1)

𝑔 +$𝜉(1)ℎ
(1)
]︀
+𝑂(𝜀3). (21.14)

Solving this equation for arbitrary 𝛾, we equate coefficients of powers of 𝜀, leading to a sequence
of wave equations of the form

�𝜉𝛼(𝑛) =𝑊𝛼
(𝑛), (21.15)

where 𝑊𝛼
(𝑛) is a functional of 𝜉𝛼(1), . . . , 𝜉

𝛼
(𝑛−1) and ℎ

(1)
𝛼𝛽 , . . . , ℎ

(𝑛)
𝛼𝛽 . We seek a solution in the region Ω

described in the preceding section. The formal solution reads

𝜉𝛼(𝑛) = − 1

4𝜋

∫︁
Ω

𝐺𝛼
+𝛼′𝑊𝛼′

(𝑛)𝑑𝑉
′ +

1

4𝜋

∮︁
𝜕Ω

(︁
𝐺𝛼

+𝛾′∇𝜇′𝜉𝛾
′

(𝑛) − 𝜉𝛾
′

(𝑛)∇𝜇′𝐺𝛼
+𝛾′

)︁
𝑑𝑆𝜇′

. (21.16)

From this we see that the Lorenz gauge condition can be adopted to any desired order of accuracy,
given the existence of self-consistent data on a tube Γ of asymptotically small radius. We leave the
question of the data’s existence to future work. This argument was first presented in Ref. [145].

21.3 Field equations in inner expansion

For the inner expansion, we assume the existence of some local polar coordinates 𝑋𝛼 = (𝑇,𝑅,Θ𝐴),
such that the metric can be expanded for 𝜀 → 0 while holding fixed 𝑅̃ := 𝑅/𝜀, Θ𝐴, and 𝑇 ; to
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relate the inner and outer expansions, we assume 𝑅 ∼ 𝑠, but otherwise leave the inner expansion
completely general.

This leads to the ansatz

g𝛼𝛽(𝑇, 𝑅̃,Θ
𝐴, 𝜀) = 𝑔body𝛼𝛽 (𝑇, 𝑅̃,Θ𝐴) +𝐻𝛼𝛽(𝑇, 𝑅̃,Θ

𝐴, 𝜀), (21.17)

where 𝐻𝛼𝛽 at fixed values of (𝑇, 𝑅̃,Θ𝐴) is a perturbation beginning at order 𝜀. This equation
represents an asymptotic expansion along flow lines of constant 𝑅/𝜀 as 𝜀 → 0. It is tensorial

in the usual sense of perturbation theory: the decomposition into 𝑔body𝛼𝛽 and 𝐻𝛼𝛽 is valid in any
coordinates that can be decomposed into 𝜀-independent functions of the scaled coordinates plus
𝑂(𝜀) functions of them. As written, with 𝑔body𝛼𝛽 depending only on the scaled coordinates and
independent of 𝜀, the indices in Eq. (21.17) can be taken to refer to the unscaled coordinates
(𝑇,𝑅,Θ𝐴). However, writing the components in the scaled coordinates will not alter the form of
the expansion, but only introduce an overall rescaling of spatial components due to the spatial
forms transforming as, e.g., 𝑑𝑅 → 𝜀𝑑𝑅̃. For example, if the body is a small Schwarzschild black
hole of ADM mass 𝜀𝑚(𝑇 ), then in scaled Schwarzschild coordinates (𝑇, 𝑅̃,Θ𝐴), 𝑔body𝛼𝛽 (𝑇, 𝑅̃,Θ𝐴) is
given by

𝑑𝑠2 = −(1− 2𝑚(𝑇 )/𝑅̃)𝑑𝑇 2 + (1− 2𝑚(𝑇 )/𝑅̃)−1𝜀2𝑑𝑅̃2 + 𝜀2𝑅̃2(𝑑Θ2 + sinΘ𝑑Φ2). (21.18)

As we would expect from the fact that the inner limit follows the body down as it shrinks, all
points are mapped to the curve 𝑅 = 0 at 𝜀 = 0, such that the metric in the scaled coordinates
naturally becomes one-dimensional at 𝜀 = 0. This singular limit can be made regular by rescaling
time as well, such that 𝑇 = (𝑇 − 𝑇0)/𝜀, and then rescaling the entire metric by a conformal factor
1/𝜀2. In order to arrive at a global-in-time inner expansion, rather than a different expansion at
each time 𝑇0, we forgo this extra step. We do, however, make an equivalent assumption, which
is that the metric 𝑔body𝛼𝛽 and its perturbations are quasistatic (evolving only on timescales ∼ 1).
Both approaches are equivalent to assuming that the exact metric contains no high-frequency
oscillations occurring on the body’s natural timescale ∼ 𝜀. In other words, the body is assumed to
be in equilibrium. If we did not make this assumption, high-frequency oscillations could propagate
throughout the external spacetime, invalidating our external expansion.

Since we are interested in the inner expansion only insofar as it informs the outer expansion,
we shall not seek to explicitly solve the perturbative Einstein equation in the inner expansion. See
Ref. [144] for the forms of the equations and an example of an explicit solution in the case of a
perturbed black hole.

22 General expansion in the buffer region

We now seek the general solution to the equations of the outer expansion in the buffer region. To
perform the expansion, we adopt Fermi coordinates centered about 𝛾 and expand for small 𝑠. In
solving the first-order equations, we will determine 𝑎(0)𝜇; in solving the second-order equations, we
will determine 𝑎(1)𝜇, including the self-force on the body. Although we perform this calculation in
the Lorenz gauge, the choice of gauge is not essential for our purposes here – the essential aspect
is our assumed expansion of the acceleration of the world line 𝛾.

22.1 Metric expansions

The method of matched asymptotic expansions relies on the fact that the inner and outer expansion
agree term by term when re-expanded in the buffer region, where 𝜀≪ 𝑠≪ 1. To illustrate this idea
of matching, consider the forms of the two expansions in the buffer region. The inner expansion
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holds 𝑠 constant (since 𝑅 ∼ 𝑠) while expanding for small 𝜀. But if 𝑠 is replaced with its value

𝑠/𝜀, the inner expansion takes the form g𝛼𝛽 = 𝑔body𝛼𝛽 (𝑠/𝜀) + 𝜀𝐻
(1)
𝛼𝛽 (𝑠/𝜀) + · · · , where each term

has a dependence on 𝜀 that can be expanded in the limit 𝜀 → 0 to arrive at the schematic forms
𝑔body(𝑠/𝜀) = 1⊕𝜀/𝑠⊕𝜀2/𝑠2⊕ . . . and 𝜀𝐻(1)(𝑠/𝜀) = 𝑠⊕𝜀⊕𝜀2/𝑠⊕· · · , where ⊕ signifies “plus terms
of the form” and the expanded quantities can be taken to be components in Fermi coordinates.
Here we have preemptively restricted the form of the expansions, since terms such as 𝑠2/𝜀 must
vanish because they would have no corresponding terms in the outer expansion. Putting these two
expansions together, we arrive at

g(buffer) = 1⊕ 𝜀

𝑠
⊕ 𝑠⊕ 𝜀⊕ · · · . (22.1)

Since this expansion relies on both an expansion at fixed 𝑠 and an expansion at fixed 𝑠, it can be
expected to be accurate if 𝑠≪ 1 and 𝜀≪ 𝑠 – that is, in the buffer region 𝜀≪ 𝑠≪ 1.

On the other hand, the outer expansion holds 𝑠 constant (since 𝑠 is formally of the order of
the global external coordinates) while expanding for small 𝜀, leading to the form g𝛼𝛽 = 𝑔𝛼𝛽(𝑠) +

𝜀ℎ
(1)
𝛼𝛽(𝑠)+ · · · . But very near the world line, each term in this expansion can be expanded for small

𝑠, leading to 𝑔 = 1⊕𝑠⊕𝑠2⊕· · · and 𝜀ℎ(1) = 𝜀/𝑠⊕𝜀⊕𝜀𝑠⊕· · · . (Again, we have restricted this form
because terms such as 𝜀/𝑠2 cannot arise in the inner expansion.) Putting these two expansions
together, we arrive at

g(buffer) = 1⊕ 𝑠⊕ 𝜀

𝑠
⊕ 𝜀 · · · . (22.2)

Since this expansion relies on both an expansion at fixed 𝑠 and an expansion for small 𝑠, it can
be expected to be accurate in the buffer region 𝜀 ≪ 𝑠 ≪ 1. As we can see, the two buffer-region
expansions have an identical form; and because they are expansions of the same exact metric g,
they must agree term by term.

One can make use of this fact by first determining the inner and outer expansions as fully as
possible, then fixing any unknown functions in them by matching them term by term in the buffer
region; this was the route taken in, e.g., Refs. [130, 142, 49, 170]. However, such an approach is
complicated by the subtleties of matching in a diffeomorphism-invariant theory, where the inner
and outer expansions are generically in different coordinate systems. See Ref. [145] for an analysis
of the limitations of this approach as it has typically been implemented. Alternatively, one can
take the opposite approach, working in the buffer region first, constraining the forms of the two
expansions by making use of their matching, then using the buffer-region information to construct
a global solution; this was the route taken in, e.g., Refs. [102, 83, 144]. In general, some mixture
of these two approaches can be taken. Our calculation follows Ref. [144]. The only information we
take from the inner expansion is its general form, which is characterized by the multipole moments
of the body. From this information, we determine the external expansion, and thence the equation
of motion of the world line.

Over the course of our calculation, we will find that the external metric perturbation in the
buffer region is expressed as the sum of two solutions: one that formally diverges at 𝑠 = 0 and is
entirely determined from a combination of (i) the multipole moments of the internal background

metric 𝑔body𝛼𝛽 , (ii) the Riemann tensor of the external background 𝑔𝛼𝛽 , and (iii) the acceleration of
the world line 𝛾; and a second solution that is formally regular at 𝑠 = 0 and depends on the past
history of the body and the initial conditions of the field. At leading order, these two solutions are
identified as the Detweiler–Whiting singular and regular fields ℎS𝛼𝛽 and ℎR𝛼𝛽 , respectively, and the

self-force is determined entirely by ℎR𝛼𝛽 . Along with the self-force, the acceleration of the world
line includes the Papapetrou spin force [138]. This calculation leaves us with the self-force in
terms of the the metric perturbation in the neighbourhood of the body. In Section 23, we use the
local information from the buffer region to construct a global solution for the metric perturbation,
completing the solution of the problem.
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22.2 The form of the expansion

Before proceeding, we define some notation. We use the multi-index notation 𝜔𝐿 := 𝜔𝑖1 · · ·𝜔𝑖ℓ :=
𝜔𝑖1···𝑖ℓ . Angular brackets denote the STF combination of the enclosed indices, and a tensor bearing
a hat is an STF tensor. To accommodate this, we now write the Fermi spatial coordinates as 𝑥𝑎,
instead of 𝑥̂𝑎 as they were written in previous sections. Finally, we define the one-forms 𝑡𝛼 := 𝜕𝛼𝑡
and 𝑥𝑎𝛼 := 𝜕𝛼𝑥

𝑎.

One should note that the coordinate transformation 𝑥𝛼(𝑡, 𝑥𝑎) between Fermi coordinates and
the global coordinates is 𝜀-dependent, since Fermi coordinates are tethered to an 𝜀-dependent
world line. If one were using a regular expansion, then this coordinate transformation would
devolve into a background coordinate transformation to a Fermi coordinate system centered on a
geodesic world line, combined with a gauge transformation to account for the 𝜀-dependence. But in
the self-consistent expansion, the transformation is purely a background transformation, because
the 𝜀-dependence in it is reducible to that of the fixed world line.

Because the dependence on 𝜀 in the coordinate transformation cannot be reduced to a gauge
transformation, in Fermi coordinates the components 𝑔𝛼𝛽 of the background metric become 𝜀-
dependent. This dependence takes the explicit form of factors of the acceleration 𝑎𝜇(𝑡, 𝜀) and its
derivatives, for which we have assumed the expansion 𝑎𝑖(𝑡, 𝜀) = 𝑎(0)𝑖(𝑡)+𝑎(1)𝑖(𝑡; 𝛾)+𝑂(𝜀2). There
is also an implicit dependence on 𝜀 in that the proper time 𝑡 on the world line depends on 𝜀 if
written as a function of the global coordinates; but this dependence can be ignored so long as we
work consistently with Fermi coordinates.

Of course, even in these 𝜀-dependent coordinates, 𝑔𝜇𝜈 remains the background metric of the

outer expansion, and ℎ
(𝑛)
𝜇𝜈 is an exact solution to the wave equation (21.7). At first order we will,

therefore, obtain ℎ
(1)
𝜇𝜈 exactly in Fermi coordinates, for arbitrary 𝑎𝜇. However, for some purposes an

approximate solution of the wave equation may suffice, in which case we may utilize the expansion

of 𝑎𝜇. Substituting that expansion into 𝑔𝜇𝜈 and ℎ
(𝑛)
𝜇𝜈 yields the buffer-region expansions

𝑔𝜇𝜈(𝑡, 𝑥
𝑎; 𝑎𝑖) = 𝑔𝜇𝜈(𝑡, 𝑥

𝑎; 𝑎(0)𝑖) + 𝜀𝑔(1)𝜇𝜈 (𝑡, 𝑥
𝑎; 𝑎(1)𝑖) +𝑂(𝜀2) (22.3)

ℎ(𝑛)𝜇𝜈 (𝑡, 𝑥
𝑎; 𝑎𝑖) = ℎ(𝑛)𝜇𝜈 (𝑡, 𝑥

𝑎; 𝑎(0)𝑖) +𝑂(𝜀), (22.4)

where indices refer to Fermi coordinates, 𝑔
(1)
𝜇𝜈 is linear in 𝑎(1)𝑖 and its derivatives, and for future

compactness of notation we define ℎ
(𝑛)
𝐵𝜇𝜈(𝑡, 𝑥

𝑎) := ℎ
(𝑛)
𝜇𝜈 (𝑡, 𝑥𝑎; 𝑎(0)𝑖), where the subscript ‘B’ stands

for ‘buffer’. In the case that 𝑎(0)𝑖 = 0, these expansions will significantly reduce the complexity of
calculations in the buffer region. For that reason, we shall use them in solving the second-order
wave equation, but we stress that they are simply a means of economizing calculations in Fermi
coordinates; they do not play a fundamental role in the formalism, and one could readily do without
them.

Now, we merely assume that in the buffer region there exists a smooth coordinate transforma-
tion between the local coordinates (𝑇,𝑅,Θ𝐴) and the Fermi coordinates (𝑡, 𝑥𝑎) such that 𝑇 ∼ 𝑡,
𝑅 ∼ 𝑠, and Θ𝐴 ∼ 𝜃𝐴. The buffer region corresponds to asymptotic infinity 𝑠 ≫ 𝜀 (or 𝑠 ≫ 1)
in the internal spacetime. So after re-expressing 𝑠 as 𝑠/𝜀, the internal background metric can be
expanded as

𝑔body𝛼𝛽 (𝑡, 𝑠, 𝜃𝐴) =
∑︁
𝑛≥0

(︁𝜀
𝑠

)︁𝑛
𝑔
body(𝑛)
𝛼𝛽 (𝑡, 𝜃𝐴). (22.5)

As mentioned above, since the outer expansion has no negative powers of 𝜀, we exclude them

from the inner expansion. Furthermore, since 𝑔𝛼𝛽 + ℎ𝛼𝛽 = 𝑔body𝛼𝛽 +𝐻𝛼𝛽 , we must have 𝑔
body(0)
𝛼𝛽 =

𝑔𝛼𝛽(𝑥
𝑎 = 0), since these are the only terms independent of both 𝜀 and 𝑠. Thus, noting that
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𝑔𝛼𝛽(𝑥
𝑎 = 0) = 𝜂𝛼𝛽 := diag(−1, 1, 1, 1), we can write

𝑔body𝛼𝛽 (𝑡, 𝑠, 𝜃𝐴) = 𝜂𝛼𝛽 +
𝜀

𝑠
𝑔
body(1)
𝛼𝛽 (𝑡, 𝜃𝐴) +

(︁𝜀
𝑠

)︁2
𝑔
body(2)
𝐵𝛼𝛽 (𝑡, 𝜃𝐴) +𝑂(𝜀3/𝑠3), (22.6)

implying that the internal background spacetime is asymptotically flat.

We assume that the perturbation 𝐻𝛼𝛽 can be similarly expanded in powers of 𝜀 at fixed 𝑠,

𝐻𝛼𝛽(𝑡, 𝑠, 𝜃
𝐴, 𝜀) = 𝜀𝐻

(1)
𝛼𝛽 (𝑡, 𝑠, 𝜃

𝐴; 𝛾) + 𝜀2𝐻
(2)
𝛼𝛽 (𝑡, 𝑠, 𝜃

𝐴; 𝛾) +𝑂(𝜀3), (22.7)

and that each coefficient can be expanded in powers of 1/𝑠 = 𝜀/𝑠 to yield

𝜀𝐻
(1)
𝛼𝛽 (𝑠) = 𝑠𝐻

(0,1)
𝛼𝛽 + 𝜀𝐻

(1,0)
𝛼𝛽 +

𝜀2

𝑠
𝐻

(2,−1)
𝛼𝛽 +𝑂(𝜀3/𝑠2), (22.8)

𝜀2𝐻
(2)
𝛼𝛽 (𝑠) = 𝑠2𝐻

(0,2)
𝛼𝛽 + 𝜀𝑠𝐻

(1,1)
𝛼𝛽 + 𝜀2𝐻

(2,0)
𝛼𝛽 + 𝜀2 ln 𝑠𝐻

(2,0,ln)
𝛼𝛽 +𝑂(𝜀3/𝑠), (22.9)

𝜀3𝐻
(3)
𝛼𝛽 (𝑠) = 𝑂(𝜀3, 𝜀2𝑠, 𝜀𝑠2, 𝑠3), (22.10)

where 𝐻
(𝑛,𝑚)
𝛼𝛽 , the coefficient of 𝜀𝑛 and 𝑠𝑚, is a function of 𝑡 and 𝜃𝐴 (and potentially a functional

of 𝛾). Again, the form of this expansion is constrained by the fact that no negative powers of 𝜀
can appear in the buffer region. (One might think that terms with negative powers of 𝜀 could be

allowed in the expansion of 𝑔body𝛼𝛽 if they are exactly canceled by terms in the expansion of 𝐻𝛼𝛽 ,
but the differing powers of 𝑠 in the two expansions makes this impossible.) Note that explicit
powers of 𝑠 appear because 𝜀𝑠 = 𝑠. Also note that we allow for a logarithmic term at second order
in 𝜀; this term arises because the retarded time in the internal background includes a logarithmic
correction of the form 𝜀 ln 𝑠 (e.g., 𝑡 − 𝑟 → 𝑡 − 𝑟* in Schwarzschild coordinates). Since we seek
solutions to a wave equation, this correction to the characteristic curves induces a corresponding
correction to the first-order perturbations.

The expansion of 𝐻𝛼𝛽 may or may not hold the acceleration fixed. Regardless of this choice, the
general form of the expansion remains valid: incorporating the expansion of the acceleration would
merely shuffle terms from one coefficient to another. And since the internal metric 𝑔body𝛼𝛽 + 𝐻𝛼𝛽

must equal the external metric 𝑔𝛼𝛽 + ℎ𝛼𝛽 , the general form of the above expansions of 𝑔body𝛼𝛽 and
𝐻𝛼𝛽 completely determines the general form of the external perturbations:

ℎ
(1)
𝛼𝛽 =

1

𝑠
ℎ
(1,−1)
𝛼𝛽 + ℎ

(1,0)
𝛼𝛽 + 𝑠ℎ

(1,1)
𝛼𝛽 +𝑂(𝑠2), (22.11)

ℎ
(2)
𝛼𝛽 =

1

𝑠2
ℎ
(2,−2)
𝛼𝛽 +

1

𝑠
ℎ
(2,−1)
𝛼𝛽 + ℎ

(2,0)
𝛼𝛽 + ln 𝑠 ℎ

(2,0,ln)
𝛼𝛽 +𝑂(𝑠), (22.12)

where each ℎ
(𝑛,𝑚)
𝛼𝛽 depends only on 𝑡 and 𝜃𝐴, along with an implicit functional dependence on 𝛾.

If the internal expansion is performed with 𝑎𝜇 held fixed, then the internal and external quantities

are related order by order: e.g.,
∑︀

𝑚𝐻
(0,𝑚)
𝛼𝛽 = 𝑔𝛼𝛽 , ℎ

(1,−1)
𝛼𝛽 = 𝑔

body(1)
𝛼𝛽 , and ℎ

(1,0)
𝛼𝛽 = 𝐻

(1,0)
𝛼𝛽 . Since

we are not concerned with determining the internal perturbations, the only such relationship of

interest is ℎ
(𝑛,−𝑛)
𝛼𝛽 = 𝑔

body(𝑛)
𝛼𝛽 . This equality tells us that the most divergent, 𝑠−𝑛 piece of the

𝑛th-order perturbation ℎ
(𝑛)
𝛼𝛽 is defined entirely by the 𝑛th-order piece of the internal background

metric 𝑔body𝛼𝛽 , which is the metric of the body if it were isolated.

To obtain a general solution to the Einstein equation, we write each ℎ
(𝑛,𝑚)
𝛼𝛽 as an expansion in
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terms of irreducible symmetric trace-free pieces:

ℎ
(𝑛,𝑚)
𝑡𝑡 =

∑︁
ℓ≥0

𝐴
(𝑛,𝑚)
𝐿 𝜔̂𝐿, (22.13)

ℎ
(𝑛,𝑚)
𝑡𝑎 =

∑︁
ℓ≥0

𝐵̂
(𝑛,𝑚)
𝐿 𝜔̂𝑎

𝐿 +
∑︁
ℓ≥1

[︁
𝐶

(𝑛,𝑚)
𝑎𝐿−1 𝜔̂

𝐿−1 + 𝜖𝑎𝑏
𝑐𝐷̂

(𝑛,𝑚)
𝑐𝐿−1 𝜔̂

𝑏𝐿−1
]︁
, (22.14)

ℎ
(𝑛,𝑚)
𝑎𝑏 = 𝛿𝑎𝑏

∑︁
ℓ≥0

𝐾̂
(𝑛,𝑚)
𝐿 𝜔̂𝐿 +

∑︁
ℓ≥0

𝐸̂
(𝑛,𝑚)
𝐿 𝜔̂𝑎𝑏

𝐿 +
∑︁
ℓ≥1

[︁
𝐹

(𝑛,𝑚)
𝐿−1⟨𝑎𝜔̂𝑏⟩

𝐿−1 + 𝜖𝑐𝑑(𝑎𝜔̂𝑏)𝑐
𝐿−1𝐺̂

(𝑛,𝑚)
𝑑𝐿−1

]︁
+
∑︁
ℓ≥2

[︁
𝐻̂

(𝑛,𝑚)
𝑎𝑏𝐿−2𝜔̂

𝐿−2 + 𝜖𝑐𝑑(𝑎𝐼
(𝑛,𝑚)
𝑏)𝑑𝐿−2𝜔̂𝑐

𝐿−2
]︁
. (22.15)

Here a hat indicates that a tensor is STF with respect to 𝛿𝑎𝑏, angular brackets ⟨⟩ indicate the
STF combination of enclosed indices, parentheses indicate the symmetric combination of enclosed

indices, and symbols such as 𝐴
(𝑛,𝑚)
𝐿 are functions of time (and potentially functionals of 𝛾) and

are STF in all their indices. Each term in this expansion is linearly independent of all the other
terms. All the quantities on the right-hand side are flat-space Cartesian tensors; their indices can
be raised or lowered with 𝛿𝑎𝑏. Refer to Appendix B for more details about this expansion.

Now, since the wave equations (21.4) and (21.5) are covariant, they must still hold in the new
coordinate system, despite the additional 𝜀-dependence. Thus, both equations could be solved for
arbitrary acceleration in the buffer region. However, due to the length of the calculations involved,
we will instead solve the equations

𝐸𝛼𝛽 [ℎ
(1)] = 0, (22.16)

𝐸
(0)
𝛼𝛽 [ℎ

(2)
𝐵 ] = 2𝛿2𝑅

(0)
𝛼𝛽 [ℎ

(1)] +𝑂(𝜀), (22.17)

where 𝐸(0)[𝑓 ] := 𝐸[𝑓 ]
⃒⃒
𝑎=𝑎(0)

and 𝛿2𝑅(0)[𝑓 ] := 𝛿2𝑅[𝑓 ]
⃒⃒
𝑎=𝑎(0)

. In analogy with the notation used for

𝐿
(𝑛)
𝜇 , 𝐸

(1)
𝜇𝜈 [𝑓 ] and 𝛿2𝑅

(1)
𝜇𝜈 [𝑓 ] would be linear in 𝑎𝜇(1), 𝐸

(2)
𝜇𝜈 [𝑓 ] and 𝛿2𝑅

(2)
𝜇𝜈 [𝑓 ] would be linear in 𝑎𝜇(2)

and quadratic in 𝑎𝜇(1), and so on. For a function 𝑓 ∼ 1, 𝐿
(𝑛)
𝜇 [𝑓 ], 𝐸

(𝑛)
𝜇𝜈 [𝑓 ], and 𝛿2𝑅

(𝑛)
𝜇𝜈 [𝑓 ] correspond

to the coefficients of 𝜀𝑛 in expansions in powers of 𝜀. Equation (22.16) is identical to Eq. (21.4).
Equation (22.17) follows directly from substituting Eqs. (22.3) and (22.4) into Eq. (21.5); in the

buffer region, it captures the dominant behaviour of ℎ
(2)
𝛼𝛽 , represented by the approximation ℎ

(2)
𝐵𝛼𝛽 ,

but it does not capture its full dependence on acceleration. If one desired a global second-order
solution, one might need to solve Eq. (21.5), but for our purpose, which is to determine the first-
order acceleration 𝑎𝜇(1), Eq. (22.17) will suffice.

Unlike the wave equations, the gauge conditions (21.10) and (21.11) already incorporate the
expansion of the acceleration. As such, they are unmodified by the replacement of the second-order
wave equation (21.5) with its approximation (22.17). So we can write

𝐿(0)
𝜇

[︀
ℎ(1)

]︀
= 0, (22.18)

𝐿(1)
𝜇

[︀
ℎ(1)

]︀
= −𝐿(0)

𝜇

[︀
ℎ
(2)
𝐵

]︀
, (22.19)

where the first equation is identical to Eq. (21.10), and the second to Eq. (21.11). (The second

identity holds because 𝐿
(0)
𝜇

[︀
ℎ
(2)
𝐵

]︀
= 𝐿

(0)
𝜇

[︀
ℎ(2)

]︀
, since ℎ

(2)
𝐵𝛼𝛽 differs from ℎ

(2)
𝛼𝛽 by 𝑎𝛼(1) and higher

acceleration terms, which are set to zero in 𝐿
(0)
𝜇 .) We remind the reader that while this gauge

choice is important for finding the external perturbations globally, any other choice would suffice
in the buffer region calculation.

In what follows, the reader may safely assume that all calculations are lengthy unless noted
otherwise.
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22.3 First-order solution in the buffer region

In principle, solving the first-order Einstein equation in the buffer region is straightforward. One

need simply substitute the expansion of ℎ
(1)
𝛼𝛽 , given in Eq. (22.11), into the linearized wave equa-

tion (22.16) and the gauge condition (22.18). Equating powers of 𝑠 in the resulting expansions

then yields a sequence of equations that can be solved for successively higher-order terms in ℎ
(1)
𝛼𝛽 .

Solving these equations consists primarily of expressing each quantity in its irreducible STF form,
using the decompositions (B.3) and (B.7); since the terms in this STF decomposition are linearly
independent, we can solve each equation term by term. This calculation is aided by the fact that
∇𝛼 = 𝑥𝑎𝛼𝜕𝑎 + 𝑂(𝑠0), so that, for example, the wave operator 𝐸𝛼𝛽 consists of a flat-space Lapla-
cian 𝜕𝑎𝜕𝑎 plus corrections of order 1/𝑠. Appendix B also lists many useful identities, particularly
𝜕𝑎𝑠 = 𝜔𝑎 := 𝑥𝑎/𝑠, 𝜔𝑎𝜕𝑎𝜔̂

𝐿 = 0, and the fact that 𝜔̂𝐿 is an eigenvector of the flat-space Laplacian:
𝑠2𝜕𝑎𝜕𝑎𝜔̂

𝐿 = −ℓ(ℓ+ 1)𝜔̂𝐿.

Summary of results

Before proceeding with the calculation, which consists mostly of tedious and lengthy algebra, we

summarize the results. The first-order perturbation ℎ
(1)
𝛼𝛽 consists of two pieces, which we will

eventually identify with the Detweiler–Whiting regular and singular fields. In the buffer-region
expansion, the regular field consists entirely of unknowns, which is to be expected since as a free
radiation field, it must be provided by boundary data. Only when we consider the global solution,
in Section 23, will we express it in terms of a tail integral. On the other hand, the singular field
is locally determined, and it is characterized by the body’s monopole moment 𝑚. More precisely,
it is fully determined by the tidal fields of the external background spacetime and the Arnowitt–
Deser–Misner mass of the internal background spacetime 𝑔body𝛼𝛽 . By itself the wave equation does
not restrict the behaviour of this monopole moment, but imposing the gauge condition produces
the evolution equations

𝜕𝑡𝑚 = 0, 𝑎𝑖(0) = 0. (22.20)

Hence, at leading order, the body behaves as a test particle, with constant mass and vanishing
acceleration.

Order (1,–1)

We now proceed to the details of the calculation. We begin with the most divergent term in the
wave equation: the order 1/𝑠3, flat-space Laplacian term

1

𝑠
𝜕𝑐𝜕𝑐ℎ

(1,−1)
𝛼𝛽 = 0. (22.21)

The 𝑡𝑡-component of this equation is

0 = −
∑︁
ℓ≥0

ℓ(ℓ+ 1)𝐴
(1,−1)
𝐿 𝜔̂𝐿, (22.22)

from which we read off that 𝐴(1,−1) is arbitrary and 𝐴
(1,−1)
𝐿 must vanish for all ℓ ≥ 1. The

𝑡𝑎-component is

0 = −
∑︁
ℓ≥0

(ℓ+ 1)(ℓ+ 2)𝐵̂
(1,−1)
𝐿 𝜔̂𝑎

𝐿 −
∑︁
ℓ≥1

ℓ(ℓ− 1)𝐶
(1,−1)
𝑎𝐿−1 𝜔̂

𝐿−1

−
∑︁
ℓ≥1

ℓ(ℓ+ 1)𝜖𝑎𝑏𝑐𝐷̂
(1,−1)
𝑐𝐿−1 𝜔̂𝑏

𝐿−1, (22.23)
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from which we read off that 𝐶
(1,−1)
𝑎 is arbitrary and all other coefficients must vanish. Lastly, the

𝑎𝑏-component is

0 = −𝛿𝑎𝑏
∑︁
ℓ≥0

ℓ(ℓ+ 1)𝐾̂
(1,−1)
𝐿 𝜔̂𝐿 −

∑︁
ℓ≥0

(ℓ+ 2)(ℓ+ 3)𝐸̂
(1,−1)
𝐿 𝜔̂𝑎𝑏

𝐿

−
∑︁
ℓ≥1

ℓ(ℓ+ 1)𝐹
(1,−1)
𝐿−1⟨𝑎 𝜔̂𝑏⟩

𝐿−1 −
∑︁
ℓ≥1

(ℓ+ 1)(ℓ+ 2)𝜖𝑐𝑑(𝑎𝜔̂𝑏)
𝑐𝐿−1𝐺̂

(1,−1)
𝑑𝐿−1

−
∑︁
ℓ≥2

(ℓ− 2)(ℓ− 1)𝐻̂
(1,−1)
𝑎𝑏𝐿−2𝜔̂

𝐿−2 −
∑︁
ℓ≥2

ℓ(ℓ− 1)𝜖𝑐𝑑(𝑎𝐼
(1,−1)
𝑏)𝑑𝐿−2𝜔̂𝑐

𝐿−2, (22.24)

from which we read off that 𝐾̂(1,−1) and 𝐻̂
(1,−1)
𝑎𝑏 are arbitrary and all other coefficients must vanish.

Thus, we find that the wave equation constrains ℎ
(1,−1)
𝛼𝛽 to be

ℎ
(1,−1)
𝛼𝛽 = 𝐴(1,−1)𝑡𝛼𝑡𝛽 + 2𝐶(1,−1)

𝑎 𝑡(𝛽𝑥
𝑎
𝛼) + (𝛿𝑎𝑏𝐾̂

(1,−1) + 𝐻̂
(1,−1)
𝑎𝑏 )𝑥𝑎𝛼𝑥

𝑏
𝛽 . (22.25)

This is further constrained by the most divergent, 1/𝑠2 term in the gauge condition, which reads

− 1

𝑠2
ℎ(1,−1)
𝛼𝑐 𝜔𝑐 +

1

2𝑠2
𝜔𝛼𝜂

𝜇𝜈ℎ(1,−1)
𝜇𝜈 = 0. (22.26)

From the 𝑡-component of this equation, we read off 𝐶
(1,−1)
𝑎 = 0; from the 𝑎-component, 𝐾̂(1,−1) =

𝐴(1,−1) and 𝐻̂
(1,−1)
𝑎𝑏 = 0. Thus, ℎ

(1,−1)
𝛼𝛽 depends only on a single function of time, 𝐴(1,−1). By

the definition of the ADM mass, this function (times 𝜀) must be twice the mass of the internal

background spacetime. Thus, ℎ
(1,−1)
𝛼𝛽 is fully determined to be

ℎ
(1,−1)
𝛼𝛽 = 2𝑚(𝑡)(𝑡𝛼𝑡𝛽 + 𝛿𝑎𝑏𝑥

𝑎
𝛼𝑥

𝑏
𝛽), (22.27)

where 𝑚(𝑡) is defined to be the mass at time 𝑡 divided by the initial mass 𝜀 := 𝑚0. (Because the
mass will be found to be a constant, 𝑚(𝑡) is merely a placeholder; it is identically unity. We could
instead set 𝜀 equal to unity at the end of the calculation, in which case 𝑚 would simply be the
mass at time 𝑡. Obviously, the difference between the two approaches is immaterial.)

Order (1,0)

At the next order, ℎ
(1,0)
𝛼𝛽 , along with the acceleration of the world line and the time-derivative of

the mass, first appears in the Einstein equation. The order 1/𝑠2 term in the wave equation is

𝜕𝑐𝜕𝑐ℎ
(1,0)
𝛼𝛽 = −2𝑚

𝑠2
𝑎𝑐𝜔

𝑐(3𝑡𝛼𝑡𝛽 − 𝛿𝑎𝑏𝑥
𝑎
𝛼𝑥

𝑏
𝛽), (22.28)

where the terms on the right arise from the wave operator acting on 𝑠−1ℎ
(1,−1)
𝛼𝛽 . This equation

constrains ℎ
(1,0)
𝛼𝛽 to be

ℎ
(1,0)
𝑡𝑡 = 𝐴(1,0) + 3𝑚𝑎𝑐𝜔

𝑐,

ℎ
(1,0)
𝑡𝑎 = 𝐶(1,0)

𝑎 ,

ℎ
(1,0)
𝑎𝑏 = 𝛿𝑎𝑏

(︁
𝐾̂(1,0) −𝑚𝑎𝑐𝜔

𝑐
)︁
+ 𝐻̂

(1,0)
𝑎𝑏 .

(22.29)

Substituting this result into the order 1/𝑠 term in the gauge condition, we find

−4

𝑠
𝑡𝛼𝜕𝑡𝑚+

4𝑚

𝑠
𝑎(0)𝑎 𝑥𝑎𝛼 = 0. (22.30)
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Thus, both the leading-order part of the acceleration and the rate of change of the mass of the
body vanish:

𝜕𝑚

𝜕𝑡
= 0 , 𝑎𝑖(0) = 0. (22.31)

Order (1,1)

At the next order, ℎ
(1,1)
𝛼𝛽 , along with squares and derivatives of the acceleration, first appears in

the Einstein equation, and the tidal fields of the external background couple to 𝑠−1ℎ
(1,−1)
𝛼𝛽 . The

order 1/𝑠 term in the wave equation becomes(︂
𝑠𝜕𝑐𝜕𝑐 +

2

𝑠

)︂
ℎ
(1,1)
𝑡𝑡 = −20𝑚

3𝑠
ℰ𝑖𝑗𝜔̂𝑖𝑗 − 3𝑚

𝑠
𝑎⟨𝑖𝑎𝑗⟩𝜔̂

𝑖𝑗 +
8𝑚

𝑠
𝑎𝑖𝑎

𝑖, (22.32)(︂
𝑠𝜕𝑐𝜕𝑐 +

2

𝑠

)︂
ℎ
(1,1)
𝑡𝑎 = −8𝑚

3𝑠
𝜖𝑎𝑖𝑗ℬ𝑗

𝑘𝜔̂
𝑖𝑘 − 4𝑚

𝑠
𝑎̇𝑎, (22.33)(︂

𝑠𝜕𝑐𝜕𝑐 +
2

𝑠

)︂
ℎ
(1,1)
𝑎𝑏 =

20𝑚

9𝑠
𝛿𝑎𝑏ℰ𝑖𝑗𝜔̂𝑖𝑗 − 76𝑚

9𝑠
ℰ𝑎𝑏 −

16𝑚

3𝑠
ℰ 𝑖
⟨𝑎𝜔̂𝑏⟩𝑖 +

8𝑚

𝑠
𝑎⟨𝑎𝑎𝑏⟩

+
𝑚

𝑠
𝛿𝑎𝑏
(︀
8
3𝑎𝑖𝑎

𝑖− 3𝑎⟨𝑖𝑎𝑗⟩𝜔̂
𝑖𝑗
)︀
. (22.34)

From the 𝑡𝑡-component, we read off that 𝐴
(1,1)
𝑖 is arbitrary, 𝐴(1,1) = 4𝑚𝑎𝑖𝑎

𝑖, and 𝐴
(1,1)
𝑖𝑗 = 5

3𝑚ℰ𝑖𝑗 +
3
4𝑚𝑎⟨𝑖𝑎𝑗⟩; from the 𝑡𝑎-component, 𝐵̂(1,1), 𝐶

(1,1)
𝑖𝑗 , and 𝐷̂

(1,1)
𝑖 are arbitrary, 𝐶

(1,1)
𝑖 = −2𝑚𝑎̇𝑖, and

𝐷̂
(1,1)
𝑖𝑗 = 2

3𝑚ℬ𝑖𝑗 ; from the 𝑎𝑏 component, 𝐾̂
(1,1)
𝑖 , 𝐹

(1,1)
𝑖 , 𝐻̂

(1,1)
𝑖𝑗𝑘 , and 𝐼

(1,1)
𝑖𝑗 are arbitrary, and

𝐾̂(1,1) = 4
3𝑚𝑎𝑖𝑎

𝑖, 𝐾̂
(1,1)
𝑖𝑗 = − 5

9𝑚ℰ𝑖𝑗+ 3
4𝑚𝑎⟨𝑖𝑎𝑗⟩, 𝐹

(1,1)
𝑖𝑗 = 4

3𝑚ℰ𝑖𝑗 , and 𝐻̂(1,1)
𝑖𝑗 = − 38

9 𝑚ℰ𝑖𝑗+4𝑚𝑎⟨𝑖𝑎𝑗⟩.

Substituting this into the order 𝑠0 terms in the gauge condition, we find

0 = (𝜔𝑖 + 𝑠𝜕𝑖)ℎ
(1,1)
𝛼𝑖 − 1

2𝜂
𝜇𝜈(𝜔𝑎 − 𝑠𝜕𝑎)ℎ

(1,1)
𝜇𝜈 𝑥𝑎𝛼 − 𝜕𝑡ℎ

(1,0)
𝛼𝑡 − 1

2𝜂
𝜇𝜈𝜕𝑡ℎ

(1,0)
𝜇𝜈 𝑡𝛼

+ 4
3𝑚ℰ𝑖𝑗𝜔̂𝑖𝑗𝜔𝛼 + 2

3𝑚ℰ𝑎𝑖𝜔𝑖𝑥𝑎𝛼, (22.35)

where the equation is to be evaluated at 𝑎𝑖 = 𝑎𝑖(0) = 0. From the 𝑡-component, we read off

𝐵̂(1,1) = 1
6𝜕𝑡

(︁
𝐴(1,0) + 3𝐾̂(1,0)

)︁
. (22.36)

From the 𝑎-component,

𝐹 (1,1)
𝑎 = 3

10

(︁
𝐾̂(1,1)

𝑎 −𝐴(1,1)
𝑎 + 𝜕𝑡𝐶

(1,0)
𝑎

)︁
. (22.37)

It is understood that both these equations hold only when evaluated at 𝑎𝑖 = 0.

Thus, the order 𝑠 component of ℎ
(1)
𝛼𝛽 is

ℎ
(1,1)
𝑡𝑡 = 4𝑚𝑎𝑖𝑎

𝑖 +𝐴
(1,1)
𝑖 𝜔𝑖 + 5

3𝑚ℰ𝑖𝑗𝜔̂𝑖𝑗 + 3
4𝑚𝑎⟨𝑖𝑎𝑗⟩𝜔̂

𝑖𝑗 ,

ℎ
(1,1)
𝑡𝑎 = 𝐵̂(1,1)𝜔𝑎 − 2𝑚𝑎̇𝑎 + 𝐶

(1,1)
𝑎𝑖 𝜔𝑖 + 𝜖𝑎𝑖

𝑗𝐷̂
(1,1)
𝑗 𝜔𝑖 + 2

3𝑚𝜖𝑎𝑖𝑗ℬ
𝑗
𝑘𝜔̂

𝑖𝑘,

ℎ
(1,1)
𝑎𝑏 = 𝛿𝑎𝑏

(︀
4
3𝑚𝑎𝑖𝑎

𝑖 + 𝐾̂
(1,1)
𝑖 𝜔𝑖 − 5

9𝑚ℰ𝑖𝑗𝜔̂𝑖𝑗 + 3
4𝑚𝑎⟨𝑖𝑎𝑗⟩𝜔̂

𝑖𝑗
)︀
+ 4

3𝑚ℰ 𝑖
⟨𝑎𝜔̂𝑏⟩𝑖

− 38
9 𝑚ℰ𝑎𝑏 + 4𝑚𝑎⟨𝑎𝑎𝑏⟩ + 𝐻̂

(1,1)
𝑎𝑏𝑖 𝜔𝑖 + 𝜖 𝑗

𝑖 (𝑎𝐼
(1,1)
𝑏)𝑗 𝜔𝑖 + 𝐹

(1,1)
⟨𝑎 𝜔𝑏⟩.

(22.38)

where 𝐵̂(1,1) and 𝐹
(1,1)
𝑎 are constrained to satisfy Eqs. (22.36) and (22.37).
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First-order solution

To summarize the results of this section, we have ℎ
(1)
𝛼𝛽 = 𝑠−1ℎ

(1,−1)
𝛼𝛽 +ℎ

(1,0)
𝛼𝛽 +𝑠ℎ

(1,1)
𝛼𝛽 +𝑂(𝑠2), where

ℎ
(1,−1)
𝛼𝛽 is given in Eq. (22.27), ℎ

(1,0)
𝛼𝛽 is given in Eq. (22.29), and ℎ

(1,1)
𝛼𝛽 is given in Eq. (22.38).

In addition, we have determined that the ADM mass of the internal background spacetime is
time-independent, and that the acceleration of the body’s world line vanishes at leading order.

22.4 Second-order solution in the buffer region

Though the calculations are much lengthier, solving the second-order Einstein equation in the
buffer region is essentially no different from solving the first. We seek to solve the approximate
wave equation (22.17), along with the gauge condition (22.19), for the second-order perturbation

ℎ
(2)
𝐵𝛼𝛽 := ℎ

(2)
𝛼𝛽

⃒⃒
𝑎=𝑎0

; doing so will also, more importantly, determine the acceleration 𝑎𝜇(1). In this

calculation, the acceleration is set to 𝑎𝑖 = 𝑎𝑖(0) = 0 everywhere except in the left-hand side of the

gauge condition, 𝐿
(1)
𝜇 [ℎ(1)], which is linear in 𝑎𝜇(1).

Summary of results

We first summarize the results. As at first order, the metric perturbation contains a regular, free
radiation field and a singular, bound field; but in addition to these pieces, it also contains terms
sourced by the first-order perturbation. Again, the regular field requires boundary data to be fully
determined. And again, the singular field is characterized by the multipole moments of the body:
the mass dipole𝑀𝑖 of the internal background metric 𝑔body𝛼𝛽 , which measures the shift of the body’s

centre of mass relative to the world line; the spin dipole 𝑆𝑖 of 𝑔
body
𝛼𝛽 , which measures the spin of the

body about the world line; and an effective correction 𝛿𝑚 to the body’s mass. The wave equation
by itself imposes no restriction on these quantities, but by imposing the gauge condition we find
the evolution equations

𝜕𝑡𝛿𝑚 =
𝑚

3
𝜕𝑡𝐴

(1,0) +
5𝑚

6
𝜕𝑡𝐾̂

(1,0), (22.39)

𝜕𝑡𝑆𝑎 = 0, (22.40)

𝜕2𝑡𝑀𝑎 + ℰ𝑎𝑏𝑀 𝑏 = −𝑎(1)𝑎 + 1
2𝐴

(1,1)
𝑎 − 𝜕𝑡𝐶

(1,0)
𝑎 − 1

𝑚𝑆𝑖ℬ𝑖
𝑎. (22.41)

The first of these tells us that the free radiation field created by the body creates a time-varying
shift in the body’s mass. We can immediately integrate it to find

𝛿𝑚(𝑡) = 𝛿𝑚(0) + 1
6𝑚
[︁
2𝐴(1,0)(𝑡) + 5𝐾̂(1,0)(𝑡)

]︁
− 1

6𝑚
[︁
2𝐴(1,0)(0) + 5𝐾̂(1,0)(0)

]︁
. (22.42)

We note that this mass correction is entirely gauge dependent; it could be removed by redefining
the time coordinate on the world line. In addition, one could choose to incorporate 𝛿𝑚(0) into
the leading-order mass 𝑚. The second of the equations tells us that the body’s spin is constant at
this order; at higher orders, time-dependent corrections to the spin dipole would arise. The last
of the equations is the principal result of this section. It tells us that the relationship between the
acceleration of the world line and the drift of the body away from it is governed by (i) the local
curvature of the background spacetime, as characterized by ℰ𝑎𝑏 – this is the same term that appears
in the geodesic deviation equation – (ii) the coupling of the body’s spin to the local curvature –
this is the Papapetrou spin force [138] – and (iii) the free radiation field created by the body – this
is the self-force. We identify the world line as the body’s by the condition 𝑀𝑖 = 0. If we start with
initial conditions 𝑀𝑖(0) = 0 = 𝜕𝑡𝑀𝑖(0), then the mass dipole remains zero for all times if and only
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if the world line satisfies the equation

𝑎(1)𝑎 = 1
2𝐴

(1,1)
𝑎 − 𝜕𝑡𝐶

(1,0)
𝑎 − 1

𝑚
𝑆𝑖ℬ𝑖

𝑎. (22.43)

This is the equation of motion we sought. It, along with the more general equation containing 𝑀𝑖,
will be discussed further in the following section.

Order (2,–2)

We now proceed to the details of the calculation. Substituting the expansion

ℎ
(2)
𝛼𝛽 =

1

𝑠2
ℎ
(2,−2)
𝐵𝛼𝛽 +

1

𝑠
ℎ
(2,−1)
𝐵𝛼𝛽 + ℎ

(2,0)
𝐵𝛼𝛽 + ln(𝑠)ℎ

(2,0,ln)
𝐵𝛼𝛽 +𝑂(𝜀, 𝑠) (22.44)

and the results for ℎ
(1)
𝛼𝛽 from the previous section into the wave equation and the gauge condition

again yields a sequence of equations that can be solved for coefficients of successively higher-order
powers (and logarithms) of 𝑠. Due to its length, the expansion of the second-order Ricci tensor is
given in Appendix A. Note that since the approximate wave equation (22.17) contains an explicit

𝑂(𝜀) correction, ℎ
(2)
𝛼𝛽 will be determined only up to 𝑂(𝜀) corrections. For simplicity, we omit these

𝑂(𝜀) symbols from the equations in this section; note, however, that these corrections do not effect
the gauge condition, as discussed above.

To begin, the most divergent, order 1/𝑠4 term in the wave equation reads

1

𝑠4
(︀
2 + 𝑠2𝜕𝑐𝜕𝑐

)︀
ℎ
(2,−2)
𝐵𝛼𝛽 =

4𝑚2

𝑠4
(︀
7𝜔̂𝑎𝑏 +

4
3𝛿𝑎𝑏

)︀
𝑥𝑎𝛼𝑥

𝑏
𝛽 − 4𝑚2

𝑠4
𝑡𝛼𝑡𝛽 , (22.45)

where the right-hand side is the most divergent part of the second-order Ricci tensor, as given
in Eq. (A.3). From the 𝑡𝑡-component of this equation, we read off 𝐴(2,−2) = −2𝑚2 and that

𝐴
(2,−2)
𝑎 is arbitrary. From the 𝑡𝑎-component, 𝐵̂(2,−2), 𝐶

(2,−2)
𝑎𝑏 , and 𝐷̂

(2,−2)
𝑐 are arbitrary. From the

𝑎𝑏-component, 𝐾̂(2,−2) = 8
3𝑚

2, 𝐸̂(2,−2) = −7𝑚2, and 𝐾̂
(2,−2)
𝑎 , 𝐹

(2,−2)
𝑎 , 𝐻̂

(2,−2)
𝑎𝑏𝑐 , and 𝐼

(2,−2)
𝑎𝑏 are

arbitrary.

The most divergent, order 1/𝑠3 terms in the gauge condition similarly involve only ℎ
(2,−2)
𝛼𝛽 ; they

read
1

𝑠3
(︀
𝑠𝜕𝑏 − 2𝜔𝑏

)︀
ℎ
(2,−2)
𝐵𝛼𝑏 − 1

2𝑠3
𝜂𝜇𝜈𝑥𝑎𝛼 (𝑠𝜕𝑎 − 2𝜔𝑎)ℎ

(2,−2)
𝐵𝜇𝜈 = 0. (22.46)

After substituting the results from the wave equation, the 𝑡-component of this equation determines

that 𝐶
(2,−2)
𝑎𝑏 = 0. The 𝑎-component determines that 𝐻̂

(2,−2)
𝑎𝑏𝑐 = 0, 𝐼

(2,−2)
𝑎𝑏 = 0, and

𝐹 (2,−2)
𝑎 = 3𝐾̂(2,−2)

𝑎 − 3𝐴(2,−2)
𝑎 . (22.47)

Thus, the order 1/𝑠2 part of ℎ
(2)
𝛼𝛽 is given by

ℎ
(2,−2)
𝐵𝑡𝑡 = −2𝑚2 +𝐴

(2,−2)
𝑖 𝜔𝑖,

ℎ
(2,−2)
𝐵𝑡𝑎 = 𝐵̂(2,−2)𝜔𝑎 + 𝜖𝑎

𝑖𝑗𝜔𝑖𝐷̂
(2,−2)
𝑗 ,

ℎ
(2,−2)
𝐵𝑎𝑏 = 𝛿𝑎𝑏

(︁
8
3𝑚

2 + 𝐾̂
(2,−2)
𝑖 𝜔𝑖

)︁
− 7𝑚2𝜔̂𝑎𝑏 + 𝐹

(2,−2)
⟨𝑎 𝜔𝑏⟩,

(22.48)

where 𝐹
(2,−2)
𝑎 is given by Eq. (22.47).

The metric perturbation in this form depends on five free functions of time. However, from
calculations in flat spacetime, we know that order 𝜀2/𝑠2 terms in the metric perturbation can
be written in terms of two free functions: a mass dipole and a spin dipole. We transform the
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perturbation into this “canonical” form by performing a gauge transformation (cf. Ref. [45]). The

transformation is generated by 𝜉𝛼 = − 1
𝑠 𝐵̂

(2,−2)𝑡𝛼 − 1
2𝑠𝐹

(2,−2)
𝑎 𝑥𝑎𝛼, the effect of which is to remove

𝐵̂(2,−2) and 𝐹
(2,−2)
𝑎 from the metric. This transformation is a refinement of the Lorenz gauge.

(Effects at higher order in 𝜀 and 𝑠 will be automatically incorporated into the higher-order pertur-

bations.) The condition 𝐹
(2,−2)
𝑎 − 3𝐾̂

(2,−2)
𝑎 + 3𝐴

(2,−2)
𝑎 = 0 then becomes 𝐾̂

(2,−2)
𝑎 = 𝐴

(2,−2)
𝑎 . The

remaining two functions are related to the ADM momenta of the internal spacetime:

𝐴
(2,−2)
𝑖 = 2𝑀𝑖 , 𝐷̂

(2,−2)
𝑖 = 2𝑆𝑖, (22.49)

where𝑀𝑖 is such that 𝜕𝑡𝑀𝑖 is proportional to the ADM linear momentum of the internal spacetime,
and 𝑆𝑖 is the ADM angular momentum. 𝑀𝑖 is a mass dipole term; it is what would result from a

transformation 𝑥𝑎 → 𝑥𝑎 +𝑀𝑎/𝑚 applied to the 1/𝑠 term in ℎ
(1)
𝛼𝛽 . 𝑆𝑖 is a spin dipole term. Thus,

the order 1/𝑠2 part of ℎ
(2)
𝐵𝛼𝛽 reads

ℎ
(2,−2)
𝐵𝑡𝑡 = −2𝑚2 + 2𝑀𝑖𝜔

𝑖,

ℎ
(2,−2)
𝐵𝑡𝑎 = 2𝜖𝑎𝑖𝑗𝜔

𝑖𝑆𝑗 ,

ℎ
(2,−2)
𝐵𝑎𝑏 = 𝛿𝑎𝑏

(︀
8
3𝑚

2 + 2𝑀𝑖𝜔
𝑖
)︀
− 7𝑚2𝜔̂𝑎𝑏.

(22.50)

Order (2,–1)

At the next order, 1/𝑠3, because the acceleration is set to zero, ℎ
(2,−2)
𝐵𝛼𝛽 does not contribute to

𝐸
(0)
𝜇𝜈 [ℎ(2)], and ℎ

(1,−1)
𝐵𝛼𝛽 does not contribute to 𝛿2𝑅

(0)
𝜇𝜈 [ℎ(1)]. The wave equation hence reads

1

𝑠
𝜕𝑐𝜕𝑐ℎ

(2,−1)
𝐵𝛼𝛽 =

2

𝑠3
𝛿2𝑅

(0,−3)
𝛼𝛽

[︁
ℎ(1)

]︁
, (22.51)

where 𝛿2𝑅
(0,−3)
𝛼𝛽

[︀
ℎ(1)

]︀
is given in Eqs. (A.4)–(A.6). The 𝑡𝑡-component of this equation implies

𝑠2𝜕𝑐𝜕𝑐ℎ
(2,−1)
𝐵𝑡𝑡 = 6𝑚𝐻̂

(1,0)
𝑖𝑗 𝜔̂𝑖𝑗 , from which we read off that 𝐴(2,−1) is arbitrary and 𝐴

(2,−1)
𝑖𝑗 =

−𝑚𝐻̂(1,0)
𝑖𝑗 . The 𝑡𝑎-component implies 𝑠2𝜕𝑐𝜕𝑐ℎ

(2,−1)
𝐵𝑡𝑎 = 6𝑚𝐶

(1,0)
𝑖 𝜔̂𝑖

𝑎, from which we read off 𝐵̂
(2,−1)
𝑖 =

−𝑚𝐶(1,0)
𝑖 and that 𝐶

(2,−1)
𝑎 is arbitrary. The 𝑎𝑏-component implies

𝑠2𝜕𝑐𝜕𝑐ℎ
(2,−1)
𝐵𝑎𝑏 = 6𝑚

(︁
𝐴(1,0) + 𝐾̂(1,0)

)︁
𝜔̂𝑎𝑏 − 12𝑚𝐻̂

(1,0)
𝑖⟨𝑎 𝜔̂𝑏⟩

𝑖 + 2𝑚𝛿𝑎𝑏𝐻̂
(1,0)
𝑖𝑗 𝜔̂𝑖𝑗 , (22.52)

from which we read off that 𝐾̂(2,−1) is arbitrary, 𝐾̂
(2,−1)
𝑖𝑗 = − 1

3𝑚𝐻̂
(1,0)
𝑖𝑗 , 𝐸̂(2,−1) = −𝑚𝐴(1,0) −

𝑚𝐾̂(1,0), 𝐹
(2,−1)
𝑎𝑏 = 2𝑚𝐻̂

(1,0)
𝑎𝑏 , and 𝐻̂

(2,−1)
𝑎𝑏 is arbitrary. This restricts ℎ

(2,−1)
𝛼𝛽 to the form

ℎ
(2,−1)
𝐵𝑡𝑡 = 𝐴(2,−1) −𝑚𝐻̂

(1,0)
𝑖𝑗 𝜔̂𝑖𝑗 ,

ℎ
(2,−1)
𝐵𝑡𝑎 = −𝑚𝐶(1,0)

𝑖 𝜔̂𝑖
𝑎 + 𝐶(2,−1)

𝑎 ,

ℎ
(2,−1)
𝐵𝑎𝑏 = 𝛿𝑎𝑏

(︁
𝐾̂(2,−1) − 1

3𝑚𝐻̂
(1,0)
𝑖𝑗 𝜔̂𝑖𝑗

)︁
−𝑚

(︁
𝐴(1,0) + 𝐾̂(1,0)

)︁
𝜔̂𝑎𝑏 + 2𝑚𝐻̂

(1,0)
𝑖⟨𝑎 𝜔̂𝑏⟩

𝑖 + 𝐻̂
(2,−1)
𝑎𝑏 .

(22.53)

We next substitute ℎ
(2,−2)
𝐵𝛼𝛽 and ℎ

(2,−1)
𝐵𝛼𝛽 into the order 1/𝑠2 terms in the gauge condition. The

𝑡-component becomes
1

𝑠2

(︁
4𝑚𝐶

(1,0)
𝑖 + 12𝜕𝑡𝑀𝑖 + 3𝐶

(2,−1)
𝑖

)︁
𝜔𝑖 = 0, (22.54)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7

http://www.livingreviews.org/lrr-2011-7


The Motion of Point Particles in Curved Spacetime 153

from which we read off

𝐶
(2,−1)
𝑖 = −4𝜕𝑡𝑀𝑖 − 4

3𝑚𝐶
(1,0)
𝑖 . (22.55)

And the 𝑎-component becomes

0 =
(︁
− 4

3𝑚𝐴
(1,0) − 4

3𝑚𝐾̂
(1,0) − 1

2𝐴
(2,−1) + 1

2𝐾̂
(2,−1)

)︁
𝜔𝑎 +

(︁
2
3𝑚𝐻̂

(1,0)
𝑎𝑖 − 𝐻̂

(2,−1)
𝑎𝑖

)︁
𝜔𝑖

−2𝜖𝑖𝑗𝑎𝜔
𝑖𝜕𝑡𝑆

𝑗 , (22.56)

from which we read off

𝐴(2,−1) = 𝐾̂(2,−1) − 8
3𝑚
(︁
𝐴(1,0) + 𝐾̂(1,0)

)︁
, (22.57)

𝐻̂
(2,−1)
𝑖𝑗 = 2

3𝑚𝐻̂
(1,0)
𝑖𝑗 , (22.58)

and that the angular momentum of the internal background is constant at leading order:

𝜕𝑡𝑆
𝑖 = 0. (22.59)

Thus, the order 1/𝑠 term in ℎ
(2)
𝐵𝛼𝛽 is given by

ℎ
(2,−1)
𝐵𝑡𝑡 = 𝐾̂(2,−1) − 8

3𝑚
(︁
𝐴(1,0) + 𝐾̂(1,0)

)︁
−𝑚𝐻̂

(1,0)
𝑖𝑗 𝜔̂𝑖𝑗 ,

ℎ
(2,−1)
𝐵𝑡𝑎 = −𝑚𝐶(1,0)

𝑖 𝜔̂𝑖
𝑎 − 4𝜕𝑡𝑀𝑖 − 4

3𝑚𝐶
(2,−1)
𝑖 ,

ℎ
(2,−1)
𝐵𝑎𝑏 = 𝛿𝑎𝑏

(︁
𝐾̂(2,−1) − 1

3𝑚𝐻̂
(1,0)
𝑖𝑗 𝜔̂𝑖𝑗

)︁
−𝑚

(︁
𝐴(1,0) + 𝐾̂(1,0)

)︁
𝜔̂𝑎𝑏 + 2𝑚𝐻̂

(1,0)
𝑖⟨𝑎 𝜔̂𝑏⟩

𝑖 + 2
3𝑚𝐻̂

(1,0)
𝑎𝑏 .

(22.60)

Note that the undetermined function 𝐾̂(2,−1) appears in precisely the form of a mass monopole.
The value of this function will never be determined (though its time-dependence will be). This
ambiguity arises because the mass 𝑚 that we have defined is the mass of the internal background
spacetime, which is based on the inner limit that holds 𝜀/𝑅 fixed. A term of the form 𝜀2/𝑅 appears
as a perturbation of this background, even when, as in this case, it is part of the mass monopole of
the body. This is equivalent to the ambiguity in any expansion in one’s choice of small parameter:
one could expand in powers of 𝜀, or one could expand in powers of 𝜀 + 𝜀2, and so on. It is also
equivalent to the ambiguity in defining the mass of a non-isolated body; whether the “mass” of
the body is taken to be 𝑚 or 𝑚 + 1

2𝐾̂
(2,−1) is a matter of taste. As we shall discover, the time-

dependent part of 𝐾̂(2,−1) is constructed from the tail terms in the first-order metric perturbation.
Hence, the ambiguity in the definition of the mass is, at least in part, equivalent to whether or
not one chooses to include the free gravitational field induced by the body in what one calls its
mass. (In fact, any order 𝜀 incoming radiation, not just that originally produced by the body,
will contribute to this effective mass.) In any case, we will define the “correction” to the mass as
𝛿𝑚 := 1

2𝐾̂
(2,−1).

Order (2,0,ln)

We next move to the order ln(𝑠)/𝑠2 terms in the wave equation, and the order ln(𝑠)/𝑠 terms in
the gauge condition, which read

ln 𝑠𝜕𝑐𝜕𝑐ℎ
(2,0,ln)
𝐵𝛼𝛽 = 0, (22.61)

ln 𝑠
(︁
𝜕𝑏ℎ

(2,0,ln)
𝐵𝛼𝑏 − 1

2𝜂
𝜇𝜈𝑥𝑎𝛼𝜕𝑎ℎ

(2,0,ln)
𝐵𝜇𝜈

)︁
= 0. (22.62)
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From this we determine

ℎ
(2,0,ln)
𝐵𝛼𝛽 = 𝐴(2,0,ln)𝑡𝛼𝑡𝛽 + 2𝐶(2,0,ln)

𝑎 𝑡(𝛽𝑥
𝑎
𝛼) + (𝛿𝑎𝑏𝐾̂

(2,0,ln) + 𝐻̂
(2,0,ln)
𝑎𝑏 )𝑥𝑎𝛼𝑥

𝑏
𝛽 . (22.63)

Finally, we arrive at the order 1/𝑠2 terms in the wave equation. At this order, the body’s tidal
moments become coupled to those of the external background. The equation reads

𝜕𝑐𝜕𝑐ℎ
(2,0)
𝐵𝛼𝛽 +

1

𝑠2

(︁
ℎ
(2,0,ln)
𝐵𝛼𝛽 + 𝐸̃𝛼𝛽

)︁
=

2

𝑠2
𝛿2𝑅

(0,−2)
𝛼𝛽

[︁
ℎ
(1)
𝐵

]︁
, (22.64)

where 𝐸̃𝛼𝛽 comprises the contributions from ℎ
(2,−2)
𝐵𝛼𝛽 and ℎ

(2,−1)
𝐵𝛼𝛽 , given in Eqs. (A.10), (A.15), and

(A.21). The contribution from the second-order Ricci tensor is given in Eqs. (A.7) – (A.9).
Foregoing the details, after some algebra we can read off the solution

ℎ
(2,0)
𝐵𝑡𝑡 = 𝐴(2,0) +𝐴

(2,0)
𝑖 𝜔𝑖 +𝐴

(2,0)
𝑖𝑗 𝜔̂𝑖𝑗 +𝐴

(2,0)
𝑖𝑗𝑘 𝜔̂𝑖𝑗𝑘 (22.65)

ℎ
(2,0)
𝐵𝑡𝑎 = 𝐵̂(2,0)𝜔𝑎 + 𝐵̂

(2,0)
𝑖𝑗 𝜔̂𝑎

𝑖𝑗 + 𝐶(2,0)
𝑎 + 𝐶

(2,0)
𝑎𝑖 𝜔̂𝑎

𝑖 + 𝜖𝑎
𝑏𝑐
(︁
𝐷̂(2,0)

𝑐 𝜔𝑏 + 𝐷̂
(2,0)
𝑐𝑖 𝜔̂𝑏

𝑖 + 𝐷̂
(2,0)
𝑐𝑖𝑗 𝜔̂𝑏

𝑖𝑗
)︁

(22.66)

ℎ
(2,0)
𝐵𝑎𝑏 = 𝛿𝑎𝑏

(︁
𝐾̂(2,0) + 𝐾̂

(2,0)
𝑖 𝜔𝑖 + 𝐾̂

(2,0)
𝑖𝑗𝑘 𝜔̂𝑖𝑗𝑘

)︁
+ 𝐸̂

(2,0)
𝑖 𝜔̂𝑎𝑏

𝑖 + 𝐸̂
(2,0)
𝑖𝑗 𝜔̂𝑎𝑏

𝑖𝑗 + 𝐹
(2,0)
⟨𝑎 𝜔̂𝑏⟩ + 𝐹

(2,0)
𝑖⟨𝑎 𝜔̂𝑏⟩

𝑖

+𝐹
(2,0)
𝑖𝑗⟨𝑎 𝜔̂𝑏⟩

𝑖𝑗 + 𝜖𝑐𝑑(𝑎𝜔̂𝑏)𝑐
𝑖𝐺̂

(2,0)
𝑑𝑖 + 𝐻̂

(2,0)
𝑎𝑏 + 𝐻̂

(2,0)
𝑎𝑏𝑖 𝜔𝑖 + 𝜖𝑐𝑑(𝑎𝐼

(2,0)
𝑏)𝑑 𝜔𝑐, (22.67)

where each one of the STF tensors is listed in Table 1.
In solving Eq. (22.64), we also find that the logarithmic term in the expansion becomes uniquely

determined:

ℎ
(2,0,ln)
𝐵𝛼𝛽 = − 16

15𝑚
2ℰ𝑎𝑏𝑥𝑎𝛼𝑥𝑏𝛽 . (22.68)

This term arises because the sources in the wave equation (22.64) contain a term ∝ ℰ𝑎𝑏, which
cannot be equated to any term in 𝜕𝑐𝜕𝑐ℎ

(2,0)
𝐵𝑎𝑏 . Thus, the wave equation cannot be satisfied without

including a logarithmic term.

Gauge condition

We now move to the final equation in the buffer region: the order 1/𝑠 gauge condition. This

condition will determine the acceleration 𝑎𝛼(1). At this order, ℎ
(1)
𝛼𝛽 first contributes to Eq. (22.19):

𝐿(1,−1)
𝛼 [ℎ(1)] =

4𝑚

𝑠
𝑎(1)𝑎 𝑥𝑎𝛼. (22.69)

The contribution from ℎ
(2)
𝐵𝛼𝛽 is most easily calculated by making use of Eqs. (B.24) and (B.25).

After some algebra, we find that the 𝑡-component of the gauge condition reduces to

0 = −4

𝑠
𝜕𝑡𝛿𝑚+

4𝑚

3𝑠
𝜕𝑡𝐴

(1,0) +
10𝑚

3𝑠
𝜕𝑡𝐾̂

(1,0), (22.70)

and the 𝑎-component reduces to

0 =
4

𝑠
𝜕2𝑡𝑀𝑎 +

4𝑚

𝑠
𝑎(1)𝑎 +

4

𝑠
ℰ𝑎𝑖𝑀 𝑖 +

4

𝑠
ℬ𝑎𝑖𝑆

𝑖 − 2𝑚

𝑠
𝐴(1,1)

𝑎 +
4𝑚

𝑠
𝜕𝑡𝐶

(1,0)
𝑎 . (22.71)

After removing common factors, these equations become Eqs. (22.39) and (22.41). We remind the
reader that these equations are valid only when evaluated at 𝑎𝑎(𝑡) = 𝑎𝑎(0)(𝑡) = 0, except in the

term 4𝑚𝑎
(1)
𝑎 /𝑠 that arose from 𝐿

(1)
𝛼 [ℎ(1)].
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Table 1: Symmetric trace-free tensors appearing in the order 𝜀2𝑠0 part of the metric perturbation in the
buffer region around the body. Each tensor is a function of the proper time 𝑡 on the world line 𝛾, and each
is STF with respect to the Euclidean metric 𝛿𝑖𝑗 .

𝐴(2,0) is arbitrary

𝐴
(2,0)
𝑖 = −𝜕2𝑡𝑀𝑖 − 4

5𝑆
𝑗ℬ𝑗𝑖 +

1
3𝑀

𝑗ℰ𝑗𝑖 − 7
5𝑚𝐴

(1,1)
𝑖 − 3

5𝑚𝐾̂
(1,1)
𝑖 + 4

5𝑚𝜕𝑡𝐶
(1,0)
𝑖

𝐴
(2,0)
𝑖𝑗 = − 7

3𝑚
2ℰ𝑖𝑗

𝐴
(2,0)
𝑖𝑗𝑘 = −2𝑆⟨𝑖ℬ𝑗𝑘⟩ +

5
3𝑀⟨𝑖ℰ𝑗𝑘⟩ − 1

2𝑚𝐻̂
(1,1)
𝑖𝑗𝑘

𝐵̂(2,0) = 𝑚𝜕𝑡𝐾̂
(1,0)

𝐵̂
(2,0)
𝑖𝑗 = 1

9

(︁
2𝑀 𝑙ℬ𝑘

(𝑖 − 5𝑆𝑙ℰ𝑘
(𝑖

)︁
𝜖𝑗)𝑘𝑙 − 1

2𝑚𝐶
(1,1)
𝑖𝑗

𝐶
(2,0)
𝑖 is arbitrary

𝐶
(2,0)
𝑖𝑗 = 2

(︁
𝑆𝑙ℰ𝑘

(𝑖 − 14
15𝑀

𝑙ℬ𝑘
(𝑖

)︁
𝜖𝑗)𝑙𝑘 −𝑚

(︁
6
5𝐶

(1,1)
𝑖𝑗 − 𝜕𝑡𝐻̂

(1,0)
𝑖𝑗

)︁
𝐷̂

(2,0)
𝑖 = 1

5

(︀
6𝑀 𝑗ℬ𝑖𝑗 − 7𝑆𝑗ℰ𝑖𝑗

)︀
+ 2𝑚𝐷̂

(1,1)
𝑖

𝐷̂
(2,0)
𝑖𝑗 = 10

3 𝑚
2ℬ𝑖𝑗

𝐷̂
(2,0)
𝑖𝑗𝑘 = 1

3𝑆⟨𝑖ℰ𝑗𝑘⟩ + 2
3𝑀⟨𝑖ℬ𝑗𝑘⟩

𝐾̂(2,0) = 2𝛿𝑚

𝐾̂
(2,0)
𝑖 = −𝜕2𝑡𝑀𝑖 − 4

5𝑆
𝑗ℬ𝑖𝑗 − 5

9𝑀
𝑗ℰ𝑖𝑗 + 13

15𝑚𝐴
(1,1)
𝑖 + 9

5𝑚𝐾̂
(1,1)
𝑖 − 16

15𝑚𝜕𝑡𝐶
(1,0)
𝑖

𝐾̂
(2,0)
𝑖𝑗𝑘 = − 5

9𝑀⟨𝑖ℰ𝑗𝑘⟩ + 2
9𝑆⟨𝑖ℬ𝑗𝑘⟩ − 1

6𝑚𝐻̂
(1,1)
𝑖𝑗𝑘

𝐸̂
(2,0)
𝑖 = 2

15𝑀
𝑖ℰ𝑖𝑗 + 1

5𝑆
𝑗ℬ𝑖𝑗 +

1
10𝑚𝜕𝑡𝐶

(1,0)
𝑖 − 9

20𝑚𝐾̂
(1,1)
𝑖 − 11

20𝑚𝐴
(1,1)
𝑖

𝐸̂
(2,0)
𝑖𝑗 = 7

5𝑚
2ℰ𝑖𝑗

𝐹
(2,0)
𝑖 = 184

75 𝑀
𝑗ℰ𝑖𝑗 + 72

25𝑆
𝑗ℬ𝑖𝑗 +

46
25𝑚𝜕𝑡𝐶

(1,0)
𝑖 − 28

25𝑚𝐴
(1,1)
𝑖 + 18

25𝑚𝐾̂
(1,1)
𝑖

𝐹
(2,0)
𝑖𝑗 = 4𝑚2ℰ𝑖𝑗
𝐹

(2,0)
𝑖𝑗𝑘 = 4

3𝑀⟨𝑖ℰ𝑗𝑘⟩ − 4
3𝑆⟨𝑖ℬ𝑗𝑘⟩ +𝑚𝐻̂

(1,1)
𝑖𝑗𝑘

𝐺̂
(2,0)
𝑖𝑗 = − 4

9𝜖𝑙𝑘(𝑖ℰ𝑘
𝑗)𝑀

𝑙− 2
9𝜖𝑙𝑘(𝑖ℬ𝑘

𝑗)𝑆
𝑙+ 1

2𝑚𝐼
(1,1)
𝑖𝑗

𝐻̂
(2,0)
𝑖𝑗 is arbitrary

𝐻̂
(2,0)
𝑖𝑗𝑘 = 58

15𝑀⟨𝑖ℰ𝑗𝑘⟩ − 28
15𝑆⟨𝑖ℬ𝑗𝑘⟩ +

2
5𝑚𝐻̂

(1,1)
𝑖𝑗𝑘

𝐼
(2,0)
𝑖𝑗 = − 104

45 𝜖𝑙𝑘(𝑖ℰ𝑘
𝑗)𝑀

𝑙 − 112
45 𝜖𝑙𝑘(𝑖ℬ𝑘

𝑗)𝑆
𝑙 + 8

5𝑚𝐼
(1,1)
𝑖𝑗

Second-order solution

We have now completed our calculation in the buffer region. In summary, the second-order pertur-

bation in the buffer region is given by ℎ
(2)
𝛼𝛽 = 𝑠−2ℎ

(2,−2)
𝐵𝛼𝛽 +𝑠−1ℎ

(2,−1)
𝐵𝛼𝛽 +ℎ

(2,0)
𝐵𝛼𝛽+ln(𝑠)ℎ

(2,0,ln)
𝐵𝛼𝛽 +𝑂(𝜀, 𝑠),

where ℎ
(2,−2)
𝐵𝛼𝛽 is given in Eq. (22.50), ℎ

(2,−1)
𝐵𝛼𝛽 in Eq. (22.60), ℎ

(2,0)
𝐵𝛼𝛽 in Eq. (22.65), and ℎ

(2,0,ln)
𝐵𝛼𝛽 in

Eq. (22.68). In addition, we have found evolution equations for an effective correction to the body’s
mass, given by Eq. (22.39), and mass and spin dipoles, given by Eqs. (22.59) and (22.71).

22.5 The equation of motion

Master equation of motion

Eq. (22.71) is the principal result of our calculation. After simplification, it reads

𝜕2𝑡𝑀𝑎 + ℰ𝑎𝑏𝑀 𝑏 = −𝑎(1)𝑎 + 1
2𝐴

(1,1)
𝑎 − 𝜕𝑡𝐶

(1,0)
𝑎 − 1

𝑚
𝑆𝑖ℬ𝑖

𝑎. (22.72)
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We recall that 𝑀𝑎 is the body’s mass dipole moment, ℰ𝑎𝑏 and ℬ𝑎𝑏 are components of the Riemann

tensor of the background spacetime evaluated on the world line, 𝑎
(1)
𝑎 is the first-order acceleration

of the world line, 𝑆𝑎 is the body’s spin angular momentum, and 𝐴
(1,1)
𝑎 , 𝐶

(1,0)
𝑎 are vector fields

on the world line that have yet to be determined. The equation is formulated in Fermi normal
coordinates.

Eq. (22.72) is a type of master equation of motion, describing the position of the body relative
to a world line of unspecified (though small) acceleration, in terms of the metric perturbation on
the world line, the tidal fields of the spacetime it lies in, and the spin of the body. It contains
two types of accelerations: 𝜕2𝑡𝑀𝑖 and 𝑎𝑖(1). The first type is the second time derivative of the

body’s mass dipole moment (or the first derivative of its ADM linear momentum), as measured in
a frame centered on the world line 𝛾. The second type is the covariant acceleration of the world
line through the external spacetime. In other words, 𝜕2𝑡𝑀𝑖 measures the acceleration of the body’s
centre of mass relative to the centre of the coordinate system, while 𝑎𝑖 measures the acceleration
of the coordinate system itself. As discussed in Section 21, our aim is to identify the world line
as that of the body, and we do so via the condition that the mass dipole vanishes for all times,
meaning that the body is centered on the world line for all times. If we start with initial conditions
𝑀𝑖(0) = 0 = 𝜕𝑡𝑀𝑖(0), then the mass dipole remains zero for all times if and only if the world line
satisfies the equation

𝑎(1)𝑎 = 1
2𝐴

(1,1)
𝑎 − 𝜕𝑡𝐶

(1,0)
𝑎 − 1

𝑚
𝑆𝑖ℬ𝑖

𝑎. (22.73)

This equation of motion contains two types of terms: a Papapetrou spin force, given by −𝑆𝑖ℬ𝑖
𝑎,

which arises due to the coupling of the body’s spin to the local magnetic-type tidal field of the
external spacetime; and a self-force, arising from homogenous terms in the wave equation. Note
that the right-hand side of this equation is to be evaluated at 𝑎𝜇 = 𝑎(0)𝜇 = 0, and that it would
contain an antidamping term − 11

3 𝑚𝑎̇
𝜇 [92, 93, 150] if we had not assumed that the acceleration

possesses an expansion of the form given in Eq. (21.9).
In our self-consistent approach, we began with the aim of identifying 𝛾 by the condition that

the body must be centered about it for all time. However, we could have begun with a regular
expansion, in which the world line is taken to be the remnant 𝛾(0) of the body in the outer limit
of 𝜀 → 0 with only 𝑥𝜇 fixed. In that case the acceleration of the world line would necessarily be
𝜀-independent, so 𝑎𝑖(0) would be the full acceleration of 𝛾(0). Hence, when we found 𝑎𝑖(0) = 0, we

would have identified the world line as a geodesic, and there would be no corrections 𝑎𝑖(𝑛) for 𝑛 > 0.
We would then have arrived at the equation of motion

𝜕2𝑡𝑀𝑎 + ℰ𝑎𝑏𝑀 𝑏 = 1
2𝐴

(1,1)
𝑎 − 𝜕𝑡𝐶

(1,0)
𝑎 − 1

𝑚
𝑆𝑖ℬ𝑖

𝑎. (22.74)

This equation of motion was first derived by Gralla and Wald [83] (although they phrased their
expansion in terms of an explicit expansion of the world line, with a deviation vector on 𝛾(0),
rather than the mass dipole, measuring the correction to the motion). It describes the drift of the
body away from the reference geodesic 𝛾(0). This drift is driven partially by the local curvature
of the background, as seen in the geodesic-deviation term ℰ𝑎𝑏𝑀 𝑏, and by the coupling between
the body’s spin and the local curvature. It is also driven by the self-force, as seen in the terms

containing 𝐴
(1,1)
𝑎 and 𝐶

(1,0)
𝑎 , but unlike in the self-consistent equation, the fields that produce the

self-force are generated by a geodesic past history (plus free propagation from initial data) rather
than by the corrected motion.

Although perfectly valid, such an equation is of limited use. If the external background is
curved, then 𝑀𝑖 has meaning only if the body is “close” to the world line. Thus, 𝜕2𝑡𝑀𝑖 is a
meaningful acceleration only for a short time, since 𝑀𝑖 will generically grow large as the body
drifts away from the reference world line. On that short timescale of validity, the deviation vector
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defined by 𝑀 𝑖 accurately points from 𝛾(0) to a “corrected” world line 𝛾; that world line, the
approximate equation of motion of which is given in Eq. (22.73), accurately tracks the motion of
the body. After a short time, when the mass dipole grows large and the regular expansion scheme
begins to break down, the deviation vector will no longer correctly point to the corrected world
line. Errors will also accumulate in the field itself, because it is being sourced by the geodesic,
rather than corrected, motion.

The self-consistent equation of motion appears to be more robust, and offers a much wider
range of validity. Furthermore, even beyond the above step, where we had the option to choose
to set either 𝑀𝑖 or 𝑎𝑖(0) to zero, the self-consistent expansion continues to contain within it the
regular expansion. Starting from the solution in the self-consistent expansion, one can recover the
regular expansion, and its equation of motion (22.74), simply by assuming an expansion for the
world line and following the usual steps of deriving the geodesic deviation equation.

Detweiler–Whiting decomposition

Regardless of which equation of motion we opt to use, we have now completed the derivation of the
gravitational self-force, in the sense that, given the metric perturbation in the neighbourhood of the
body, the self-force is uniquely determined by irreducible pieces of that perturbation. Explicitly,
the terms that appear in the self-force are given by

𝐴(1,1)
𝑎 =

3

4𝜋

∫︁
𝜔𝑎ℎ

(1,1)
𝑡𝑡 𝑑Ω, (22.75)

𝐶(1,0)
𝑎 = ℎ

(1,0)
𝑡𝑎 . (22.76)

This is all that is needed to incorporate the motion of the body into a dynamical system that can
be numerically evolved; at each timestep, one simply needs to calculate the field near the world
line and decompose it into irreducible pieces in order to determine the acceleration of the body.
The remaining difficulty is to actually determine the field at each timestep. In the next section,
we will use the formal integral representation of the solution to determine the metric perturbation
at the location of the body in terms of a tail integral.

However, before doing so, we emphasize some important features of the self-force and the field

near the body. First, note that the first-order external field ℎ
(1)
𝛼𝛽 splits into two distinct pieces.

There is the singular piece ℎS𝛼𝛽 , given by

ℎS𝑡𝑡 =
2𝑚

𝑠

{︁
1 + 3

2𝑠𝑎𝑖𝜔
𝑖 + 2𝑠2𝑎𝑖𝑎

𝑖 + 𝑠2
(︀
3
8𝑎⟨𝑖𝑎𝑗⟩ +

5
6ℰ𝑖𝑗

)︀
𝜔̂𝑖𝑗
}︁
+𝑂(𝑠2) (22.77)

ℎS𝑡𝑎 = −2𝑚𝑠𝑎̇𝑎 +
2
3𝑚𝑠𝜖𝑎𝑖𝑗ℬ

𝑗
𝑘𝜔̂

𝑖𝑘 +𝑂(𝑠2) (22.78)

ℎS𝑎𝑏 =
2𝑚

𝑠

{︁
𝛿𝑎𝑏
[︀
1− 1

2𝑠𝑎𝑖𝜔
𝑖 + 2

3𝑠
2𝑎𝑖𝑎

𝑖 + 𝑠2
(︀
3
8𝑎⟨𝑖𝑎𝑗⟩ − 5

18ℰ𝑖𝑗
)︀
𝜔̂𝑖𝑗
]︀
+ 2𝑠2𝑎⟨𝑎𝑎𝑏⟩

− 19
9 𝑠

2ℰ𝑎𝑏 + 2
3𝑠

2ℰ 𝑖
⟨𝑎𝜔̂𝑏⟩𝑖

}︁
+𝑂(𝑠2). (22.79)

This field is a solution to the homogenous wave equation for 𝑠 > 0, but it is divergent at 𝑠 = 0. It
is the generalization of the 1/𝑠 Newtonian field of the body, as perturbed by the tidal fields of the
external spacetime 𝑔𝛼𝛽 . Comparing with results to be derived below in Section 23.2, we find that
it is precisely the Detweiler–Whiting singular field for a point mass.

Next, there is the Detweiler–Whiting regular field ℎR𝛼𝛽 = ℎ
(1)
𝛼𝛽 − ℎS𝛼𝛽 , given by

ℎR𝑡𝑡 = 𝐴(1,0) + 𝑠𝐴
(1,1)
𝑖 𝜔𝑖 +𝑂(𝑠2), (22.80)

ℎR𝑡𝑎 = 𝐶(1,0)
𝑎 + 𝑠

(︁
𝐵̂(1,1)𝜔𝑎 + 𝐶

(1,1)
𝑎𝑖 𝜔𝑖 + 𝜖𝑎𝑖

𝑗𝐷̂
(1,1)
𝑗 𝜔𝑖

)︁
+𝑂(𝑠2), (22.81)

ℎR𝑎𝑏 = 𝛿𝑎𝑏𝐾̂
(1,0) + 𝐻̂

(1,0)
𝑎𝑏 + 𝑠

(︁
𝛿𝑎𝑏𝐾̂

(1,1)
𝑖 𝜔𝑖 + 𝐻̂

(1,1)
𝑎𝑏𝑖 𝜔𝑖 + 𝜖 𝑗

𝑖 (𝑎𝐼
(1,1)
𝑏)𝑗 𝜔𝑖 + 𝐹

(1,1)
⟨𝑎 𝜔𝑏⟩

)︁
+𝑂(𝑠2).(22.82)
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This field is a solution to the homogeneous wave equation even at 𝑠 = 0. It is a free radiation
field in the neighbourhood of the body. And it contains all the free functions in the buffer-region
expansion.

Now, the acceleration of the body is given by

𝑎(1)𝑎 = 1
2𝜕𝑎ℎ

R
𝑡𝑡 − 𝜕𝑡ℎ

R
𝑡𝑎 −

1

𝑚
𝑆𝑖ℬ𝑖

𝑎, (22.83)

which we can rewrite as

𝑎𝛼(1) = − 1
2

(︀
𝑔𝛼𝛿 + 𝑢𝛼𝑢𝛿

)︀(︀
2ℎR𝛿𝛽;𝛾 − ℎR𝛽𝛾;𝛿

)︀
𝑎=0

𝑢𝛽𝑢𝛾 +
1

2𝑚
𝑅𝛼

𝛽𝛾𝛿𝑢
𝛽𝑆𝛾𝛿, (22.84)

where 𝑆𝛾𝛿 := 𝑒𝛾𝑐 𝑒
𝛿
𝑑𝜖

𝑐𝑑𝑗𝑆𝑗 . In other words, up to order 𝜀2 errors, a body with order 𝜀 or smaller spin
(i.e., one for which 𝑆𝛾𝛿 = 0), moves on a geodesic of a spacetime 𝑔𝛼𝛽 + 𝜀ℎR𝛼𝛽 , where ℎ

R
𝛼𝛽 is a free

radiation field in the neighbourhood of the body; a local observer would measure the “background
spacetime,” in which the body is in free fall, to have the metric 𝑔𝛼𝛽 + 𝜀ℎ𝑅𝛼𝛽 instead of 𝑔𝛼𝛽 . If

we performed a transformation into Fermi coordinates in 𝑔𝛼𝛽 + 𝜀ℎ𝑅𝛼𝛽 , the metric would contain
no acceleration term, and it would take the simple form of a smooth background plus a singular
perturbation. Hence, the Detweiler–Whiting axiom is a consequence, rather than an assumption,
of our derivation, and we have recovered precisely the picture it provides in the point particle case.
In the electromagnetic and scalar cases, Harte has shown that this result is quite general: even for
a finite extended body, the field it produces can be split into a homogeneous field [89, 90, 91] that
exerts a direct force on the body, and a nonhomogeneous field that exerts only an indirect force
by altering the body’s multipole moments. His results should be generalizable to the gravitational
case as well.

22.6 The effect of a gauge transformation on the force

We now turn to the question of how the world line transforms under a gauge transformation. We
begin with the equation of motion (22.41), presented again here:

𝜕2𝑡𝑀𝑎 + ℰ𝑎𝑖𝑀 𝑖 = −𝑎(1)𝑎 − 1

𝑚
ℬ𝑎𝑖𝑆

𝑖 +
[︁
1
2𝐴

(1,1)
𝑎 − 𝜕𝑡𝐶

(1,0)
𝑎

]︁
𝑎𝜇=0

. (22.85)

Setting 𝑀𝑖 = 0, we derive the first-order acceleration of 𝛾, given in Eq. (22.73). If, for simplicity,
we neglect the Papapetrou spin term, then that acceleration is given by

𝑎(1)𝑎 = lim
𝑠→0

(︂
3

4𝜋

∫︁
𝜔𝑎

2𝑠
ℎ
(1)
𝑡𝑡 𝑑Ω− 𝜕𝑡ℎ

(1)
𝑡𝑎

)︂
= lim

𝑠→0

3

4𝜋

∫︁ (︁
1
2𝜕𝑖ℎ

(1)
𝑡𝑡 − 𝜕𝑡ℎ

(1)
𝑡𝑖

)︁
𝜔𝑖𝜔𝑎𝑑Ω, (22.86)

where it is understood that explicit appearances of the acceleration are to be set to zero on the

right-hand side. The first equality follows directly from Eq. (22.73) and the definitions of 𝐴
(1,1)
𝑎

and 𝐶
(1,0)
𝑎 . The second equality follows from the STF decomposition of ℎ

(1)
𝛼𝛽 and the integral

identities (B.26) – (B.28). We could also readily derive the form of the force given by the Quinn–

Wald method of regularization: lim𝑠→0
1
4𝜋

∫︀ (︁
1
2𝜕𝑎ℎ

(1)
𝑡𝑡 − 𝜕𝑡ℎ

(1)
𝑡𝑎

)︁
𝑑Ω. However, in order to derive a

gauge-invariant equation of motion, we shall use the form in Eq. (22.86).
Suppose that we had not chosen a world line for which the mass dipole vanishes, but instead

had chosen some “nearby” world line. Then Eq. (22.85) provides the relationship between the ac-
celeration of that world line, the mass dipole relative to it, and the first-order metric perturbations
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(we again neglect spin for simplicity). The mass dipole is given by 𝑀𝑖 =
3
8𝜋 lim𝑠→0

∫︀
𝑠2ℎ

(2)
𝑡𝑡 𝜔𝑖𝑑Ω,

which has the covariant form

𝑀𝛼′ =
3

8𝜋
lim
𝑠→0

∫︁
𝑔𝛼𝛼′𝜔𝛼𝑠

2ℎ(2)𝜇𝜈 𝑢
𝜇𝑢𝜈𝑑Ω, (22.87)

where a primed index corresponds to a point on the world line. Note that the parallel propagator
does not interfere with the angle-averaging, because in Fermi coordinates, 𝑔𝛼𝛽′ = 𝛿𝛼𝛽 +𝑂(𝜀, 𝑠2). One
can also rewrite the first-order-metric-perturbation terms in Eq. (22.85) using the form given in
Eq. (22.86). We then have Eq. (22.85) in the covariant form

3

8𝜋
lim
𝑠→0

∫︁
𝑔𝛼𝛼′

(︂
𝑔𝛼𝛽

𝐷2

𝑑𝜏2
+ ℰ𝛼𝛽

)︂
𝜔𝛽𝑠2ℎ(2)𝜇𝜈 𝑢

𝜇𝑢𝜈𝑑Ω
⃒⃒
𝑎=𝑎(0)

= −3𝑚

8𝜋
lim
𝑠→0

∫︁
𝑔𝛼𝛼′

(︁
2ℎ

(1)
𝛽𝜇;𝜈 − ℎ

(1)
𝜇𝜈;𝛽

)︁
𝑢𝜇𝑢𝜈𝜔𝛽

𝛼𝑑Ω
⃒⃒
𝑎=𝑎(0) −𝑚𝑎

(1)
𝛼′ . (22.88)

Now consider a gauge transformation generated by 𝜀𝜉(1)𝛼[𝛾] + 1
2𝜀

2𝜉(2)𝛼[𝛾] + · · · , where 𝜉(1)𝛼
is bounded as 𝑠 → 0, and 𝜉(2)𝛼 diverges as 1/𝑠. More specifically, we assume the expansions
𝜉(1)𝛼 = 𝜉(1,0)𝛼(𝑡, 𝜃𝐴) + 𝑂(𝑠) and 𝜉(1)𝛼 = 1

𝑠𝜉
(2,−1)𝛼(𝑡, 𝜃𝐴) + 𝑂(1). (The dependence on 𝛾 appears

in the form of dependence on proper time 𝑡. Other dependences could appear, but it would not
affect the result.) This transformation preserves the presumed form of the outer expansion, both
in powers of 𝜀 and in powers of 𝑠. The metric perturbations transform as

ℎ(1)𝜇𝜈 → ℎ(1)𝜇𝜈 + 2𝜉
(1)
(𝜇;𝜈), (22.89)

ℎ(2)𝜇𝜈 → ℎ(2)𝜇𝜈 + 𝜉
(2)
(𝜇;𝜈) + ℎ(1)𝜇𝜈;𝜌𝜉

𝜌
(1) + 2ℎ

(1)
𝜌(𝜇𝜉

𝜌
(1);𝜈) + 𝜉𝜌(1)𝜉

(1)
(𝜇;𝜈)𝜌 + 𝜉𝜌(1);𝜇𝜉

(1)
𝜌;𝜈 + 𝜉𝜌(1);(𝜇𝜉

(1)
𝜈);𝜌. (22.90)

Using the results for ℎ
(1)
𝛼𝛽 , the effect of this transformation on ℎ

(2)
𝑡𝑡 is given by

ℎ
(2)
𝑡𝑡 → ℎ

(2)
𝑡𝑡 − 2𝑚

𝑠2
𝜔𝑖𝜉

(1)
𝑖 +𝑂(𝑠−1). (22.91)

The order 1/𝑠2 term arises from ℎ
(1)
𝜇𝜈;𝜌𝜉

𝜌
(1) in the gauge transformation. On the right-hand side of

Eq. (22.88), the metric-perturbation terms transform as

(2ℎ
(1)
𝛽𝜇;𝜈 − ℎ

(1)
𝜇𝜈;𝛽)𝑢

𝜇𝑢𝜈𝜔𝛽 → (2ℎ
(1)
𝛽𝜇;𝜈 − ℎ

(1)
𝜇𝜈;𝛽)𝑢

𝜇𝑢𝜈𝜔𝛽 + 2𝜔𝛽

(︂
𝑔𝛾𝛽
𝐷2

𝑑𝜏2
+ ℰ𝛾

𝛽

)︂
𝜉(1)𝛾 . (22.92)

The only remaining term in the equation is 𝑚𝑎𝛼(1). If we extend the acceleration off the world line
in any smooth manner, then it defines a vector field that transforms as 𝑎𝛼 → 𝑎𝛼 + 𝜀$𝜉(1)𝑎𝛼 + · · · .
Since 𝑎𝛼(0) = 0, this means that 𝑎𝛼(1) → 𝑎𝛼(1) – it is invariant under a gauge transformation. It is
important to note that this statement applies to the acceleration on the original world line; it does
not imply that the acceleration of the body itself is gauge-invariant.

From these results, we find that the left- and right-hand sides of Eq. (22.88) transform in the
same way:

LHS/RHS → LHS/RHS− 3

4𝜋
lim
𝑠→0

∫︁
𝑔𝛼𝛼′𝜔𝛽

𝛼

(︂
𝑔𝛾𝛽
𝐷2

𝑑𝜏2
+ ℰ𝛾

𝛽

)︂
𝜉(1)𝛾 𝑑Ω. (22.93)

Therefore, Eq. (22.88) provides a gauge-invariant relationship between the acceleration of a chosen
fixed world line, the mass dipole of the body relative to that world line, and the first-order metric
perturbations. So suppose that we begin in the Lorenz gauge, and we choose the fixed world line
𝛾 such that the mass dipole vanishes relative to it. Then in some other gauge, the mass dipole will
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no longer vanish relative to 𝛾, and we must adopt a different, nearby fixed world line 𝛾′. If the
mass dipole is to vanish relative to 𝛾′, then the acceleration of that new world line must be given
by 𝑎𝛼 = 𝜀𝑎𝛼(1) + 𝑜(𝜀), where

𝑎
(1)
𝛼′ = −3𝑚

8𝜋
lim
𝑠→0

∫︁
𝑔𝛼𝛼′(2ℎ

(1)
𝛽𝜇;𝜈 − ℎ

(1)
𝜇𝜈;𝛽)𝑢

𝜇𝑢𝜈𝜔𝛽
𝛼𝑑Ω.

⃒⃒
𝑎=𝑎(0) . (22.94)

Hence, this is a covariant and gauge-invariant form of the first-order acceleration. By that we mean
the equation is valid in any gauge, not that the value of the acceleration is the same in every gauge.
Under a gauge transformation, a new fixed world line is adopted, and the value of the acceleration
on it is related to that on the old world line according to Eq. (22.93). In the particular case that

𝜉
(1)
𝜇 has no angle-dependence on the world line, this relationship reduces to

𝑎(1)𝛼new = 𝑎
(1)𝛼
old −

(︀
𝑔𝛼𝛽 + 𝑢𝛼𝑢𝛽

)︀(︃𝐷2𝜉𝛽(1)

𝑑𝜏2
+𝑅𝛽

𝜇𝜈𝜌𝑢
𝜇𝜉𝜈(1)𝑢

𝜌

)︃
, (22.95)

as first derived by Barack and Ori [17]. (Here we’ve replaced the tidal field with its expression in
terms of the Riemann tensor to more transparently agree with equations in the literature.) An
argument of this form was first presented by Gralla [81] for the case of a regular expansion, and
was extended to the case of a self-consistent expansion in Ref. [145].

23 Global solution in the external spacetime

In the previous sections, we have determined the equation of motion of 𝛾 in terms of the metric
perturbation; we now complete the first-order solution by determining the metric perturbation. In
early derivations of the gravitational self-force (excluding those in Refs. [72, 83]), the first-order
external perturbation was simply assumed to be that of a point particle. This was first justified by
Gralla and Wald [83]. An earlier argument made by D’Eath [46, 47] (and later used by Rosenthal
[155]) provided partial justification but was incomplete [144]. Here, we follow the derivation in
Ref. [144], which makes use of the same essential elements as D’Eath’s: the integral formulation
of the perturbative Einstein equation and the asymptotically small radius of the tube Γ.

23.1 Integral representation

Suppose we take our buffer-region expansion of ℎ
(1)
𝛼𝛽 to be valid everywhere in the interior of Γ (in

ℳ𝐸), rather than just in the buffer region. This is a meaningful supposition in a distributional

sense, since the 1/𝑠 singularity in ℎ
(1)
𝛼𝛽 is locally integrable even at 𝛾. Note that the extension of the

buffer-region expansion is not intended to provide an accurate or meaningful approximation in the
interior; it is used only as a means of determining the field in the exterior. We can do this because
the field values in Ω are entirely determined by the field values on Γ, so using the buffer-region
expansion in the interior of Γ leaves the field values in Ω unaltered. Now, given the extension
of the buffer-region expansion, it follows from Stokes’ law that the integral over Γ in Eq. (21.8)
can be replaced by a volume integral over the interior of the tube, plus two surface integrals over
the “caps” 𝒥cap and Σcap, which fill the “holes” in 𝒥 and Σ, respectively, where they intersect Γ.
Schematically, we can write Stokes’ law as

∫︀
Int(Γ)

=
∫︀
𝒥cap

+
∫︀
Σcap

−
∫︀
Γ
, where Int(Γ) is the interior

of Γ. This is now valid as a distributional identity. (Note that the “interior” here means the region
bounded by Γ ∪ Σcap ∪ 𝒥cap; Int(Γ) does not refer to the set of interior points in the point-set
defined by Γ.) The minus sign in front of the integral over Γ accounts for the fact that the directed
surface element in Eq. (21.8) points into the tube. Because 𝒥cap does not lie in the past of any
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point in Ω, it does not contribute to the perturbation at 𝑥 ∈ Ω. Hence, we can rewrite Eq. (21.8)
as

ℎ
(1)
𝛼𝛽 = − 1

4𝜋

∫︁
Int(Γ)

∇𝜇′

(︁
𝐺+

𝛼𝛽
𝛼′𝛽′∇𝜇′

ℎ
(1)
𝛼′𝛽′ − ℎ

(1)
𝛼′𝛽′∇𝜇′

𝐺+
𝛼𝛽

𝛼′𝛽′
)︁
𝑑𝑉 ′ + ℎ

(1)

Σ̄𝛼𝛽

= − 1

4𝜋

∫︁
Int(Γ)

(︁
𝐺𝛼𝛽

𝛼′𝛽′
𝐸𝛼′𝛽′ [ℎ(1)]− ℎ

(1)
𝛼′𝛽′𝐸

𝛼′𝛽′
[𝐺+

𝛼𝛽 ]
)︁
𝑑𝑉 ′ + ℎ

(1)

Σ̄𝛼𝛽
, (23.1)

where ℎ
(1)

Σ̄𝛼𝛽
is the contribution from the spatial surface Σ̄ := Σ∪Σcap, and 𝐸

𝛼′𝛽′
[𝐺+

𝛼𝛽 ] denotes the

action of the wave-operator on 𝐺+
𝛼𝛽

𝛾′𝛿′ . Now note that 𝐸𝛼′𝛽′
[𝐺+

𝛼𝛽 ] ∝ 𝛿(𝑥, 𝑥′); since 𝑥 /∈ Int(Γ),

this term integrates to zero. Next note that 𝐸𝛼′𝛽′ [ℎ
(1)
𝛼𝛽 ] vanishes everywhere except at 𝛾. This

means that the field at 𝑥 can be written as

ℎ
(1)
𝛼𝛽 =

−1

4𝜋
lim
ℛ→0

∫︁
Int(Γ)

𝐺+
𝛼𝛽

𝛼′𝛽′
𝐸𝛼′𝛽′ [ℎ(1)]𝑑𝑉 ′ + ℎ

(1)

Σ̄𝛼𝛽
. (23.2)

Making use of the fact that 𝐸𝛼𝛽 [ℎ
(1)] = 𝜕𝑐𝜕𝑐(1/𝑠)ℎ

(1,−1)
𝛼𝛽 + 𝑂(𝑠−2), along with the identity

𝜕𝑐𝜕𝑐(1/𝑠) = −4𝜋𝛿3(𝑥𝑎), where 𝛿3 is a coordinate delta function in Fermi coordinates, we arrive at
the desired result

ℎ
(1)
𝛼𝛽 = 2𝑚

∫︁
𝛾

𝐺+
𝛼𝛽𝛼̄𝛽

(︁
2𝑢𝛼̄𝑢𝛽 + 𝑔𝛼̄𝛽

)︁
𝑑𝑡+ ℎ

(1)

Σ̄𝛼𝛽
. (23.3)

Therefore, in the region Ω, the leading-order perturbation produced by the asymptotically small
body is identical to the field produced by a point particle. At second order, the same method can
be used to simplify Eq. (21.5) by replacing at least part of the integral over Γ with an integral over
𝛾. We will not pursue this simplification here, however.

Gralla and Wald [83] provided an alternative derivation of the same result, using distributional
methods to prove that the distributional source for the linearized Einstein equation must be that of
a point particle in order for the solution to diverge as 1/𝑠. One can understand this by considering
that the most divergent term in the linearized Einstein tensor is a Laplacian acting on the pertur-
bation, and the Laplacian of 1/𝑠 is a flat-space delta function; the less divergent corrections are
due to the curvature of the background, which distorts the flat-space distribution into a covariant
curved-spacetime distribution.

23.2 Metric perturbation in Fermi coordinates

Metric perturbation

We have just seen that the solution to the wave equation with a point-mass source is given by

ℎ
(1)
𝛼𝛽 = 2𝑚

∫︁
𝛾

𝐺𝛼𝛽𝛼′𝛽′(2𝑢𝛼
′
𝑢𝛽

′
+ 𝑔𝛼

′𝛽′
)𝑑𝑡′ + ℎ

(1)
Σ𝛼𝛽 . (23.4)

One can also obtain this result from Eq. (19.29) by taking the trace-reversal and making use of
the Green’s function identity (16.22). In this section, we seek an expansion of the perturbation in
Fermi coordinates. Following the same steps as in Section 19.2, we arrive at

ℎ
(1)
𝛼𝛽 =

2𝑚

𝑟
𝑈𝛼𝛽𝛼′𝛽′(2𝑢𝛼

′
𝑢𝛽

′
+ 𝑔𝛼

′𝛽′
) + ℎtail𝛼𝛽 (𝑢). (23.5)
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Here, primed indices now refer to the retarded point 𝑧𝛼(𝑢) on the world line, 𝑟 is the retarded
radial coordinate at 𝑥, and the tail integral is given by

ℎtail𝛼𝛽 (𝑢) = 2𝑚

∫︁ 𝑢

𝑡<
𝑉𝛼𝛽𝛼′𝛽′(2𝑢𝛼

′
𝑢𝛽

′
+ 𝑔𝛼

′𝛽′
)𝑑𝑡′ + 2𝑚

∫︁ 𝑡<

0

𝐺𝛼𝛽𝛼′𝛽′(2𝑢𝛼
′
𝑢𝛽

′
+ 𝑔𝛼

′𝛽′
)𝑑𝑡′ + ℎ

(1)
Σ𝛼𝛽

= 2𝑚

∫︁ 𝑢−

0

𝐺𝛼𝛽𝛼′𝛽′(2𝑢𝛼
′
𝑢𝛽

′
+ 𝑔𝛼

′𝛽′
)𝑑𝑡′ + ℎ

(1)
Σ𝛼𝛽 , (23.6)

where 𝑡< is the first time at which the world line enters 𝒩 (𝑥), and 𝑡 = 0 denotes the time when it
crosses the initial-data surface Σ.

We expand the direct term in ℎ
(1)
𝛼𝛽 in powers of 𝑠 using the following: the near-coincidence

expansion 𝑈𝛼𝛽
𝛼′𝛽′

= 𝑔𝛼
′

𝛼 𝑔
𝛽′

𝛽 (1+𝑂(𝑠3)); the relationship between 𝑟 and 𝑠, given by Eq. (11.5); and

the coordinate expansion of the parallel-propagators, obtained from the formula 𝑔𝛼
′

𝛼 = 𝑢𝛼
′
𝑒0𝛼 +

𝑒𝛼
′

𝑎 𝑒
𝑎
𝛼, where the retarded tetrad (𝑢𝛼, 𝑒𝛼𝑎 ) can be expanded in terms of 𝑠 using Eqs. (11.9), (11.10),

(9.12), and (9.13). We expand the tail integral similarly: noting that 𝑢 = 𝑡 − 𝑠 + 𝑂(𝑠2), we
expand ℎtail𝛼𝛽 (𝑢) about 𝑡 as ℎ

tail
𝛼𝛽 (𝑡)− 𝑠𝜕𝑡ℎtail𝛼𝛽 (𝑡)+𝑂(𝑠2); each term is then expanded using the near-

coincidence expansions 𝑉𝛼𝛽
𝛼′′𝛽′′

= 𝑔𝛾
′′

(𝛼 𝑔
𝛿′′

𝛽)𝑅
𝛼′′

𝛾′′𝛽
′′
𝛿′′ +𝑂(𝑠) and ℎtail𝛼𝛽 (𝑡) = 𝑔𝛼̄𝛼𝑔

𝛽
𝛽 (ℎ

tail
𝛼̄𝛽

+ 𝑠ℎtail
𝛼̄𝛽𝑖

𝜔𝑖)+

𝑂(𝑠2), where barred indices correspond to the point 𝑥̄ = 𝑧(𝑡), and ℎtail
𝛼̄𝛽𝛾

is given by

ℎtail𝛼̄𝛽𝛾 = 2𝑚

∫︁ 𝑡−

0

∇̄𝛾𝐺𝛼̄𝛽𝛼′𝛽′(2𝑢𝛼
′
𝑢𝛽

′
+ 𝑔𝛼

′𝛽′
)𝑑𝑡′ + ℎ

(1)

Σ𝛼̄𝛽𝛾
. (23.7)

This yields the expansion

ℎtail𝛼𝛽 (𝑢) = 𝑔𝛼̄𝛼𝑔
𝛽
𝛽 (ℎ

tail
𝛼̄𝛽 + 𝑠ℎtail𝛼̄𝛽𝑖𝜔

𝑖 − 4𝑚𝑠ℰ𝛼̄𝛽) +𝑂(𝑠2). (23.8)

As with the direct part, the final coordinate expansion is found by expressing 𝑔𝛼̄𝛼 in terms of the
Fermi tetrad.

Combining the expansions of the direct and tail parts of the perturbation, we arrive at the
expansion in Fermi coordinates:

ℎ
(1)
𝑡𝑡 =

2𝑚

𝑠

(︀
1 + 3

2𝑠𝑎𝑖𝜔
𝑖 + 3

8𝑠
2𝑎𝑖𝑎𝑗𝜔

𝑖𝑗 − 15
8 𝑠

2𝑎̇𝛼̄𝑢
𝛼̄ + 1

3𝑠
2𝑎̇𝑖𝜔

𝑖 + 5
6𝑠

2ℰ𝑖𝑗𝜔𝑖𝑗
)︀
+ (1 + 2𝑠𝑎𝑖𝜔

𝑖)ℎtail00

+𝑠ℎtail00𝑖𝜔
𝑖 +𝑂(𝑠2), (23.9)

ℎ
(1)
𝑡𝑎 = 4𝑚𝑎𝑎 − 2

3𝑚𝑠𝑅0𝑖𝑎𝑗𝜔
𝑖𝑗 + 2𝑚𝑠ℰ𝑎𝑖𝜔𝑖 − 2𝑚𝑠𝑎̇𝑎 + (1 + 𝑠𝑎𝑖𝜔

𝑖)ℎtail0𝑎 + 𝑠ℎtail0𝑎𝑖𝜔
𝑖 +𝑂(𝑠2), (23.10)

ℎ
(1)
𝑎𝑏 =

2𝑚

𝑠

(︀
1− 1

2𝑠𝑎𝑖𝜔
𝑖 + 3

8𝑠
2𝑎𝑖𝑎𝑗𝜔

𝑖𝑗 + 1
8𝑠

2𝑎̇𝛼̄𝑢
𝛼̄ + 1

3𝑠
2𝑎̇𝑖𝜔

𝑖 − 1
6𝑠

2ℰ𝑖𝑗𝜔𝑖𝑗
)︀
𝛿𝑎𝑏 + 4𝑚𝑠𝑎𝑎𝑎𝑏

− 2
3𝑚𝑠𝑅𝑎𝑖𝑏𝑗𝜔

𝑖𝑗 − 4𝑚𝑠ℰ𝑎𝑏 + ℎtail𝑎𝑏 + 𝑠ℎtail𝑎𝑏𝑖𝜔
𝑖 +𝑂(𝑠2). (23.11)

As the final step, each of these terms is decomposed into irreducible STF pieces using the formulas
(B.1), (B.3), and (B.7), yielding

ℎ
(1)
𝑡𝑡 =

2𝑚

𝑠
+𝐴(1,0) + 3𝑚𝑎𝑖𝜔

𝑖 + 𝑠
[︀
4𝑚𝑎𝑖𝑎

𝑖 +𝐴
(1,1)
𝑖 𝜔𝑖 +𝑚

(︀
3
4𝑎⟨𝑖𝑎𝑗⟩ +

5
3ℰ𝑖𝑗

)︀
𝜔̂𝑖𝑗
]︀
+𝑂(𝑠2),(23.12)

ℎ
(1)
𝑡𝑎 = 𝐶(1,0)

𝑎 + 𝑠
(︀
𝐵̂(1,1)𝜔𝑎 − 2𝑚𝑎̇𝑎 + 𝐶

(1,1)
𝑎𝑖 𝜔𝑖 + 𝜖𝑎𝑖

𝑗𝐷̂
(1,1)
𝑗 𝜔𝑖 + 2

3𝑚𝜖𝑎𝑖𝑗ℬ
𝑗
𝑘𝜔̂

𝑖𝑘
)︀
+𝑂(𝑠2), (23.13)

ℎ
(1)
𝑎𝑏 =

2𝑚

𝑠
𝛿𝑎𝑏 + (𝐾̂(1,0) −𝑚𝑎𝑖𝜔

𝑖)𝛿𝑎𝑏 + 𝐻̂
(1,0)
𝑎𝑏 + 𝑠

{︁
𝛿𝑎𝑏
[︀
4
3𝑚𝑎𝑖𝑎

𝑖 + 𝐾̂
(1,1)
𝑖 𝜔𝑖 + 3

4𝑚𝑎⟨𝑖𝑎𝑗⟩𝜔̂
𝑖𝑗

− 5
9𝑚ℰ𝑖𝑗𝜔̂𝑖𝑗

]︀
+ 4

3𝑚ℰ 𝑖
⟨𝑎𝜔̂𝑏⟩𝑖 + 4𝑚𝑎⟨𝑎𝑎𝑏⟩ − 38

9 𝑚ℰ𝑎𝑏 + 𝐻̂
(1,1)
𝑎𝑏𝑖 𝜔𝑖 + 𝜖𝑖

𝑗
(𝑎𝐼

(1,1)
𝑏)𝑗 𝜔𝑖

+𝐹
(1,1)
⟨𝑎 𝜔𝑏⟩

}︁
+𝑂(𝑠2), (23.14)
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Table 2: Symmetric trace-free tensors in the first-order metric perturbation in the buffer region, written
in terms of the electric-type tidal field ℰ𝑎𝑏, the acceleration 𝑎𝑖, and the tail of the perturbation.

𝐴(1,0) = ℎtail00

𝐶
(1,0)
𝑎 = ℎtail0𝑎 +𝑚𝑎𝑎

𝐾̂(1,0) = 1
3𝛿

𝑎𝑏ℎtail𝑎𝑏

𝐻̂
(1,0)
𝑎𝑏 = ℎtail⟨𝑎𝑏⟩

𝐴
(1,1)
𝑎 = ℎtail00𝑎 + 2ℎtail00 𝑎𝑎 +

2
3𝑚𝑎̇𝑎

𝐵̂(1,1) = 1
3ℎ

tail
0𝑖𝑗 𝛿

𝑖𝑗 + 1
3ℎ

tail
0𝑖 𝑎

𝑖

𝐶
(1,1)
𝑎𝑏 = ℎtail0⟨𝑎𝑏⟩ + 2𝑚ℰ𝑎𝑏 + ℎtail0⟨𝑎𝑎𝑏⟩

𝐷̂
(1,1)
𝑎 = 1

2𝜖𝑎
𝑏𝑐(ℎtail0𝑏𝑐 + ℎtail0𝑏 𝑎𝑐)

𝐾̂
(1,1)
𝑎 = 1

3𝛿
𝑏𝑐ℎtail𝑏𝑐𝑎 + 2

3𝑚𝑎̇𝑎

𝐻̂
(1,1)
𝑎𝑏𝑐 = ℎtail⟨𝑎𝑏𝑐⟩

𝐹
(1,1)
𝑎 = 3

5𝛿
𝑖𝑗ℎtail⟨𝑖𝑎⟩𝑗

𝐼
(1,1)
𝑎𝑏 = 2

3STF𝑎𝑏

(︁
𝜖𝑏

𝑖𝑗ℎtail⟨𝑎𝑖⟩𝑗

)︁

where the uppercase hatted tensors are specified in Table 2. Because the STF decomposition
is unique, these tensors must be identical to the free functions in Eq. (22.38); hence, those free
functions, comprising a regular, homogenous solution in the buffer region, have been uniquely
determined by boundary conditions and waves emitted by the particle in the past.

Singular and regular pieces

The Detweiler–Whiting singular field is given by

ℎS𝛼𝛽 = 2𝑚

∫︁
𝐺𝑆

𝛼𝛽𝛼′𝛽′(2𝑢𝛼
′
𝑢𝛽

′
+ 𝑔𝛼

′𝛽′
)𝑑𝑡′. (23.15)

Using the Hadamard decomposition 𝐺𝑆
𝛼𝛽𝛼′𝛽′ = 1

2𝑈𝛼𝛽𝛼′𝛽′𝛿(𝜎)− 1
2𝑉𝛼𝛽𝛼′𝛽′𝜃(𝜎), we can write this as

ℎS𝛼𝛽 =
𝑚

𝑟
𝑈𝛼𝛽𝛼′𝛽′(2𝑢𝛼

′
𝑢𝛽

′
+ 𝑔𝛼

′𝛽′
) +

𝑚

𝑟adv
𝑈𝛼𝛽𝛼′′𝛽′′(2𝑢𝛼

′′
𝑢𝛽

′′
+ 𝑔𝛼

′′𝛽′′
)

−2𝑚

∫︁ 𝑣

𝑢

𝑉𝛼𝛽𝛼̄𝛽(𝑢
𝛼̄𝑢𝛽 + 1

2𝑔
𝛼̄𝛽)𝑑𝑡, (23.16)

where primed indices now refer to the retarded point 𝑥′ = 𝑧(𝑢); double-primed indices refer to
the advanced point 𝑥′′ = 𝑧(𝑣); barred indices refer to points in the segment of the world line
between 𝑧(𝑢) and 𝑧(𝑣). The first term in Eq. (23.16) can be read off from the calculation of
the retarded field. The other terms are expanded using the identities 𝑣 = 𝑢 + 2𝑠 + 𝑂(𝑠2) and
𝑟adv = 𝑟(1 + 2

3𝑠
2𝑎̇𝑖𝜔

𝑖). The final result is

ℎS𝑡𝑡 =
2𝑚

𝑠
+ 3𝑚𝑎𝑖𝜔

𝑖 +𝑚𝑠
[︀
4𝑎𝑖𝑎

𝑖 + 3
4𝑎⟨𝑖𝑎𝑗⟩𝜔̂

𝑖𝑗 + 5
3ℰ𝑖𝑗𝜔̂𝑖𝑗

]︀
+𝑂(𝑠2), (23.17)

ℎS𝑡𝑎 = 𝑠
(︀
− 2𝑚𝑎̇𝑎 +

2
3𝑚𝜖𝑎𝑖𝑗ℬ

𝑗
𝑘𝜔̂

𝑖𝑘
)︀
+𝑂(𝑠2), (23.18)

ℎS𝑎𝑏 =
2𝑚

𝑠
𝛿𝑎𝑏 −𝑚𝑎𝑖𝜔

𝑖𝛿𝑎𝑏 + 𝑠
{︁
𝛿𝑎𝑏
[︀
4
3𝑚𝑎𝑖𝑎

𝑖 +
(︀
3
4𝑚𝑎⟨𝑖𝑎𝑗⟩ − 5

9𝑚ℰ𝑖𝑗
)︀
𝜔̂𝑖𝑗
]︀
+ 4

3𝑚ℰ 𝑖
⟨𝑎𝜔̂𝑏⟩𝑖

+4𝑚𝑎⟨𝑎𝑎𝑏⟩ − 38
9 𝑚ℰ𝑎𝑏

}︁
+𝑂(𝑠2). (23.19)

The regular field could be calculated from the regular Green’s function. But it is more straight-

forwardly calculated using ℎR𝛼𝛽 = ℎ
(1)
𝛼𝛽 − ℎS𝛼𝛽 . The result is

ℎR𝑡𝑡 = 𝐴(1,0) + 𝑠𝐴
(1,1)
𝑖 𝜔𝑖 +𝑂(𝑠2), (23.20)

ℎR𝑡𝑎 = 𝐶(1,0)
𝑎 + 𝑠

(︁
𝐵̂(1,1)𝜔𝑎 + 𝐶

(1,1)
𝑎𝑖 𝜔𝑖 + 𝜖𝑎𝑖

𝑗𝐷̂
(1,1)
𝑗 𝜔𝑖

)︁
+𝑂(𝑠2), (23.21)

ℎR𝑎𝑏 = 𝛿𝑎𝑏𝐾̂
(1,0) + 𝐻̂

(1,0)
𝑎𝑏 + 𝑠

(︁
𝛿𝑎𝑏𝐾̂

(1,1)
𝑖 𝜔𝑖 + 𝐻̂

(1,1)
𝑎𝑏𝑖 𝜔𝑖 + 𝜖𝑖

𝑗
(𝑎𝐼

(1,1)
𝑏)𝑗 𝜔𝑖 + 𝐹

(1,1)
⟨𝑎 𝜔𝑏⟩

)︁
+𝑂(𝑠2).(23.22)
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23.3 Equation of motion

With the metric perturbation fully determined, we can now express the self-force in terms of tail
integrals. Reading off the components of ℎR𝛼𝛽 from Table 2 and inserting the results into Eq. (22.84),
we arrive at

𝑎𝜇(1) = −1

2
(𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈)

(︀
2ℎtail𝜈𝜆𝜌 − ℎtail𝜆𝜌𝜈

)︀ ⃒⃒⃒
𝑎=0

𝑢𝜆𝑢𝜌 +
1

2𝑚
𝑅𝜇

𝜈𝜆𝜌𝑢
𝜈𝑆𝜆𝜌. (23.23)

We have now firmly established the results of the point-particle analysis.
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24 Concluding remarks

We have presented a number of derivations of the equations that determine the motion of a point
scalar charge 𝑞, a point electric charge 𝑒, and a point mass 𝑚 in a specified background spacetime.
In this concluding section we summarize these derivations and their foundations. We conclude by
describing the next step in the gravitational case: obtaining an approximation scheme sufficiently
accurate to extract the parameters of an extreme-mass-ratio inspiral from an observed gravitational
waveform.

Our derivations are of two types. The first is based on the notion of an exact point particle.
In this approach, we assume that the self-force on the particle arises from a particular piece of
its field, either that which survives angle-averaging or the Detweiler–Whiting regular field. The
second type is based on the notion of an asymptotically small body, and abandons the fiction
of a point particle. In this approach, we don’t assume anything about the body’s equation of
motion, but rather derive it directly from the field equations. Although we have presented such
a derivation only in the gravitational case, analogous ones could be performed in the scalar and
electromagnetic cases, using conservation of energy-momentum instead of the field equations alone.
Such a calculation was performed by Gralla et al. [82] in the restricted case of an electric charge
in a flat background.

Perhaps the essential result of our derivation based on an asymptotically small body is that
it confirms all of the results derived using point particles: at linear order in the body’s mass, the
field it creates is identical to that of a point particle, and its equation of motion is precisely that
derived from physically motivated axioms for a point particle. In other words, at linear order, not
only can we get away with the fiction of a point particle, but our assumptions about the physics
governing its motion are also essentially correct.

24.1 The motion of a point particle

Spatial averaging

Our first means of deriving equations of motion for point particles is based on spatial averaging.
In this approach, we assume the following axiom:

the force on the particle arises from the piece of the field that survives angle averaging.

For convenience in our review, we consider the case of a point electric charge and adopt the
Detweiler–Whiting decomposition of the Faraday tensor into singular and regular pieces, 𝐹𝛼𝛽 =
𝐹R
𝛼𝛽 + 𝐹 S

𝛼𝛽 . We average 𝐹𝛼𝛽 over a sphere of constant proper distance from the particle. We then
evaluate the averaged field at the particle’s position. Because the regular field is nonsingular on
the world line, this yields

𝑒⟨𝐹𝜇𝜈⟩𝑢𝜈 = 𝑒⟨𝐹 S
𝜇𝜈⟩𝑢𝜈 + 𝑒𝐹R

𝜇𝜈𝑢
𝜈 ,

where

𝑒⟨𝐹 S
𝜇𝜈⟩𝑢𝜈 = −(𝛿𝑚)𝑎𝜇, 𝛿𝑚 = lim

𝑠→0

(︂
2

3

𝑒2

𝑠

)︂
,

and

𝑒𝐹R
𝜇𝜈𝑢

𝜈 = 𝑒2
(︀
𝑔𝜇𝜈 + 𝑢𝜇𝑢𝜈

)︀(︂2

3
𝑎̇𝜈 +

1

3
𝑅𝜈

𝜆𝑢
𝜆

)︂
+ 2𝑒2𝑢𝜈

∫︁ 𝜏−

−∞
∇[𝜇𝐺

+
𝜈]𝜆′

(︀
𝑧(𝜏), 𝑧(𝜏 ′)

)︀
𝑢𝜆

′
𝑑𝜏 ′.

We now postulate that the equations of motion are 𝑚𝑎𝜇 = 𝑒⟨𝐹𝜇𝜈⟩𝑢𝜈 , where 𝑚 is the particle’s
bare mass. With the preceding results we arrive at 𝑚obs𝑎𝜇 = 𝑒𝐹R

𝜇𝜈𝑢
𝜈 , where 𝑚obs ≡ 𝑚 + 𝛿𝑚 is

the particle’s observed (renormalized) inertial mass.
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In this approach, the fiction of a point particle manifests itself in the need for mass renormal-
ization. Such a requirement can be removed, even within the point-particle picture, by adopting
the “comparison axiom” proposed by Quinn and Wald [150]. If we consider extended (but small)
bodies, no such renormalization is required, and the equations of motion follow directly from the
conservation of energy-momentum. However, the essential assumption about the nature of the
force is valid: only the piece of the field that survives angle-averaging exerts a force on the body.

The Detweiler–Whiting Axiom

Our second means of deriving equations of motion for point particles is based on the Detweiler–
Whiting axiom, which asserts that

the singular field exerts no force on the particle; the entire self-force arises from the
action of the regular field.

This axiom, which is motivated by the symmetric nature of the singular field, and also its causal
structure, gives rise to the same equations of motion as the averaging method. In this picture,
the particle simply interacts with a free field (whose origin can be traced to the particle’s past),
and the procedure of mass renormalization is sidestepped. In the scalar and electromagnetic cases,
the picture of a particle interacting with a free radiation field removes any tension between the
nongeodesic motion of the charge and the principle of equivalence. In the gravitational case the
Detweiler–Whiting axiom produces a generalized equivalence principle (cf. Ref. [74]): up to order
𝜀2 errors, a point mass 𝑚 moves on a geodesic of the spacetime with metric 𝑔𝛼𝛽 + ℎR𝛼𝛽 , which is
nonsingular and a solution to the vacuum field equations. This is a conceptually powerful, and
elegant, formulation of the MiSaTaQuWa equations of motion. And it remains valid for (non-
spinning) small bodies.

Resolving historical ambiguities

Although they yield the correct physical description, the above axioms are by themselves insuf-
ficient, and historically, two problems have arisen in utilizing them: One, they led to ill-behaved
equations of motion, requiring a process of order reduction; and two, in the gravitational case
they led to equations of motion that are inconsistent with the field equations, requiring the proce-
dure of gauge-relaxation. Both of these problems arose because the expansions were insufficiently
systematic, in the sense that they did not yield exactly solvable perturbation equations. In the
approach taken in our review, we have shown that these problems do not arise within the context of
a systematic expansion. Although we have done so only in the case of an extended body, where we
sought a higher degree of rigor, one could do the same in the case of point particles by expanding
in the limit of small charge or mass (see, e.g., the treatment of a point mass in Ref. [144]).

Consider the Abraham–Lorentz–Dirac equation𝑚𝑎𝜇 = 𝑓𝜇ext+
2
3𝑒

2𝑎̇𝜇. To be physically meaning-
ful and mathematically well-justified, it must be thought of as an approximate equation of motion
for a localized matter distribution with small charge 𝑒≪ 1. But it contains terms of differing orders
𝑒0 and 𝑒2, and the acceleration itself is obviously a function of 𝑒. Hence, the equation has not been
fully expanded. One might think that it is somehow an exact equation, despite its ill behaviour.

Or one might replace it with the order-reduced equation 𝑚𝑎𝜇 = 𝑓𝜇ext +
2𝑒2

3𝑚 𝑓
𝜇
ext to eliminate that ill

behaviour. But one can instead assume that 𝑎𝜇(𝑒), like other functions of 𝑒, possesses an expansion
in powers of 𝑒, leading to the two well-behaved equations 𝑚𝑎(0)𝜇 = 𝑓𝜇ext and 𝑚𝑎(1)𝜇 = 2

3𝑒
2𝑎̇(0)𝜇.

However, the fact that such an equation can even arise indicates that one has not begun with a
systematic expansion of the governing field equations (in this case, the conservation equation and
the Maxwell equations). If one began with a systematic expansion, with equations exactly solvable
at each order, no such ambiguity would arise.
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The same can be said of the second problem. It is well known that in general relativity,
the motion of gravitating bodies is determined by the Einstein field equations; the equations of
motion cannot be separately imposed. And specifically, if we deal with the linearized Einstein
equation 𝛿𝐺𝛼𝛽 [ℎ

(1)] = 8𝜋𝑇𝛼𝛽 [𝛾], where 𝑇𝛼𝛽 is the energy-momentum tensor of a point particle in
the background spacetime, then the linearized Bianchi identity requires the point particle to move
on a geodesic of the background spacetime. This seems to contradict the MiSaTaQuWa equation
and therefore the assumptions we made in deriving it. In order to remove this inconsistency,
the earliest derivations [130, 150] invoked an a posteriori gauge-relaxation: rather than solving
a linearized Einstein equation exactly, they solved the wave equation 𝐸𝛼𝛽 [ℎ

(1)] = −16𝜋𝑇𝛼𝛽 in
combination with the relaxed gauge condition 𝐿𝛼[𝜀ℎ

(1)] = 𝑂(𝜀2). The allowed errors in the gauge
condition carry over into the linearized Bianchi identity, such that it no longer restricts the motion
to be geodesic. In this approach, one is almost solving the linearized problem one set out to
solve. But again, such an a posteriori corrective measure is required only if one begins without
a systematic expansion. The first-order metric perturbation is a functional of a world line; if we
allow that world line to depend on 𝜀, then the metric has evidently not been fully expanded in
powers of 𝜀. To resolve the problem, one needs to carefully deal with this fact.

In the approach we have adopted here, following Ref. [144], we have resolved these problems via
a self-consistent expansion in which the world line is held fixed while expanding the metric. Rather
than beginning with the linear field equation, we began by reformulating the exact equation in the
form

𝐸𝛼𝛽 [ℎ] = 𝑇 eff
𝛼𝛽 , (24.1)

𝐿𝛼[ℎ] = 0. (24.2)

These equations we systematically expanded by (i) treating the metric perturbation as a functional
of a fixed world line, keeping the dependence on the world line fixed while expanding, and (ii)
expanding the acceleration of the world line. Since we never sought a solution to the equation
𝛿𝐺𝛼𝛽 [ℎ

(1)] = 8𝜋𝑇𝛼𝛽 [𝛾], no tension arose between the equation of motion and the field equation.
In addition, we dealt only with exactly solvable perturbative equations: rather then imposing the
ad hoc a posteriori gauge condition 𝐿𝜇[𝜀ℎ

(1)] = 𝑂(𝜀2), our approach systematically led to the

conditions 𝐿
(0)
𝜇

[︀
ℎ(1)

]︀
= 0 and 𝐿

(1)
𝜇

[︀
ℎ(1)

]︀
= −𝐿(0)

𝜇

[︀
ℎ(2)

]︀
, which can be solved exactly. Like in the

issue of order reduction, the essential step in arriving at exactly solvable equations is assuming an
expansion of the particle’s acceleration.

Historically, these issues were first resolved by Gralla and Wald [83] using a different method.
Rather than allowing an 𝜀-dependence in the first-order perturbation, they fully expanded every
function in the problem in a power series, including the world line itself. In this approach, the
world line of the body is found to be a geodesic, but higher-order effects arise in deviation vectors
measuring the drift of the particle away from that geodesic. Such a method has the drawback of
being limited to short timescales, since the deviation vectors will eventually grow large as the body
moves away from the initial reference geodesic.

24.2 The motion of a small body

Although the above results for point particles require assumptions about the form of the force,
their results have since been derived from first principles, and the physical pictures they are based
on have proven to be justified: An asymptotically small body behaves as a point particle moving
on a geodesic of the smooth part of the spacetime around it, or equivalently, it moves on a world
line accelerated by the asymmetric part of its own field.

In addition to a derivation from first principles, we also seek a useful approximation scheme.
Any such scheme must deal with the presence of multiple distinct scales. Most obviously, these
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are the mass and size of the body itself and the lengthscales of the external universe, but other
scales also arise. For example, in order to accurately represent the physics of an extreme-mass-ratio
system, we must consider changes over four scales: First, there is the large body’s mass, which
is the characteristic lengthscale of the external universe. For convenience, since all lengths are
measured relative to this one, we rescale them such that this global lengthscale is ∼ 1. Second,
there is the small body’s mass ∼ 𝜀, which is the scale over which the gravitational field changes
near the body; since the body is compact, this is also the scale of its linear size. Third, there is
the radiation-reaction time ∼ 1/𝜀; this is the time over which the small effects of the self-force
accumulate to produce significant changes, specifically the time required for quantities such as
the small body’s energy and angular momentum to accumulate order 1 changes. Fourth, there is
the large distance to the wave zone. We will not discuss this last scale here, but dealing with it
analytically would likely require matching a wave solution at null infinity to an expansion formally
expected to be valid in a region of size ∼ 1/𝜀.

Self-consistent and matched asymptotic expansions

In this review, we have focused on a self-consistent approximation scheme first presented in
Refs. [144, 145, 143]. It deals with the small size of the body using two expansions. Near the
body, to capture changes on the short distances ∼ 𝜀, we adopt an inner expansion in which the
body remains of constant size while all other distances approach infinity. Outside of this small
neibourhood around the body, we adopt an outer expansion in which the body shrinks to zero mass
and size about an 𝜀-dependent world line that accurately reflects its long-term motion. The world
line 𝛾 is defined in the background spacetime of the outer expansion. Its acceleration is found by
solving the Einstein equation in a buffer region surrounding the body, where both expansions are
valid; in this region, both expansions must agree, and we can use the multipole moments of the
inner expansion to determine the outer one. In particular, we define 𝛾 to be the body’s world line
if and only if the body’s mass dipole moment vanishes when calculated in coordinates centered on
it. As in the point-particle calculation, the essential step in arriving at exactly solvable equations
and a well-behaved equation of motion is an assumed expansion of the acceleration on the world
line.

In order to construct a global solution in the outer expansion, we first recast the Einstein
equation in a form that can be expanded and solved for an arbitrary world line. As in the point-
particle case, we accomplish this by adopting the Lorenz gauge for the total metric perturbation.
We can then write formal solutions to the perturbation equations at each order as integrals over a
small tube surrounding the body (plus an initial data surface). By embedding the tube in the buffer
region, we can use the data from the buffer-region expansion to determine the global solution. At
first order, we find that the metric perturbation is precisely that of a point particle moving on the
world line 𝛾. While the choice of gauge is not essential in finding an expression for the force in
terms of the field in the buffer-region expansion, it is essential in our method of determining the
global field. Without making use of the relaxed Einstein equations, no clear method of globally
solving the Einstein equation presents itself, and no simple split between the perturbation and the
equation of motion arises.

Because this expansion self-consistently incorporates the corrections to the body’s motion, it
promises to be accurate on long timescales. Specifically, when combined with the first-order metric
perturbation, the first-order equation of motion defines a solution to the Einstein equation that
we expect to be accurate up to order 𝜀2 errors over times 𝑡 . 1/𝜀. When combined with the
second-order perturbation, it defines a solution we expect to be accurate up to order 𝜀3 errors on
the shorter timescale ∼ 1.

This approach closely mirrors the extremely successful methods of post-Newtonian theory [74].
In particular, both schemes recast the Einstein equation in a relaxed form before expanding it.
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Also, our use of an inner limit near the body is analogous to the “strong-field point particle limit”
exploited by Futamase and his collaborators [74]. And our calculation of the equation of motion
is somewhat similar to the methods used by Futamase and others [74, 152], in that it utilizes a
multipole expansion of the body’s metric in the buffer region.

Alternative methods

Various other approaches have been taken to deal with the multiple scales in the problem. In
particular, even the earliest paper on the gravitational self-force [130] made use of inner and outer
limits, which were also used in different forms in later derivations [142, 49, 72]. However, those
early derivations are problematic. Specifically, they never adequately define the world line for
which they derive equations of motion.

In the method of matched asymptotic expansions used in Refs. [130, 142, 49], the first-order
perturbation in the outer expansion is assumed to be that of a point particle, with an attendant
world line, and the inner expansion is assumed to be that of a perturbed black hole; by matching
the two expansions in the buffer region, the acceleration of the world line is determined. Since
the forms of the inner and outer expansions are already restricted, this approach’s conclusions
have somewhat limited strength, but it has more fundamental problems as well. The matching
procedure begins by expanding the outer expansion in powers of distance 𝑠 (or 𝑟) from the world
line, and the inner expansion for large spacial distances 𝑅 ≫ 𝜀. But the two expansions begin
in different coordinate systems with an unknown relationship between them. In particular, there
is no given relationship between the world line and the “position” of the black hole. The two
expansions are matched by finding a coordinate transformation that makes them agree in the
buffer region. However, because there is no predetermined relationship between the expansions,
this transformation is not in fact unique, and it does not yield a unique equation of motion. One
can increase the strength of the matching condition in order to arrive at unique results, but that
further weakens the strength of the conclusions. Refer to Ref. [145] for a discussion of these issues.

Rather than finding the equation of motion from the field equations, as in the above calculations,
Fukumoto et al. [72] found the equation of motion by defining the body’s linear momentum as an
integral over the body’s interior and then taking the derivative of that momentum. But they then
required an assumed relationship between the momentum and the four-velocity of a representative
world line in the body’s interior. Hence, the problem is again an inadequate definition of the
body’s motion. Because it involves integrals over the body’s interior, and takes the world line to
lie therein, this approach is also limited to material bodies; it does not apply to black holes.

The first reliable derivation of the first-order equation of motion for an asymptotically small
body was performed by Gralla and Wald [83], who used a method of the same nature as the one
presented here, deriving equations of motion by solving the field equations in the buffer region. As
we have seen, however, their derivation is based on an expansion of the world line in powers of 𝜀
instead of a self-consistent treatment that keeps it fixed.

Using very different methods, Harte has also provided reliable derivations of equations of motion
for extended bodies interacting with their own scalar and electromagnetic fields in fixed background
spacetimes [89, 90, 91]. His approach is based on generalized definitions of momenta, the evolution
of which is equivalent to energy-momentum conservation. The momenta are defined in terms
of generalized Killing fields 𝜉𝛼, the essential property of which is that they satisfy $𝜉𝑔𝛼𝛽 |𝛾 =
∇𝛾$𝜉𝑔𝛼𝛽 |𝛾 = 0 – that is, they satisfy Killing’s equation on the body’s world line and approximately
satisfy it “nearby.” Here the world line can be defined in multiple ways using, for example, center-
of-mass conditions. This approach is nonperturbative, with no expansion in the limit of small
mass and size (though it does require an upper limit on the body’s size and a lower limit on its
compactness). It has the advantage of very naturally deriving a generalization of the Detweiler–
Whiting axiom: The field of an extended body can be split into (i) a solution to the vacuum field
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equations which exerts a direct self-force, and (ii) a solution to the equations sourced by the body,
which shifts the body’s multipole moments. This approach has not yet been applied to gravity,
but such an application should be relatively straightforward. However, as with the approach of
Fukumoto et al. [72], this one does not apply to black holes.

Other methods have also been developed (or suggested) to accomplish the same goals as the
self-consistent expansion. Most prominent among these is the two-timescale expansion suggested
by Hinderer and Flanagan [94]. As discussed in Section 2, their method splits the orbital evolution
into slow and fast dynamics by introducing slow and fast time variables. In the terminology of
Section 22, this method constructs a general expansion by smoothly transitioning between regular
expansions constructed at each value of the slow time variable, with the transition determined by
the evolution with respect to the slow time. On the scale of the fast time, the world line is a
geodesic; but when the slow time is allowed to vary, the world line transitions between geodesics
to form the true, accelerated world line. This results in a global, uniform-in-time approximation.
One should note that simply patching together a sequence of regular expansions, by shifting to
a new geodesic every so often using the deviation vector, would not accomplish this: Such a
procedure would accumulate a secular error in both the metric perturbation and the force, because
the perturbation would be sourced by a world line secularly deviating from the position of the
body, and the force would be calculated from this erroneous perturbation. The error would be
proportional to the number of “shifts” multiplied by a nonlinear factor depending on the time
between them. And this error would, formally at least, be of the same magnitude as the solution
itself.

The fundamental difference between the self-consistent expansion and the two-timescale ex-
pansion is the following: In the two-timescale method, the Einstein equation, coupled to the
equation of motion of the small body, is reduced to a dynamical system that can be evolved in
time. The true world line of the body then emerges from the evolution of this system. In the
method presented here, we have instead sought global, formal solutions to the Einstein equation,
written in terms of global integrals; to accomplish this, we have treated the world line of the body
as a fixed structure in the external spacetime. However, the two methods should agree. Note,
though, that the two-timescale expansion is limited to orbits in Kerr, and it requires evolution
equations for the slow evolution of the large black hole’s mass and spin parameters, which have
not yet been derived. Since the changes in mass and spin remain small on a radiation-reaction
timescale, in the self-consistent expansion presented here they are automatically incorporated into

the perturbations ℎ
(𝑛)
𝛼𝛽 . It is possible that this incorporation leads to errors on long timescales,

in which case a different approach, naturally allowing slow changes in the background, would be
more advantageous.

24.3 Beyond first order

The primary experimental motivation for researching the self-force is to produce waveform tem-
plates for LISA. In order to extract the parameters of an extreme-mass-ratio binary from a wave-
form, we require a waveform that is accurate up to errors of order 𝜀 after a radiation-reaction time
∼ 1/𝜀. If we use the first-order equation of motion, we will be neglecting an acceleration ∼ 𝜀2,
which will lead to secular errors of order unity after a time ∼ 1/𝜀. Thus, the second-order self-force
is required in order to obtain a sufficiently accurate waveform template. In order to achieve the
correct waveform, we must also obtain the second-order part of the metric perturbation; this can
be easily done, at least formally, using the global integral representations outside a world tube.
However, a practical numerical calculation may prove difficult, since one would not wish to excise
the small tube from one’s numerical domain, and the second-order perturbation would diverge too
rapidly on the world line to be treated straightforwardly.

A formal expression for the second-order force has already been derived by Rosenthal [155, 156].
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However, he expresses the second-order force in a very particular gauge in which the first-order
self-force vanishes. This is sensible on short timescales, but not on long timescales, since it forces
secular changes into the first-order perturbation, presumably leading to the first-order perturbation
becoming large with time. Furthermore, it is not a convenient gauge, since it does not provide
what we wish it to: a correction to the nonzero leading-order force in the Lorenz gauge.

Thus, we wish to obtain an alternative to Rosenthal’s derivation. Based on the methods
reviewed in this article, there is a clear route to deriving the second-order force. One would
construct a buffer-region expansion accurate up to order 𝜀3. Since one would require the order 𝜀2𝑠
terms in this expansion, in order to determine the acceleration, one would need to increase the order
of the expansion in 𝑟 as well. Specifically, one would need terms up to orders 𝜀0𝑠3, 𝜀𝑠2, 𝜀2𝑠, and
𝜀3𝑠0. In such a calculation, one would expect the following terms to appear: the body’s quadrupole
moment 𝑄𝑎𝑏, corrections 𝛿𝑀𝑖 and 𝛿𝑆𝑖 to its mass and spin dipoles, and a second-order correction
𝛿2𝑚 to its mass. Although some ambiguity may arise in defining the world line of the body at this
order, a reasonable definition appears to be to guarantee that 𝛿𝑀𝑖 vanishes. However, at this order
one may require some model of the body’s internal dynamics, since the equation of motion will
involve the body’s quadrupole moment, for which the Einstein equation is not expected to yield an
evolution equation. But if one seeks only the second-order self-force, one could simply neglect the
quadrupole by assuming that the body is spherically symmetric in isolation. In any case, the force
due to the body’s quadrupole moment is already known from various other methods: see, e.g., the
work of Dixon [57, 58, 59]; more recent methods can be found in Ref. [165] and references therein.

Because such a calculation could be egregiously lengthy, one may consider simpler methods,
perhaps requiring stronger assumptions. For example, one could straightforwardly implement the
method of matched asymptotic expansions with the matching conditions discussed in Ref. [145],
in which one makes strong assumptions about the relationship between the inner and outer ex-
pansions. The effective field theory method used by Galley and Hu [75] offers another possible
route.

Alternatively, one could calculate only part of the second-order force. Specifically, as described
in Section 2.5, Hinderer and Flanagan [94, 69] have shown that one requires in fact only the
averaged dissipative part of the second-order force. This piece of the force can be calculated within
an adiabatic approximation, in which the rates of change of orbital parameters are calculated from
the radiative Green’s function, asymptotic wave amplitudes, and information about the orbit that
sources them. Hence, we might be able to forgo a complete calculation of the second-order force,
and use instead the complete first-order force in conjunction with an adiabatic approximation for
the second-order force.

The self-force, however, is of interest beyond its relevance to LISA. The full second-order force
would be useful for more general purposes, such as more accurate comparisons to post-Newtonian
theory, and analysis of other systems, such as intermediate mass ratio binaries. Perhaps most
importantly, it is of fundamental importance in our understanding of the motion of small bodies.
For these reasons, proceeding to second order in a systematic expansion, and thereby obtaining
second-order expressions for the force on a small body, remains an immediate goal.
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Friedman, Ryuichi Fujita, Chad Galley, Darren Golbourn, Sam Gralla, Roland Haas, Abraham
Harte, Wataru Hikida, Tanja Hinderer, Scott Hughes, Werner Israel, Toby Keidl, Dong-hoon Kim,
Alexandre Le Tiec, Carlos Lousto, Eirini Messaritaki, Yasushi Mino, Hiroyuki Nakano, Amos
Ori, Larry Price, Eran Rosenthal, Norichika Sago, Misao Sasaki, Abhay Shah, Carlos Sopuerta,
Alessandro Spallicci, Hideyuki Tagoshi, Takahiro Tanaka, Jonathan Thornburg, Bill Unruh, Bob
Wald, Niels Warburton, Barry Wardell, Alan Wiseman, and Bernard Whiting. This work was
supported by the Natural Sciences and Engineering Research Council of Canada.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7

http://www.livingreviews.org/lrr-2011-7


The Motion of Point Particles in Curved Spacetime 173

Appendices

A Second-order expansions of the Ricci tensor

We present here various expansions used in solving the second-order Einstein equation in Sec-
tion 22.4. We require an expansion of the second-order Ricci tensor 𝛿2𝑅𝛼𝛽 , defined by

𝛿2𝑅𝛼𝛽 [ℎ] = − 1
2𝛾

𝜇𝜈
;𝜈

(︀
2ℎ𝜇(𝛼;𝛽) − ℎ𝛼𝛽;𝜇

)︀
+ 1

4ℎ
𝜇𝜈

;𝛼ℎ𝜇𝜈;𝛽 + 1
2ℎ

𝜇
𝛽
;𝜈 (ℎ𝜇𝛼;𝜈 − ℎ𝜈𝛼;𝜇)

− 1
2ℎ

𝜇𝜈
(︀
2ℎ𝜇(𝛼;𝛽)𝜈 − ℎ𝛼𝛽;𝜇𝜈 − ℎ𝜇𝜈;𝛼𝛽

)︀
, (A.1)

where 𝛾𝜇𝜈 is the trace-reversed metric perturbation, and an expansion of a certain piece of 𝐸𝜇𝜈 [ℎ
(2)].

Specifically, we require an expansion of 𝛿2𝑅
(0)
𝛼𝛽 [ℎ

(1)] in powers of the Fermi radial coordinate 𝑠,

where for a function 𝑓 , 𝛿2𝑅
(0)
𝛼𝛽 [𝑓 ] consists of 𝛿2𝑅𝛼𝛽 [𝑓 ] with the acceleration 𝑎𝜇 set to zero. We

write

𝛿2𝑅
(0)
𝛼𝛽 [ℎ

(1)] =
1

𝑠4
𝛿2𝑅

(0,−4)
𝛼𝛽

[︁
ℎ(1)

]︁
+

1

𝑠3
𝛿2𝑅

(0,−3)
𝛼𝛽

[︁
ℎ(1)

]︁
+

1

𝑠2
𝛿2𝑅

(0,−2)
𝛼𝛽

[︁
ℎ(1)

]︁
+𝑂(1/𝑠), (A.2)

where the second superscript index in parentheses denotes the power of 𝑠. Making use of the

expansion of ℎ
(1)
𝛼𝛽 , obtained by setting the acceleration to zero in the results for ℎ

(1)
𝛼𝛽 found in

Section 22.3, one finds

𝛿2𝑅
(2,−4)
𝛼𝛽

[︁
ℎ(1)

]︁
= 2𝑚2

(︀
7𝜔̂𝑎𝑏 +

4
3𝛿𝑎𝑏

)︀
𝑥𝑎𝛼𝑥

𝑏
𝛽 − 2𝑚2𝑡𝛼𝑡𝛽 , (A.3)

and

𝛿2𝑅
(2,−3)
𝑡𝑡

[︁
ℎ(1)

]︁
= 3𝑚𝐻̂

(1,0)
𝑖𝑗 𝜔̂𝑖𝑗 , (A.4)

𝛿2𝑅
(2,−3)
𝑡𝑎

[︁
ℎ(1)

]︁
= 3𝑚𝐶

(1,0)
𝑖 𝜔̂𝑖

𝑎, (A.5)

𝛿2𝑅
(2,−3)
𝑎𝑏

[︁
ℎ(1)

]︁
= 3𝑚

(︀
𝐴(1,0) + 𝐾̂(1,0)

)︀
𝜔̂𝑎𝑏 − 6𝑚𝐻̂

(1,0)
𝑖⟨𝑎 𝜔̂𝑖

𝑏⟩ +𝑚𝛿𝑎𝑏𝐻̂
(1,0)
𝑖𝑗 𝜔̂𝑖𝑗 , (A.6)

and

𝛿2𝑅
(2,−2)
𝑡𝑡

[︁
ℎ(1)

]︁
= − 20

3 𝑚
2ℰ𝑖𝑗𝜔̂𝑖𝑗 + 3𝑚𝐻̂

(1,1)
𝑖𝑗𝑘 𝜔̂𝑖𝑗𝑘 + 7

5𝑚𝐴
(1,1)
𝑖 𝜔𝑖 + 3

5𝑚𝐾̂
(1,1)
𝑖 𝜔𝑖

− 4
5𝑚𝜕𝑡𝐶

(1,0)
𝑖 𝜔𝑖, (A.7)

𝛿2𝑅
(2,−2)
𝑡𝑎

[︁
ℎ(1)

]︁
= −𝑚𝜕𝑡𝐾̂(1,0)𝜔𝑎 + 3𝑚𝐶

(1,1)
𝑖𝑗 𝜔̂𝑎

𝑖𝑗 +𝑚
(︁

6
5𝐶

(1,1)
𝑎𝑖 − 𝜕𝑡𝐻̂

(1,0)
𝑎𝑖

)︁
𝜔𝑖

+2𝑚𝜖𝑎
𝑖𝑗𝐷̂

(1,1)
𝑖 𝜔𝑗 +

4
3𝑚

2𝜖𝑎𝑖𝑘ℬ𝑘
𝑗 𝜔̂

𝑖𝑗 , (A.8)

𝛿2𝑅
(2,−2)
𝑎𝑏

[︁
ℎ(1)

]︁
= 𝛿𝑎𝑏𝑚

(︁
16
15𝜕𝑡𝐶

(1,0)
𝑖 − 13

15𝐴
(1,1)
𝑖 − 9

5𝐾̂
(1,1)
𝑖

)︁
𝜔𝑖

+𝛿𝑎𝑏

(︁
− 50

9 𝑚
2ℰ𝑖𝑗𝜔̂𝑖𝑗 +𝑚𝐻̂

(1,1)
𝑖𝑗𝑘 𝜔̂𝑖𝑗𝑘

)︁
− 14

3 𝑚
2ℰ𝑖𝑗𝜔̂𝑎𝑏

𝑖𝑗

+𝑚
(︁

33
10𝐴

(1,1)
𝑖 + 27

10𝐾̂
(1,1)
𝑖 − 3

5𝜕𝑡𝐶
(1,0)
𝑖

)︁
𝜔̂𝑎𝑏

𝑖

+𝑚
(︁

28
25𝐴

(1,1)
⟨𝑎 − 18

25𝐾̂
(1,1)
⟨𝑎 − 46

25𝜕𝑡𝐶
(1,0)
⟨𝑎

)︁
𝜔̂𝑏⟩

− 8
3𝑚

2ℰ𝑖⟨𝑎𝜔̂𝑏⟩
𝑖 − 6𝑚𝐻̂

(1,1)
𝑖𝑗⟨𝑎 𝜔̂𝑏⟩

𝑖𝑗 + 3𝑚𝜖𝑖𝑗(𝑎𝜔̂𝑏)
𝑗𝑘𝐼

(1,1)
𝑖𝑘

+ 2
45𝑚

2ℰ𝑎𝑏 − 2
5𝑚𝐻̂

(1,1)
𝑎𝑏𝑖 𝜔𝑖 + 8

5𝑚𝜖
𝑖
𝑗(𝑎𝐼

(1,1)
𝑏)𝑖 𝜔𝑗 . (A.9)
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Next, we require an analogous expansion of 𝐸
(0)
𝛼𝛽

[︀
1
𝑟2ℎ

(2,−2) + 1
𝑟ℎ

(2,−1)
]︀
, where 𝐸

(0)
𝛼𝛽 [𝑓 ] is defined

for any 𝑓 by setting the acceleration to zero in 𝐸𝛼𝛽 [𝑓 ]. The coefficients of the 1/𝑟4 and 1/𝑟3 terms
in this expansion can be found in Section 22.4; the coefficient of 1/𝑟2 will be given here. For
compactness, we define this coefficient to be 𝐸̃𝛼𝛽 . The 𝑡𝑡-component of this quantity is given by

𝐸̃𝑡𝑡 = 2𝜕2𝑡𝑀𝑖𝜔
𝑖 + 8

5𝑆
𝑗ℬ𝑖𝑗𝜔

𝑖 − 2
3𝑀

𝑗ℰ𝑖𝑗𝜔𝑖 + 82
3 𝑚

2ℰ𝑖𝑗𝜔̂𝑖𝑗 + 24𝑆⟨𝑖ℬ𝑗𝑘⟩𝜔̂
𝑖𝑗𝑘 − 20𝑀⟨𝑖ℰ𝑗𝑘⟩𝜔̂𝑖𝑗𝑘. (A.10)

The 𝑡𝑎-component is given by

𝐸̃𝑡𝑎 = 44
15𝜖𝑎𝑖𝑗𝑀

𝑘ℬ𝑗
𝑘𝜔

𝑖 − 2
15

(︁
11𝑆𝑖ℰ𝑗

𝑘 + 18𝑀 𝑖ℬ𝑗
)︁
𝜖𝑖𝑗𝑎𝜔

𝑘 + 2
15

(︀
41𝑆𝑗ℰ𝑘

𝑎 − 10𝑀 𝑗ℬ𝑘
𝑎

)︀
𝜖𝑖𝑗𝑘𝜔

𝑖

+4𝜖𝑎𝑖𝑗

(︁
𝑆𝑗ℰ𝑘𝑙 + 2𝑀𝑘ℬ𝑗

𝑙

)︁
𝜔̂𝑖𝑘𝑙 + 4𝜖𝑖𝑗⟨𝑘ℰ𝑗

𝑙⟩𝑆
𝑖𝜔̂𝑎

𝑘𝑙 + 68
3 𝑚

2𝜖𝑎𝑖𝑗ℬ𝑗
𝑘𝜔̂

𝑖𝑘. (A.11)

This can be decomposed into irreducible STF pieces via the identities

𝜖𝑎𝑖𝑗𝑆
𝑖ℰ𝑗

𝑘 = 𝑆𝑖ℰ𝑗
(𝑘𝜖𝑎)𝑖𝑗 +

1
2𝜖𝑎𝑘𝑗𝑆

𝑖ℰ𝑗
𝑖 (A.12)

𝜖𝑎𝑗⟨𝑖ℰ𝑘𝑙⟩𝑆𝑗 = STF
𝑖𝑘𝑙

[︁
𝜖𝑗𝑎𝑙𝑆⟨𝑖ℰ𝑗𝑘⟩ − 2

3𝛿𝑎𝑙𝑆
𝑝ℰ𝑗

(𝑖𝜖𝑘)𝑗𝑝

]︁
(A.13)

𝜖𝑎𝑗⟨𝑖𝑀𝑙ℬ𝑘⟩
𝑗 = STF

𝑖𝑘𝑙

[︁
𝜖𝑗𝑎𝑙𝑀⟨𝑖ℬ𝑗𝑘⟩+

1
3𝛿𝑎𝑙𝑀

𝑝ℬ𝑗
(𝑖𝜖𝑘)𝑗𝑝

]︁
, (A.14)

which follow from Eqs. (B.3) and (B.7), and which lead to

𝐸̃𝑡𝑎 = 2
5𝜖𝑎𝑖𝑗

(︁
6𝑀𝑘ℬ𝑗

𝑘 − 7𝑆𝑘ℰ𝑗
𝑘

)︁
𝜔𝑖 + 4

3

(︁
2𝑀 𝑙ℬ𝑘

(𝑖 − 5𝑆𝑙ℰ𝑘
(𝑖

)︁
𝜖𝑗)𝑘𝑙𝜔̂𝑎

𝑖𝑗

+
(︁
4𝑆𝑗ℰ𝑘

(𝑎 − 56
15𝑀

𝑗ℬ𝑘
(𝑎

)︁
𝜖𝑖)𝑗𝑘𝜔

𝑖 + 4𝜖𝑎𝑖
𝑙
(︀
𝑆⟨𝑗ℰ𝑘𝑙⟩ + 2𝑀⟨𝑗ℬ𝑘𝑙⟩

)︀
𝜔̂𝑖𝑗𝑘 + 68

3 𝑚
2𝜖𝑎𝑖𝑗ℬ𝑗

𝑘𝜔̂
𝑖𝑘.(A.15)

The 𝑎𝑏-component is given by

𝐸̃𝑎𝑏 =
56
3 𝑚

2ℰ𝑖𝑗𝜔̂𝑎𝑏
𝑖𝑗 + 52

45𝑚
2ℰ𝑎𝑏 − 𝛿𝑎𝑏

[︀(︀
2𝜕2𝑡𝑀𝑖 +

8
5𝑆

𝑗ℬ𝑖𝑗 +
10
9 𝑀

𝑗ℰ𝑖𝑗
)︀
𝜔𝑖 + 100

9 𝑚2ℰ𝑖𝑗𝜔̂𝑖𝑗
]︀

−𝛿𝑎𝑏
(︀
20
3 𝑀⟨𝑖ℰ𝑗𝑘⟩ − 8

3𝑆⟨𝑖ℬ𝑗𝑘⟩
)︀
𝜔̂𝑖𝑗𝑘 + 8

15𝑀⟨𝑎ℰ𝑏⟩𝑖𝜔𝑖 + 8
15𝑀

𝑖ℰ𝑖⟨𝑎𝜔𝑏⟩ +
56
3 𝑚

2ℰ𝑖⟨𝑎𝜔̂𝑏⟩
𝑖

+16𝑀𝑖ℰ𝑗⟨𝑎𝜔̂𝑏⟩
𝑖𝑗 − 32

5 𝑆⟨𝑎ℬ𝑏⟩𝑖𝜔
𝑖 + 4

15 (10𝑆𝑖ℬ𝑎𝑏 + 27𝑀𝑖ℰ𝑎𝑏)𝜔𝑖

+ 16
3 𝑆

𝑖ℬ𝑖⟨𝑎𝜔𝑏⟩ − 8𝜖𝑖𝑗⟨𝑎𝜖𝑏⟩𝑘𝑙𝑆
𝑗ℬ𝑙

𝑚𝜔̂
𝑖𝑘𝑚 + 16

15𝜖𝑖𝑗⟨𝑎𝜖𝑏⟩𝑘𝑙𝑆
𝑗ℬ𝑖𝑙𝜔𝑘. (A.16)

Again, this can be decomposed, using the identities

𝑆⟨𝑎ℬ𝑏⟩𝑖 = 𝑆⟨𝑎ℬ𝑏𝑖⟩ + STF
𝑎𝑏

1
3𝜖𝑎𝑖

𝑗𝜖𝑘𝑙(𝑏ℬ𝑗)
𝑙𝑆𝑘 + 1

10𝛿𝑖⟨𝑎ℬ𝑏⟩𝑗𝑆
𝑗 , (A.17)

𝑆𝑖ℬ𝑎𝑏 = 𝑆⟨𝑎ℬ𝑏𝑖⟩ − STF
𝑎𝑏

2
3𝜖𝑎𝑖

𝑗𝜖𝑘𝑙(𝑏ℬ𝑗)
𝑙𝑆𝑘 + 3

5𝛿𝑖⟨𝑎ℬ𝑏⟩𝑗𝑆
𝑗 , (A.18)

𝜖𝑖𝑗⟨𝑎𝜖𝑏⟩𝑘𝑙𝑆
𝑗ℬ𝑖𝑙 = STF

𝑎𝑏
𝜖𝑎𝑘𝑗𝑆

𝑙ℬ𝑖
(𝑗𝜖𝑏)𝑖𝑙 − 1

2𝛿𝑘⟨𝑎ℬ𝑏⟩𝑖𝑆
𝑖, (A.19)

STF
𝑖𝑘𝑚

𝜖𝑖𝑗⟨𝑎𝜖𝑏⟩𝑘𝑙𝑆
𝑗ℬ𝑙

𝑚 = STF
𝑖𝑘𝑚

STF
𝑎𝑏

(︁
2𝛿𝑎𝑖𝑆⟨𝑏ℬ𝑘𝑚⟩ +

1
3𝛿𝑎𝑖𝜖

𝑙
𝑏𝑘𝑆

𝑗ℬ𝑝
(𝑙𝜖𝑚)𝑗𝑝 − 3

10𝛿𝑎𝑖𝛿𝑏𝑘ℬ𝑚𝑗𝑆
𝑗
)︁
,(A.20)

which lead to

𝐸̃𝑎𝑏 = −2𝛿𝑎𝑏
[︀(︀
𝜕2𝑡𝑀𝑖 +

4
5𝑆

𝑗ℬ𝑖𝑗 +
5
9𝑀

𝑗ℰ𝑖𝑗
)︀
𝜔𝑖 +

(︀
10
3 𝑀⟨𝑖ℰ𝑗𝑘⟩ − 4

3𝑆⟨𝑖ℬ𝑗𝑘⟩
)︀
𝜔̂𝑖𝑗𝑘

]︀
− 100

9 𝛿𝑎𝑏𝑚
2ℰ𝑖𝑗𝜔̂𝑖𝑗 + 1

5

(︀
8𝑀 𝑗ℰ𝑖𝑗 + 12𝑆𝑗ℬ𝑖𝑗

)︀
𝜔̂𝑎𝑏

𝑖 + 56
3 𝑚

2ℰ𝑖𝑗𝜔̂𝑎𝑏
𝑖𝑗

+ 4
75

(︀
92𝑀 𝑗ℰ𝑗⟨𝑎 + 108𝑆𝑗ℬ𝑗⟨𝑎

)︀
𝜔𝑏⟩ +

56
3 𝑚

2ℰ𝑖⟨𝑎𝜔̂𝑏⟩
𝑖

+16STF
𝑎𝑖𝑗

(︀
𝑀𝑖ℰ𝑗⟨𝑎 − 𝑆𝑖ℬ𝑗⟨𝑎

)︀
𝜔̂𝑏⟩

𝑖𝑗 − 8
3𝜖

𝑝𝑞
⟨𝑗
(︀
2ℰ𝑘⟩𝑝𝑀𝑞 + ℬ𝑘⟩𝑝𝑆𝑞

)︀
𝜖𝑘𝑖(𝑎𝜔̂𝑏)

𝑖𝑗

+ 16
15𝑚

2ℰ𝑎𝑏 + 4
15

(︀
29𝑀⟨𝑎ℰ𝑏𝑖⟩ − 14𝑆⟨𝑎ℬ𝑏𝑖⟩

)︀
𝜔𝑖

− 16
45 STF𝑎𝑏

𝜖𝑎𝑖
𝑗𝜔𝑖𝜖𝑝𝑞(𝑏

(︀
13ℰ𝑗)𝑞𝑀𝑝 + 14ℬ𝑗)𝑞𝑆𝑝

)︀
. (A.21)
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B STF multipole decompositions

All formulas in this appendix are either taken directly from Refs. [27] and [45] or are easily derivable
from formulas therein.

Any Cartesian tensor field depending on two angles 𝜃𝐴 spanning a sphere can be expanded in
a unique decomposition in symmetric trace-free tensors. Such a decomposition is equivalent to a
decomposition in tensorial harmonics, but it is sometimes more convenient. It begins with the fact
that the angular dependence of a Cartesian tensor 𝑇𝑆(𝜃

𝐴) can be expanded in a series of the form

𝑇𝑆(𝜃
𝐴) =

∑︁
ℓ≥0

𝑇𝑆⟨𝐿⟩𝜔̂
𝐿, (B.1)

where 𝑆 and 𝐿 denote multi-indices 𝑆 = 𝑖1 . . . 𝑖𝑠 and 𝐿 = 𝑗1 . . . 𝑗ℓ, angular brackets denote an STF
combination of indices, 𝜔𝑎 is a Cartesian unit vector, 𝜔𝐿 := 𝜔𝑗1 . . . 𝜔𝑗ℓ , and 𝜔̂𝐿 := 𝜔⟨𝐿⟩. This is
entirely equivalent to an expansion in spherical harmonics. Each coefficient 𝑇𝑆⟨𝐿⟩ can be found
from the formula

𝑇𝑆⟨𝐿⟩ =
(2ℓ+ 1)!!

4𝜋ℓ!

∫︁
𝑇𝑆(𝜃

𝐴)𝜔̂𝐿𝑑Ω, (B.2)

where the double factorial is defined by 𝑥!! = 𝑥(𝑥− 2) · · · 1. These coefficients can then be decom-
posed into irreducible STF tensors. For example, for 𝑠 = 1, we have

𝑇𝑎⟨𝐿⟩ = 𝑇
(+1)
𝑎𝐿 + 𝜖𝑗𝑎⟨𝑖ℓ𝑇

(0)
𝐿−1⟩𝑗 + 𝛿𝑎⟨𝑖ℓ𝑇

(−1)
𝐿−1⟩, (B.3)

where the 𝑇 (𝑛)’s are STF tensors given by

𝑇
(+1)
𝐿+1 := 𝑇⟨𝐿+1⟩, (B.4)

𝑇
(0)
𝐿 :=

ℓ

ℓ+ 1
𝑇𝑝𝑞⟨𝐿−1𝜖𝑖ℓ⟩

𝑝𝑞, (B.5)

𝑇
(−1)
𝐿−1 :=

2ℓ− 1

2ℓ+ 1
𝑇 𝑗

𝑗𝐿−1. (B.6)

Similarly, for a symmetric tensor 𝑇𝑆 with 𝑠 = 2, we have

𝑇𝑎𝑏⟨𝐿⟩ = STF
𝐿

STF
𝑎𝑏

(︁
𝜖𝑝𝑎𝑖ℓ𝑇

(+1)
𝑏𝑝𝐿−1 + 𝛿𝑎𝑖ℓ𝑇

(0)
𝑏𝐿−1 + 𝛿𝑎𝑖ℓ𝜖

𝑝
𝑏𝑖ℓ−1

𝑇
(−1)
𝑝𝐿−2 + 𝛿𝑎𝑖ℓ𝛿𝑏𝑖ℓ−1

𝑇
(−2)
𝐿−2

)︁
+𝑇

(+2)
𝑎𝑏𝐿 + 𝛿𝑎𝑏𝐾̂𝐿, (B.7)

where

𝑇
(+2)
𝐿+2 := 𝑇⟨𝐿+2⟩, (B.8)

𝑇
(+1)
𝐿+1 :=

2ℓ

ℓ+ 2
STF
𝐿+1

(𝑇⟨𝑝𝑖ℓ⟩𝑞𝐿−1𝜖𝑖ℓ+1

𝑝𝑞), (B.9)

𝑇
(0)
𝐿 :=

6ℓ(2ℓ− 1)

(ℓ+ 1)(2ℓ+ 3)
STF
𝐿

(𝑇⟨𝑗𝑖ℓ⟩
𝑗
𝐿−1), (B.10)

𝑇
(−1)
𝐿−1 :=

2(ℓ− 1)(2ℓ− 1)

(ℓ+ 1)(2ℓ+ 1)
STF
𝐿−1

(𝑇⟨𝑗𝑝⟩𝑞
𝑗
𝐿−2𝜖𝑖ℓ−1

𝑝𝑞), (B.11)

𝑇
(−2)
𝐿−2 :=

2ℓ− 3

2ℓ+ 1
𝑇⟨𝑗𝑘⟩

𝑗𝑘
𝐿−2 (B.12)

𝐾̂𝐿 := 1
3𝑇

𝑗
𝑗𝐿. (B.13)
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These decompositions are equivalent to the formulas for addition of angular momenta, 𝐽 = 𝑆 +𝐿,
which results in terms with angular momentum ℓ − 𝑠 ≤ 𝑗 ≤ ℓ + 𝑠; the superscript labels (±𝑛) in
these formulas indicate by how much each term’s angular momentum differs from ℓ.

By substituting Eqs. (B.3) and (B.7) into Eq. (B.1), we find that a scalar, a Cartesian 3-vector,
and the symmetric part of a rank-2 Cartesian 3-tensor can be decomposed as, respectively,

𝑇 (𝜃𝐴) =
∑︁
ℓ≥0

𝐴𝐿𝜔̂
𝐿, (B.14)

𝑇𝑎(𝜃
𝐴) =

∑︁
ℓ≥0

𝐵̂𝐿𝜔̂𝑎𝐿 +
∑︁
ℓ≥1

[︁
𝐶𝑎𝐿−1𝜔̂

𝐿−1 + 𝜖𝑖𝑎𝑗𝐷̂𝑖𝐿−1𝜔̂
𝑗𝐿−1

]︁
, (B.15)

𝑇(𝑎𝑏)(𝜃
𝐴) = 𝛿𝑎𝑏

∑︁
ℓ≥0

𝐾̂𝐿𝜔̂
𝐿 +

∑︁
ℓ≥0

𝐸̂𝐿𝜔̂𝑎𝑏
𝐿 +

∑︁
ℓ≥1

[︁
𝐹𝐿−1⟨𝑎𝜔̂𝑏⟩

𝐿−1 + 𝜖𝑖𝑗(𝑎𝜔̂𝑏)𝑖
𝐿−1𝐺̂𝑗𝐿−1

]︁
+
∑︁
ℓ≥2

[︁
𝐻̂𝑎𝑏𝐿−2𝜔̂

𝐿−2 + 𝜖𝑖𝑗(𝑎𝐼𝑏)𝑗𝐿−2𝜔̂𝑖
𝐿−2

]︁
. (B.16)

Each term in these decompositions is algebraically independent of all the other terms.
We can also reverse a decomposition to “peel off” a fixed index from an STF expression:

(ℓ+ 1) STF
𝑖𝐿

𝑇𝑖⟨𝐿⟩ = 𝑇𝑖⟨𝐿⟩ + ℓSTF
𝐿

𝑇𝑖ℓ⟨𝑖𝐿−1⟩ −
2ℓ

2ℓ+ 1
STF
𝐿

𝑇 𝑗
⟨𝑗𝐿−1⟩𝛿𝑖ℓ𝑖. (B.17)

In evaluating the action of the wave operator on a decomposed tensor, the following formulas
are useful:

𝜔𝑐𝜔̂𝐿 = 𝜔̂𝑐𝐿 +
ℓ

2ℓ+ 1
𝛿𝑐⟨𝑖1 𝜔̂𝑖2...𝑖ℓ⟩, (B.18)

𝜔𝑐𝜔̂
𝑐𝐿 =

ℓ+ 1

2ℓ+ 1
𝜔̂𝐿, (B.19)

𝑟𝜕𝑐𝜔̂𝐿 = −ℓ𝜔̂𝑐𝐿 +
ℓ(ℓ+ 1)

2ℓ+ 1
𝛿𝑐⟨𝑖1 𝜔̂𝑖2...𝑖ℓ⟩, (B.20)

𝜕𝑐𝜕𝑐𝜔̂
𝐿 = −ℓ(ℓ+ 1)

𝑟2
𝜔̂𝐿, (B.21)

𝜔𝑐𝜕𝑐𝜔̂
𝐿 = 0, (B.22)

𝑟𝜕𝑐𝜔̂
𝑐𝐿 =

(ℓ+ 1)(ℓ+ 2)

(2ℓ+ 1)
𝜔̂𝐿. (B.23)

In evaluating the 𝑡-component of the Lorenz gauge condition, the following formula is useful
for finding the most divergent term (in an expansion in 𝑟):

𝑟𝜕𝑐ℎ
(𝑛,𝑚)
𝑡𝑐 =

∑︁
ℓ≥0

(ℓ+ 1)(ℓ+ 2)

2ℓ+ 1
𝐵̂

(𝑛,𝑚)
𝐿 𝜔̂𝐿 −

∑︁
ℓ≥2

(ℓ− 1)𝐶
(𝑛,𝑚)
𝐿 𝜔̂𝐿. (B.24)

And in evaluating the 𝑎-component, the following formula is useful for the same purpose:

𝑟𝜕𝑏ℎ
(𝑛,𝑚)
𝑎𝑏 − 1

2𝑟𝜂
𝛽𝛾𝜕𝑎ℎ

(𝑛,𝑚)
𝛽𝛾

=
∑︁
ℓ≥0

[︂
1
2ℓ(𝐾̂

(𝑛,𝑚)
𝐿 −𝐴

(𝑛,𝑚)
𝐿 ) +

(ℓ+ 2)(ℓ+ 3)

2ℓ+ 3
𝐸̂

(𝑛,𝑚)
𝐿 − 1

6ℓ𝐹
(𝑛,𝑚)
𝐿

]︂
𝜔̂𝑎

𝐿

+
∑︁
ℓ≥1

[︂
ℓ(ℓ+ 1)

2(2ℓ+ 1)
(𝐴

(𝑛,𝑚)
𝑎𝐿−1 − 𝐾̂

(𝑛,𝑚)
𝑎𝐿−1 ) +

(ℓ+ 1)2(2ℓ+ 3)

6(2ℓ+ 1)(2ℓ− 1)
𝐹

(𝑛,𝑚)
𝑎𝐿−1

−(ℓ− 2)𝐻̂
(𝑛,𝑚)
𝑎𝐿−1

]︂
𝜔̂𝐿−1 +

∑︁
ℓ≥1

[︂
(ℓ+ 2)2

2(2ℓ+ 1)
𝐺̂

(𝑛,𝑚)
𝑑𝐿−1 − 1

2 (ℓ− 1)𝐼
(𝑛,𝑚)
𝑑𝐿−1

]︂
𝜖𝑎𝑐

𝑑𝜔̂𝑐𝐿−1 (B.25)
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where we have defined 𝐻̂
(𝑛,𝑚)
𝑎 := 0 and 𝐼

(𝑛,𝑚)
𝑎 := 0.

The unit vector 𝜔𝑖 satisfies the following integral identities:∫︁
𝜔̂𝐿𝑑Ω = 0 if ℓ > 0, (B.26)∫︁
𝜔𝐿𝑑Ω = 0 if ℓ is odd, (B.27)∫︁
𝜔𝐿𝑑Ω = 4𝜋

𝛿{𝑖1𝑖2 . . . 𝛿𝑖ℓ−1𝑖ℓ}

(ℓ+ 1)!!
if ℓ is even, (B.28)

where the curly braces indicate the smallest set of permutations of indices that make the result
symmetric. For example, 𝛿{𝑎𝑏𝜔𝑐} = 𝛿𝑎𝑏𝜔𝑐 + 𝛿𝑏𝑐𝜔𝑎 + 𝛿𝑐𝑎𝜔𝑏.
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[99] Hughes, S., Drasco, S., Flanagan, É.É. and Franklin, J., “Gravitational radiation reaction
and inspiral waveforms in the adiabatic limit”, Phys. Rev. Lett., 94, 221101, (2005). [DOI],
[arXiv:gr-qc/0504015]. (Cited on page 38.)

[100] Infeld, L. and Schild, A., “On the Motion of Test Particles in General Relativity”, Rev. Mod.
Phys., 21, 408–413, (1949). [DOI]. (Cited on page 135.)

[101] Jackson, J.D., Classical Electrodynamics, (Wiley, New York, 1999), 3rd edition. (Cited on
pages 9, 10, and 111.)

[102] Kates, R.E., “Motion of a small body through an external field in general relativity calculated
by matched asymptotic expansions”, Phys. Rev. D, 22, 1853–1870, (1980). [DOI]. (Cited on
pages 136 and 143.)

[103] Kates, R.E., “Motion of an electrically or magnetically charged body with possibly strong
internal gravity through external electromagnetic and gravitational fields”, Phys. Rev. D,
22, 1879–1881, (1980). [DOI]. (Cited on page 136.)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7

http://books.google.com/books?id=B25O-x21uqkC
http://www.archive.org/details/lecturesoncauchy00hadauoft
http://dx.doi.org/10.1088/0264-9381/25/23/235020
http://arxiv.org/abs/0807.1150
http://dx.doi.org/10.1088/0264-9381/26/15/155015
http://arxiv.org/abs/0903.0167
http://dx.doi.org/10.1088/0264-9381/27/13/135002
http://arxiv.org/abs/0910.4614
http://dx.doi.org/10.1103/PhysRev.108.1351
http://dx.doi.org/10.1103/PhysRev.128.398
http://dx.doi.org/10.1103/PhysRevD.78.064028
http://arxiv.org/abs/0805.3337
http://books.google.com/books?id=-jSsvzJa_XMC
http://dx.doi.org/10.1103/PhysRevD.79.084021
http://arxiv.org/abs/0812.4208
http://dx.doi.org/10.1103/PhysRevD.61.084004
http://arxiv.org/abs/gr-qc/9910091
http://dx.doi.org/10.1103/PhysRevLett.94.221101
http://arxiv.org/abs/gr-qc/0504015
http://dx.doi.org/10.1103/RevModPhys.21.408
http://dx.doi.org/10.1103/PhysRevD.22.1853
http://dx.doi.org/10.1103/PhysRevD.22.1879
http://www.livingreviews.org/lrr-2011-7


The Motion of Point Particles in Curved Spacetime 185

[104] Kates, R.E., “Underlying structure of singular perturbations on manifolds”, Ann. Phys.
(N.Y.), 132, 1–17, (1981). [DOI]. (Cited on page 137.)

[105] Kegeles, L.S. and Cohen, J.M., “Constructive procedure for perturbations of spacetimes”,
Phys. Rev. D, 19, 1641–1664, (1979). [DOI]. (Cited on page 33.)

[106] Keidl, T., Self-force for extreme mass ratio inspiral, Ph.D. Thesis, (University of Wisconsin-
Milwaukee, Milwaukee, 2008). [ADS]. (Cited on page 33.)

[107] Keidl, T.S., Friedman, J.L. and Wiseman, A.G., “Finding fields and self-force in a gauge
appropriate to separable wave equations”, Phys. Rev. D, 75, 124009, (2006). [arXiv:gr-

qc/0611072]. (Cited on page 33.)

[108] Keidl, T.S., Shah, A.G., Friedman, J.L., Kim, D.H. and Price, L.R., “Gravitational self-force
in a radiation gauge”, Phys. Rev. D, 82, 124012, (2010). [DOI], [arXiv:1004.2276]. (Cited on
page 33.)

[109] Kevorkian, J. and Cole, J.D., Multiple Scale and Singular Perturbation Methods, Applied
Mathematical Sciences, 114, (Springer, New York, 1996). [Google Books]. (Cited on pages 38,
127, and 137.)

[110] Khanna, G., “Teukolsky evolution of particle orbits around Kerr black holes in the time
domain: Elliptic and inclined orbits”, Phys. Rev. D, 69, 024016, (2006). [arXiv:gr-qc/0309107].
(Cited on page 34.)

[111] Lagerstrom, P.A., Matched Asymptotic Expansions: Ideas and Techniques, Applied Mathe-
matical Sciences, 76, (Springer, New York, 1988). (Cited on pages 127 and 137.)

[112] Landau, L.D. and Lifshitz, E.M., The Classical Theory of Fields, Course of Theoretical
Physics, 2, (Pergamon Press, Oxford; New York, 1975), 4th edition. [Google Books]. (Cited
on pages 11 and 112.)

[113] Leaute, B. and Linet, B., “Electrostatics in a Reissner-Nordström space-time”, Phys. Lett.
A, 58, 5–6, (1976). [DOI]. (Cited on page 24.)

[114] Linet, B., “Electrostatics and magnetostatics in Schwarzschild metric”, J. Phys. A: Math.
Gen., 9, 1081–1087, (1976). [DOI]. (Cited on pages 24 and 29.)

[115] “LISA Home Page (NASA)”, project homepage, Jet Propulsion Laboratory/NASA. URL
(accessed 2 April 2004):
http://lisa.jpl.nasa.gov/. (Cited on page 22.)

[116] Lopez-Aleman, R., Khanna, G. and Pullin, J., “Perturbative evolution of particle orbits
around Kerr black holes: time domain calculation”, Class. Quantum Grav., 20, 3259–3268,
(2003). [DOI], [arXiv:gr-qc/0303054]. (Cited on page 34.)

[117] Lousto, C.O., “Pragmatic Approach to Gravitational Radiation Reaction in Binary Black
Holes”, Phys. Rev. Lett., 84, 5251–5254, (2000). [DOI], [arXiv:gr-qc/9912017]. (Cited on
page 28.)

[118] Lousto, C.O., ed., Gravitational Radiation from Binary Black Holes: Advances in the Per-
turbative Approach, Class. Quantum Grav., 22, (IOP Publishing, Bristol, 2005). (Cited on
page 27.)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-7

http://dx.doi.org/10.1016/0003-4916(81)90265-7
http://dx.doi.org/10.1103/PhysRevD.19.1641
http://adsabs.harvard.edu/abs/2008PhDT.........7K
http://arxiv.org/abs/gr-qc/0611072
http://arxiv.org/abs/gr-qc/0611072
http://dx.doi.org/10.1103/PhysRevD.82.124012
http://arxiv.org/abs/1004.2276
http://books.google.com/books?id=NQWlB9myvtoC
http://arxiv.org/abs/gr-qc/0309107
http://books.google.com/books?id=QIxD3Z82AagC
http://dx.doi.org/10.1016/0375-9601(76)90529-6
http://dx.doi.org/10.1088/0305-4470/9/7/010
http://lisa.jpl.nasa.gov/
http://dx.doi.org/10.1088/0264-9381/20/14/320
http://arxiv.org/abs/gr-qc/0303054
http://dx.doi.org/10.1103/PhysRevLett.84.5251
http://arxiv.org/abs/gr-qc/9912017
http://www.livingreviews.org/lrr-2011-7


186 Eric Poisson, Adam Pound and Ian Vega

[119] Lousto, C.O. and Nakano, H., “A new method to integrate (2+1)-wave equations with
Dirac’s delta functions as sources”, Class. Quantum Grav., 25, 145018, (2008). [DOI],
[arXiv:0802.4277]. (Cited on page 36.)

[120] Lousto, C.O. and Price, R.H., “Understanding initial data for black hole collisions”, Phys.
Rev. D, 56, 6439–6457, (1997). [DOI], [arXiv:gr-qc/9705071]. (Cited on page 34.)

[121] Lousto, C.O. and Whiting, B.F., “Reconstruction of black hole metric perturbations from the
Weyl curvature”, Phys. Rev. D, 66, 024026, 1–7, (2002). [DOI], [arXiv:gr-qc/0203061]. (Cited
on page 33.)

[122] Manasse, F.K. and Misner, C.W., “Fermi normal coordinates and some basic concepts in
differential geometry”, J. Math. Phys., 4, 735–745, (1963). [DOI]. (Cited on page 25.)

[123] Martel, K. and Poisson, E., “One-parameter family of time-symmetric initial data for the
radial infall of a particle into a Schwarzschild black hole”, Phys. Rev. D, 66, 084001, (2002).
[DOI], [arXiv:gr-qc/0107104]. (Cited on page 34.)

[124] Mino, Y., “Perturbative approach to an orbital evolution around a supermassive black hole”,
Phys. Rev. D, 67, 084027, 1–17, (2003). [DOI], [arXiv:gr-qc/0302075]. (Cited on page 37.)

[125] Mino, Y., “Self-force in the radiation reaction formula – adiabatic approximation of a metric
perturbation and an orbit”, Prog. Theor. Phys., 113, 733–761, (2005). [arXiv:gr-qc/0506003].
(Cited on page 37.)

[126] Mino, Y., “Adiabatic expansion for a metric perturbation and the condition to solve the
gauge problem for gravitational radiation reaction problem”, Prog. Theor. Phys., 115, 43–
61, (2006). [DOI], [arXiv:gr-qc/0601019]. (Cited on page 37.)

[127] Mino, Y., Nakano, H. and Sasaki, M., “Covariant Self-Force Regularization of a Particle
Orbiting a Schwarzschild Black Hole – Mode Decomposition Regularization”, Prog. Theor.
Phys., 108, 1039–1064, (2003). [arXiv:gr-qc/0111074]. (Cited on pages 28 and 29.)

[128] Mino, Y. and Price, R., “Two-timescale adiabatic expansion of a scalar field model”, Phys.
Rev. D, 77, 064001, (2008). [DOI], [arXiv:0801.0179]. (Cited on page 37.)

[129] Mino, Y., Sasaki, M. and Tanaka, T., “Gravitational radiation reaction”, Prog. Theor. Phys.
Suppl., 128, 373–406, (1997). [DOI], [arXiv:gr-qc/9712056]. (Cited on page 136.)

[130] Mino, Y., Sasaki, M. and Tanaka, T., “Gravitational radiation reaction to a particle motion”,
Phys. Rev. D, 55, 3457–3476, (1997). [DOI], [arXiv:gr-qc/9606018]. (Cited on pages 9, 21, 22,
134, 136, 143, 167, and 169.)

[131] Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, (W.H. Freeman, San Francisco,
1973). (Cited on pages 25 and 26.)

[132] Morette-DeWitt, C. and DeWitt, B.S., “Falling charges”, Physics, 1, 3–20, (1964). (Cited
on pages 27 and 36.)

[133] Morette-DeWitt, C. and Ging, J.L., “Freinage dû à la radiation gravitationnelle”, C. R.
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