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Abstract

Over the past three decades, black holes have played an important role in quantum gravity,
mathematical physics, numerical relativity and gravitational wave phenomenology. However,
conceptual settings and mathematical models used to discuss them have varied considerably
from one area to another. Over the last five years a new, quasi-local framework was introduced
to analyze diverse facets of black holes in a unified manner. In this framework, evolving black
holes are modelled by dynamical horizons and black holes in equilibrium by isolated horizons.
We review basic properties of these horizons and summarize applications to mathematical
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2 Abhay Ashtekar and Badri Krishnan

physics, numerical relativity, and quantum gravity. This paradigm has led to significant gen-
eralizations of several results in black hole physics. Specifically, it has introduced a more
physical setting for black hole thermodynamics and for black hole entropy calculations in
quantum gravity, suggested a phenomenological model for hairy black holes, provided novel
techniques to extract physics from numerical simulations, and led to new laws governing the
dynamics of black holes in exact general relativity.
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1 Introduction

Research inspired by black holes has dominated several areas of gravitational physics since the
early seventies. The mathematical theory turned out to be extraordinarily rich and full of sur-
prises. Laws of black hole mechanics brought out deep, unsuspected connections between classical
general relativity, quantum physics, and statistical mechanics [35, 44, 45, 46]. In particular, they
provided a concrete challenge to quantum gravity which became a driving force for progress in
that area. On the classical front, black hole uniqueness theorems [69, 119] took the community by
surprise. The subsequent analysis of the detailed properties of Kerr-Newman solutions [65] and
perturbations thereof [66] constituted a large fraction of research in mathematical general relativ-
ity in the seventies and eighties. Just as the community had come to terms with the uniqueness
results, it was surprised yet again by the discovery of hairy black holes [38, 49]. Research in this
area continues to be an active branch of mathematical physics [181]. The situation has been similar
in numerical relativity. Since its inception, much of the research in this area has been driven by
problems related to black holes, particularly their formation through gravitational collapse [153],
the associated critical phenomenon [67, 105], and the dynamics leading to their coalescence (see,
e.g., [1, 126, 160, 58, 2, 138]). Finally, black holes now play a major role in relativistic astrophysics,
providing mechanisms to fuel the most powerful engines in the cosmos. They are also among the
most promising sources of gravitational waves, leading to new avenues to confront theory with
experiments [78].

Thus there has been truly remarkable progress on many different fronts. Yet, as the subject
matured, it became apparent that the basic theoretical framework has certain undesirable features
from both conceptual and practical viewpoints. Nagging questions have persisted, suggesting the
need of a new paradigm.

Dynamical situations

For fully dynamical black holes, apart from the ‘topological censorship’ results which restrict
the horizon topology [110, 90], there has essentially been only one major result in ezact
general relativity. This is the celebrated area theorem proved by Hawking in the early
seventies [111, 113]: If matter satisfies the null energy condition, the area of the black hole
event horizon can never decrease. This theorem has been extremely influential because of
its similarity with the second law of thermodynamics. However, it is a qualitative result; it
does not provide an explicit formula for the amount by which the area increases in physical
processes. Now, for a black hole of mass M, angular momentum J, area a, surface gravity
k, and angular velocity (2, the first law of black hole mechanics,

K

oM = %6(1—#95% (1)
does relate the change in the horizon area to that in the energy and angular momentum,
as the black hole makes a transition from one equilibrium state to a nearby one [35, 182].
This suggests that there may well be a fully dynamical version of Equation (1) which relates
the change in the black hole area to the energy and angular momentum it absorbs in fully
dynamical processes in which the black hole makes a transition from a given state to one
which is far removed. Indeed, without such a formula, one would have no quantitative control
on how black holes grow in exact general relativity. Note however that the event horizons
can form and grow even in a flat region of space-time (see Figure 4 and Section 2.2.2 for
illustrations). During this phase, the area grows in spite of the fact that there is no flux of
energy or angular momentum across the event horizon. Hence, in the standard framework
where the surface of the black hole is represented by an event horizon, it is impossible to
obtain the desired formula. Is there then a more appropriate notion that can replace event
horizons?
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Equilibrium situations

The zeroth and first laws of black hole mechanics refer to equilibrium situations and small
departures therefrom. Therefore, in this context, it is natural to focus on isolated black
holes. It was customary to represent them by stationary solutions of field equations, i.e,
solutions which admit a time-translational Killing vector field everywhere, not just in a small
neighborhood of the black hole. While this simple idealization was natural as a starting point,
it is overly restrictive. Physically, it should be sufficient to impose boundary conditions at
the horizon which ensure only that the black hole itself is isolated. That is, it should suffice
to demand only that the intrinsic geometry of the horizon be time independent, whereas the
geometry outside may be dynamical and admit gravitational and other radiation. Indeed,
we adopt a similar viewpoint in ordinary thermodynamics; while studying systems such as
a classical gas in a box, one usually assumes that only the system under consideration is in
equilibrium, not the whole world. In realistic situations, one is typically interested in the final
stages of collapse where the black hole has formed and ‘settled down’ or in situations in which
an already formed black hole is isolated for the duration of the experiment (see Figure 1). In
such cases, there is likely to be gravitational radiation and non-stationary matter far away
from the black hole. Thus, from a physical perspective, a framework which demands global
stationarity is too restrictive.

i+

I+

Figure 1: Left panel: A typical gravitational collapse. The portion A of the event horizon at late
times is isolated. Physically, one would expect the first law to apply to A even though the entire
space-time is not stationary because of the presence of gravitational radiation in the exterior region.
Right panel: Space-time diagram of a black hole which is initially in equilibrium, absorbs a finite
amount of radiation, and again settles down to equilibrium. Portions A1 and As of the horizon
are isolated. One would expect the first law to hold on both portions although the space-time is not
stationary.

Even if one were to ignore these conceptual considerations and focus just on results, the
framework has certain unsatisfactory features. Consider the central result, the first law of
Equation (1). Here, the angular momentum J and the mass M are defined at infinity while
the angular velocity 2 and surface gravity x are defined at the horizon. Because one has
to go back and forth between the horizon and infinity, the physical meaning of the first law
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is not transparent'. For instance, there may be matter rings around the black hole which
contribute to the angular momentum and mass at infinity. Why is this contribution relevant
to the first law of black hole mechanics? Shouldn’t only the angular momentum and mass
of the black hole feature in the first law? Thus, one is led to ask: Is there a more suitable
paradigm which can replace frameworks based on event horizons in stationary space-times?

Entropy calculations

The first and the second laws suggest that one should assign to a black hole an entropy which
is proportional to its area. This poses a concrete challenge to candidate theories of quantum
gravity: Account for this entropy from fundamental, statistical mechanical considerations.
String theory has had a remarkable success in meeting this challenge in detail for a subclass
of extremal, stationary black holes whose charge equals mass (the so-called BPS states) [120].
However, for realistic black holes the charge to mass ratio is less than 1078, It has not been
possible to extend the detailed calculation to realistic cases where charge is negligible and
matter rings may distort the black hole horizon. From a mathematical physics perspective,
the entropy calculation should also encompass hairy black holes whose equilibrium states
cannot be characterized just by specifying the mass, angular momentum and charges at
infinity, as well as non-minimal gravitational couplings, in presence of which the entropy is no
longer a function just of the horizon area. One may therefore ask if other avenues are available.
A natural strategy is to consider the sector of general relativity containing an isolated black
hole and carry out its quantization systematically. A pre-requisite for such a program is the
availability of a manageable action principle and/or Hamiltonian framework. Unfortunately,
however, if one attempts to construct these within the classical frameworks traditionally used
to describe black holes, one runs into two difficulties. First, because the event horizon is such
a global notion, no action principle is known for the sector of general relativity containing
geometries which admit an event horizon as an internal boundary. Second, if one restricts
oneself to globally stationary solutions, the phase space has only a finite number of true
degrees of freedom and is thus ‘too small’ to adequately incorporate all quantum fluctuations.
Thus, again, we are led to ask: Is there a more satisfactory framework which can serve as
the point of departure for a non-perturbative quantization to address this problem?

Global nature of event horizons

The future event horizon is defined as the future boundary of the causal past of future null
infinity. While this definition neatly encodes the idea that an outside observer can not ‘look
into’ a black hole, it is too global for many applications. First, since it refers to null infinity,
it can not be used in spatially compact space-times. Surely, one should be able to analyze
black hole dynamics also in these space-times. More importantly, the notion is teleological;
it lets us speak of a black hole only after we have constructed the entire space-time. Thus,
for example, an event horizon may well be developing in the room you are now sitting in
anticipation of a gravitational collapse that may occur in this region of our galaxy a million
years from now. When astrophysicists say that they have discovered a black hole in the center
of our galaxy, they are referring to something much more concrete and quasi-local than an
event horizon. Is there a satisfactory notion that captures what they are referring to?

The teleological nature of event horizons is also an obstruction to extending black hole me-
chanics in certain physical situations. Consider for example, Figure 2 in which a spherical
star of mass M undergoes a gravitational collapse. The singularity is hidden inside the null
surface Ay at r = 2M which is foliated by a family of marginally trapped surfaces and

IThe situation is even more puzzling in the Einstein—Yang-Mills theory where the right side of Equation (1)
acquires an additional term, V Q. In treatments based on stationary space-times, not only the Yang—Mills charge
Q, but also the potential V' (the analog of Q and &, is evaluated at infinity [175].
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M

Figure 2: A spherical star of mass M undergoes collapse. Much later, a spherical shell of mass
OM falls into the resulting black hole. While Ay and Ao are both isolated horizons, only As is part
of the event horizon.

would be a part of the event horizon if nothing further happens. Suppose instead, after a
million years, a thin spherical shell of mass M collapses. Then A; would not be a part of
the event horizon which would actually lie slightly outside A; and coincide with the surface
r =2(M +6M) in the distant future. On physical grounds, it seems unreasonable to exclude
Aq a priori from thermodynamical considerations. Surely one should be able to establish the

standard laws of mechanics not only for the equilibrium portion of the event horizon but also
for Al .

Next, let us consider numerical simulations of binary black holes. Here the main task is to
construct the space-time containing evolving black holes. Thus, one needs to identify initial
data containing black holes without the knowledge of the entire space-time and evolve them
step by step. The notion of a event horizon is clearly inadequate for this. One uses instead
the notion of apparent horizons (see Section 2.2). One may then ask: Can we use apparent
horizons instead of event horizons in other contexts as well? Unfortunately, it has not been
possible to derive the laws of black hole mechanics using apparent horizons. Furthermore, as
discussed in section 2, while apparent horizons are ‘local in time’ they are still global notions,
tied too rigidly to the choice of a space-like 3-surface to be directly useful in all contexts. Is
there a truly quasi-local notion which can be useful in all these contexts?

Disparate paradigms
In different communities within gravitational physics, the intended meaning of the term ‘black
hole’ varies quite considerably. Thus, in a string theory seminar, the term ‘fundamental black
holes” without further qualification generally refers to the BPS states referred to above — a
sub-class of stationary, extremal black holes. In a mathematical physics talk on black holes,
the fundamental objects of interest are stationary solutions to, say, the Einstein-Higgs—Yang—
Mills equations for which the uniqueness theorem fails. The focus is on the ramifications
of ‘hair’, which are completely ignored in string theory. In a numerical relativity lecture,
both these classes of objects are considered to be so exotic that they are excluded from
discussion without comment. The focus is primarily on the dynamics of apparent horizons
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in general relativity. In astrophysically interesting situations, the distortion of black holes by
external matter rings, magnetic fields and other black holes is often non-negligible [87, 98, 88].
While these illustrative notions seem so different, clearly there is a common conceptual core.
Laws of black hole mechanics and the statistical mechanical derivation of entropy should go
through for all black holes in equilibrium. Laws dictating the dynamics of apparent horizons
should predict that the final equilibrium states are those represented by the stable stationary
solutions of the theory. Is there a paradigm that can serve as an unified framework to
establish such results in all these disparate situations?

These considerations led to the development of a new, quasi-local paradigm to describe black
holes. This framework was inspired by certain seminal ideas introduced by Hayward [117, 118,
115, 116] in the mid-nineties and has been systematically developed over the past five years or so.
Evolving black holes are modelled by dynamical horizons while those in equilibrium are modelled
by isolated horizons. Both notions are quasi-local. In contrast to event horizons, neither notion
requires the knowledge of space-time as a whole or refers to asymptotic flatness. Furthermore,
they are space-time notions. Therefore, in contrast to apparent horizons, they are not tied to
the choice of a partial Cauchy slice. This framework provides a new perspective encompassing all
areas in which black holes feature: quantum gravity, mathematical physics, numerical relativity,
and gravitational wave phenomenology. Thus, it brings out the underlying unity of the subject.
More importantly, it has overcome some of the limitations of the older frameworks and also led to
new results of direct physical interest.

The purpose of this article is to review these developments. The subject is still evolving. Many
of the key issues are still open and new results are likely to emerge in the coming years. Nonetheless,
as the Editors pointed out, there is now a core of results of general interest and, thanks to the
innovative style of Living Reviews, we will be able to incorporate new results through periodic
updates.

Applications of the quasi-local framework can be summarized as follows:

Black hole mechanics
Isolated horizons extract from the notion of Killing horizons, just those conditions which
ensure that the horizon geometry is time independent; there may be matter and radiation
even nearby [68]. Yet, it has been possible to extend the zeroth and first laws of black hole
mechanics to isolated horizons [26, 75, 15]. Furthermore, this derivation brings out a con-
ceptually important fact about the first law. Recall that, in presence of internal boundaries,
time evolution need not be Hamiltonian (i.e., need not preserve the symplectic structure). If
the inner boundary is an isolated horizon, a necessary and sufficient condition for evolution
to be Hamiltonian turns out to be precisely the first law! Finally, while the first law has the
same form as before (Equation (1)), all quantities which enter the statement of the law now
refer to the horizon itself. This is the case even when non-Abelian gauge fields are included.

Dynamical horizons allow for the horizon geometry to be time dependent. This framework
has led to a quantitative relation between the growth of the horizon area and the flux of energy
and angular momentum across it [30, 31]. The processes can be in the non-linear regime of
exact general relativity, without any approximations. Thus, the second law is generalized
and the generalization also represents an integral version of the first law (1), applicable also
when the black hole makes a transition from one state to another, which may be far removed.

Quantum gravity
The entropy problem refers to equilibrium situations. The isolated horizon framework pro-
vides an action principle and a Hamiltonian theory which serves as a stepping stone to
non-perturbative quantization. Using the quantum geometry framework, a detailed theory
of the quantum horizon geometry has been developed. The horizon states are then counted
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to show that the statistical mechanical black hole entropy is indeed proportional to the
area [10, 11, 84, 149, 25]. This derivation is applicable to ordinary, astrophysical black holes
which may be distorted and far from extremality. It also encompasses cosmological horizons
to which thermodynamical considerations are known to apply [99]. Finally, the arena for this
derivation is the curved black hole geometry, rather than a system in flat space-time which
has the same number of states as the black hole [174, 145]. Therefore, this approach has a
greater potential for analyzing physical processes associated with the black hole.

The dynamical horizon framework has raised some intriguing questions about the relation
between black hole mechanics and thermodynamics in fully dynamical situations [56]. In
particular, they provide seeds for further investigations of the notion of entropy in non-
equilibrium situations.

Mathematical physics
The isolated horizon framework has led to a phenomenological model to understand properties
of hairy black holes [21, 20]. In this model, the hairy black hole can be regarded as a bound
state of an ordinary black hole and a soliton. A large number of facts about hairy black holes
had accumulated through semi-analytical and numerical studies. Their qualitative features
are explained by the model.

The dynamical horizon framework also provides the groundwork for a new approach to Pen-
rose inequalities which relate the area of cross-sections of the event horizon A, on a Cauchy
surface with the ADM mass Mapy at infinity [157]: y/Ae/16m < Mapum. Relatively recently,
the conjecture has been proved in time symmetric situations. The basic monotonicity formula
of the dynamical horizon framework could provide a new avenue to extend the current proofs
to non-time-symmetric situations. It may also lead to a stronger version of the conjecture
where the ADM mass is replaced by the Bondi mass [31].

Numerical relativity

The framework has provided a number of tools to extract physics from numerical simulations
in the near-horizon, strong field regime. First, there exist expressions for mass and angu-
lar momentum of dynamical and isolated horizons which enable one to monitor dynamical
processes occurring in the simulations [31] and extract properties of the final equilibrium
state [15, 85]. These quantities can be calculated knowing only the horizon geometry and do
not pre-suppose that the equilibrium state is a Kerr horizon. The computational resources
required in these calculations are comparable to those employed by simulations using cruder
techniques, but the results are now invariant and interpretation is free from ambiguities. Re-
cent work [34] has shown that these methods are also numerically more accurate and robust
than older ones.

Surprisingly, there are simple local criteria to decide whether the geometry of an isolated
horizon is that of the Kerr horizon [142]. These criteria have already been implemented
in numerical simulations. The isolated horizon framework also provides invariant, practical
criteria to compare near-horizon geometries of different simulations [12] and leads to a new
approach to the problem of extracting wave-forms in a gauge invariant fashion. Finally, the
framework provides natural boundary conditions for the initial value problem for black holes
in quasi-equilibrium [72, 124, 81], and to interpret certain initial data sets [136]. Many of
these ideas have already been implemented in some binary black hole codes [85, 34, 48] and
the process is continuing.

Gravitational wave phenomenology
The isolated horizon framework has led to a notion of horizon multipole moments [24]. They
provide a diffeomorphism invariant characterization of the isolated horizon geometry. They
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are distinct from the Hansen multipoles in stationary space-times [107] normally used in the
analysis of equations of motion because they depend only on the isolated horizon geometry
and do not require global stationarity. They represent source multipoles rather than Hansen’s
field multipoles. In Kerr space-time, while the mass and angular momenta agree in the two
regimes, quadrupole moments do not; the difference becomes significant when a ~ M, i.e., in
the fully relativistic regime. In much of the literature on equations of motion of black holes,
the distinction is glossed over largely because only field multipoles have been available in the
literature. However, in applications to equations of motion, it is the source multipoles that
are more relevant, whence the isolated horizon multipoles are likely to play a significant role.

The dynamical horizon framework enables one to calculate mass and angular momentum of
the black hole as it evolves. In particular, one can now ask if the black hole can be first
formed violating the Kerr bound a < M but then eventually settle down in the Kerr regime.
Preliminary considerations fail to rule out this possibility, although the issue is still open [31].
The issue can be explored both numerically and analytically. The possibility that the bound
can indeed be violated initially has interesting astrophysical implications [89].

In this review, we will outline the basic ideas underlying dynamical and isolated horizon frame-
works and summarize their applications listed above. The material is organized as follows. In
Section 2 we recall the basic definitions, motivate the assumptions and summarize their implica-
tions. In Section 3 we discuss the area increase theorem for dynamical horizons and show how it
naturally leads to an expression for the flux of gravitational energy crossing dynamical horizons.
Section 4 is devoted to the laws of black hole mechanics. We outline the main ideas using both
isolated and dynamical horizons. In the next three sections we review applications. Section 5
summarizes applications to numerical relativity, Section 6 to black holes with hair, and Section 7
to the quantum entropy calculation. Section 8 discusses open issues and directions for future work.
Having read Section 2, Sections 3, /, 5, 6, and 7 are fairly self contained and the three applications
can be read independently of each other.

All manifolds will be assumed to be C**! (with k& > 3) and orientable, the space-time metric
will be C*, and matter fields C*~2. For simplicity we will restrict ourselves to 4-dimensional space-
time manifolds M (although most of the classical results on isolated horizons have been extended
to 3-dimensions space-times [23], as well as higher dimensional ones [141]). The space-time metric
Jap has signature (—,+,+,+) and its derivative operator will be denoted by V. The Riemann
tensor is defined by Rgp‘Wy := 2V VyWe, the Ricci tensor by Rgp := Raep®, and the scalar
curvature by R := ¢ R,,. We will assume the field equations

1
Ry — iR Gab + Agab = 87G T . (2)

(With these conventions, de Sitter space-time has positive cosmological constant A.) We assume
that Ty, satisfies the dominant energy condition (although, as the reader can easily tell, several
of the results will hold under weaker restrictions.) Cauchy (and partial Cauchy) surfaces will be
denoted by M, isolated horizons by A, and dynamical horizons by H.
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2 Basic Notions

This section is divided into two parts. The first introduces isolated horizons, and the second
dynamical horizons.

2.1 Isolated horizons

In this part, we provide the basic definitions and discuss geometrical properties of non-expanding,
weakly isolated, and isolated horizons which describe black holes which are in equilibrium in an
increasingly stronger sense.

These horizons model black holes which are themselves in equilibrium, but in possibly dynamical
space-times [13, 14, 26, 16]. For early references with similar ideas, see [156, 106]. A useful example
is provided by the late stage of a gravitational collapse shown in Figure 1. In such physical
situations, one expects the back-scattered radiation falling into the black hole to become negligible
at late times so that the ‘end portion’ of the event horizon (labelled by A in the figure) can be
regarded as isolated to an excellent approximation. This expectation is borne out in numerical
simulations where the backscattering effects typically become smaller than the numerical errors
rather quickly after the formation of the black hole (see, e.g., [34, 48]).

2.1.1 Definitions

The key idea is to extract from the notion of a Killing horizon the minimal conditions which
are necessary to define physical quantities such as the mass and angular momentum of the black
hole and to establish the zeroth and the first laws of black hole mechanics. Like Killing horizons,
isolated horizons are null, 3-dimensional sub-manifolds of space-time. Let us therefore begin by
recalling some essential features of such sub-manifolds, which we will denote by A. The intrinsic
metric gqp on A has signature (0,4,+), and is simply the pull-back of the space-time metric to A,
qab = Jab, where an underarrow indicates the pullback to A. Since q,; is degenerate, it does not
have an inverse in the standard sense. However, it does admit an inverse in a weaker sense: ¢
will be said to be an inverse of g, if it satisfies qamqong™™ = qap. As one would expect, the inverse
is not unique: We can always add to ¢*® a term of the type £(®V?), where ¢¢ is a null normal to A
and V' any vector field tangential to A. All our constructions will be insensitive to this ambiguity.
Given a null normal £ to A, the expansion © ) is defined as

@(f) = q“bva&,. (3)

(Throughout this review, we will assume that ¢ is future directed.) We can now state the first
definition:

Definition 1: A sub-manifold A of a space-time (M, gap) is said to be a non-expanding horizon
(NEH) if

1. A is topologically S* x R and null;
2. any null normal £* of A has vanishing expansion, © = 0; and

3. all equations of motion hold at A and the stress energy tensor Ty is such that —T2° is
future-causal for any future directed null normal £*.

The motivation behind this definition can be summarized as follows. Condition 1 is imposed for
definiteness; while most geometric results are insensitive to topology, the S? x R case is physically
the most relevant one. Condition 3 is satisfied by all classical matter fields of direct physical
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interest. The key condition in the above definition is Condition 2 which is equivalent to requiring
that every cross-section of A be marginally trapped. (Note incidentally that if ©,) vanishes for one
null normal ¢% to A, it vanishes for all.) Condition 2 is equivalent to requiring that the infinitesimal
area element is Lie dragged by the null normal ¢*. In particular, then, Condition 2 implies that
the horizon area is ‘constant in time’. We will denote the area of any cross section of A by aa and
define the horizon radius as Ra := y/aa /4.

Because of the Raychaudhuri equation, Condition 2 also implies

Rabfaﬁb + OabO'ab =0, (4)

where 0 is the shear of ¢,, defined by o4 := Vialy) — %@(@)qab, where the underarrow denotes
‘pull-back to A’. Now the energy condition 3 implies that Rq,f®¢* is non-negative, whence we
conclude that each of the two terms in the last equation vanishes. This in turn implies that
Toupl? = 0 and Vialyy = 0 on A. The first of these equations constrains the matter fields on A in
an interesting way, while the second is equivalent to Lyq,, = 0 on A. Thus, the intrinsic metric on
an NEH is ‘time-independent’; this is the sense in which an NEH is in equilibrium.

The zeroth and first laws of black hole mechanics require an additional structure, which is
provided by the concept of a weakly isolated horizon. To arrive at this concept, let us first
introduce a derivative operator D on A. Because q,; is degenerate, there is an infinite number
of (torsion-free) derivative operators which are compatible with it. However, on an NEH, the
property V(,fyy = 0 implies that the space-time connection V induces a unique (torsion-free)

derivative operator D on A which is compatible with g, [26, 136]. Weakly isolated horizons are
characterized by the property that, in addition to the metric ¢q, the connection component D, ¢°
is also ‘time independent’.

Two null normals ¢* and £* to an NEH A are said to belong to the same equivalence class 4]
if /* = ¢(* for some positive constant c¢. Then, weakly isolated horizons are defined as follows:

Definition 2: The pair (A, [€]) is said to constitute a weakly isolated horizon (WIH) provided
A is an NEH and each null normal £* in [¢] satisfies

(L¢Dy — D L)l = 0. (5)

It is easy to verify that every NEH admits null normals satisfying Equation (5), i.e., can be
made a WIH with a suitable choice of [¢]. However the required equivalence class is not unique,
whence an NEH admits distinct WIH structures [16].

Compared to conditions required of a Killing horizon, conditions in this definition are very
weak. Nonetheless, it turns out that they are strong enough to capture the notion of a black hole
in equilibrium in applications ranging from black hole mechanics to numerical relativity. (In fact,
many of the basic notions such as the mass and angular momentum are well-defined already on
NEHs although intermediate steps in derivations use a WIH structure.) This is quite surprising
at first because the laws of black hole mechanics were traditionally proved for globally stationary
black holes [182], and the definitions of mass and angular momentum of a black hole first used in
numerical relativity implicitly assumed that the near horizon geometry is isometric to Kerr [5].

Although the notion of a WIH is sufficient for most applications, from a geometric viewpoint,
a stronger notion of isolation is more natural: The full connection D should be time-independent.
This leads to the notion of an isolated horizon.

Definition 3: A WIH (A, [{]) is said to constitute an isolated horizon (IH) if

(LyDy — Do L)V =0 (6)
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or arbitrary vector fields V* tangential to A.
Y g

While an NEH can always be given a WIH structure simply by making a suitable choice of
the null normal, not every WIH admits an IH structure. Thus, the passage from a WIH to an
TH is a genuine restriction [16]. However, even for this stronger notion of isolation, conditions in
the definition are local to A. Furthermore, the definition only uses quantities intrinsic to A; there
are no restrictions on components of any fields transverse to A. (Even the full 4-metric g, need
not be time independent on the horizon.) Robinson—Trautman solutions provide explicit examples
of isolated horizons which do not admit a stationary Killing field even in an arbitrarily small
neighborhood of the horizon [68]. In this sense, the conditions in this definition are also rather
weak. One expects them to be met to an excellent degree of approximation in a wide variety of
situations representing late stages of gravitational collapse and black hole mergers?.

2.1.2 Examples

The class of space-times admitting NEHs, WIHs, and IHs is quite rich. First, it is trivial to verify
that any Killing horizon which is topologically S? x R is also an isolated horizon. This in particular
implies that the event horizons of all globally stationary black holes, such as the Kerr-Newman
solutions (including a possible cosmological constant), are isolated horizons. (For more exotic
examples, see [155].)

Figure 3: Set-up of the general characteristic initial value formulation. The Weyl tensor component
Wy on the null surface A is part of the free data which vanishes if A is an IH.

But there exist other non-trivial examples as well. These arise because the notion is quasi-local,
referring only to fields defined intrinsically on the horizon. First, let us consider the sub-family of
Kastor—Traschen solutions [125, 152] which are asymptotically de Sitter and admit event horizons.
They are interpreted as containing multiple charged, dynamical black holes in presence of a positive
cosmological constant. Since these solutions do not appear to admit any stationary Killing fields,
no Killing horizons are known to exist. Nonetheless, the event horizons of individual black holes are
WIHs. However, to our knowledge, no one has checked if they are IHs. A more striking example
is provided by a sub-family of Robinson—Trautman solutions, analyzed by Chrusciel [68]. These
space-times admit IHs whose intrinsic geometry is isomorphic to that of the Schwarzschild isolated
horizons but in which there is radiation arbitrarily close to A.

2However, Condition (6) may be too strong in some problems, e.g., in the construction of quasi-equilibrium initial
data sets, where the notion of WIH is more useful [124] (see Section 5.2).
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More generally, using the characteristic initial value formulation [92, 161], Lewandowski [140]
has constructed an infinite dimensional set of local examples. Here, one considers two null surfaces
A and N intersecting in a 2-sphere S (see Figure 3). One can freely specify certain data on these

two surfaces which then determines a solution to the vacuum Einstein equations in a neighborhood
of S bounded by A and N, in which A is an isolated horizon.

2.1.3 Geometrical properties

Rescaling freedom in £¢
As we remarked in Section 2.1.1, there is a functional rescaling freedom in the choice of a null
normal on an NEH and, while the choice of null normals is restricted by the weakly isolated
horizon condition (5), considerable freedom still remains. That is, a given NEH A admits an
infinite number of WIH structures (A, [¢]) [16].

On THs, by contrast, the situation is dramatically different. Given an TH (A, [¢]), generically
the Condition (6) in Definition 3 can not be satisfied by a distinct equivalence class of null
normals [¢/]. Thus on a generic IH, the only freedom in the choice of the null normal is that
of a rescaling by a positive constant [16]. This freedom mimics the properties of a Killing
horizon since one can also rescale the Killing vector by an arbitrary constant. The triplet
(qabs Da, [£%]) is said to constitute the geometry of the isolated horizon.

Surface gravity
Let us begin by defining a 1-form w, which will be used repeatedly. First note that, by
Definition 1, ¢* is expansion free and shear free. It is automatically twist free since it is a
normal to a smooth hypersurface. This means that the contraction of V¢, with any two
vectors tangent to A is identically zero, whence there must exist a 1-form w, on A such that
for any V' tangent to A,
VOV 0 = Vg P, (7)

Note that the WIH condition (5) requires simply that w, be time independent, L,w, = 0.
Given wq, the surface gravity k() associated with a null normal £ is defined as

’f(Z) = éawa. (8)

Thus, r(g) is simply the acceleration of £“. Note that the surface gravity is not an intrinsic
property of a WIH (A, [£]). Rather, it is a property of a null normal to A: k(. = ck(p). An
isolated horizon with k) = 0 is said to be an extremal isolated horizon. Note that while the
value of surface gravity refers to a specific null normal, whether a given WIH is extremal or
not is insensitive to the permissible rescaling of the normal.

Curvature tensors on A

Consider any (space-time) null tetrad (¢*,n%, m®,m®) on A such that £* is a null normal to
A. Then, it follows from Definition 1 that two of the Newman—Penrose Weyl components
vanish on A: ¥y 1= Capeal®mblcm® = 0 and ¥y 1= Cypeagl®mb¢cn® = 0. This in turn implies
that Wy := Cypegl*mPmn? is gauge invariant (i.e., does not depend on the specific choice of
the null tetrad satisfying the condition stated above.) The imaginary part of ¥y is related
to the curl of w,,

dw =2 (ImPy) e, (9)

where €, is the natural area 2-form on A. Horizons on which Im W, vanishes are said to be
non-rotating: On these horizons all angular momentum multipoles vanish [24]. Therefore,
ImWs is sometimes referred to as the rotational scalar and w, as the rotation I1-form of the
horizon.
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Next, let us consider the Ricci-tensor components. On any NEH A we have: ®gg :=
%Rabéwb =0, ®g; := %Rabﬁamb = 0. In the Einstein—Maxwell theory, one further has:
On A, $gpy := %Rabmam =0 and $yp := %Rabmamb =0.

Free data on an isolated horizon
Given the geometry (qup, D, [¢]) of an IH, it is natural to ask for the minimum amount of
information, i.e., the free data, required to construct it. This question has been answered in
detail (also for WIHs) [16]. For simplicity, here we will summarize the results only for the
non-extremal case. (For the extremal case, see [16, 143].)

Let S be a spherical cross section of A. The degenerate metric ¢4, naturally projects to
a Riemannian metric g on S, and similarly the 1-form w, of Equation (7) projects to a
1-form @, on S. If the vacuum equations hold on A, then given (Gup,w,) on S, there is,
up to diffeomorphisms, a unique non-extremal isolated horizon geometry (qup, D, []) such
that G,p is the projection of qqp, @, is the projection of the w, constructed from D, and
K(g) = wal® # 0. (If the vacuum equations do not hold, the additional data required is the
projection on S of the space-time Ricci tensor.)

The underlying reason behind this result can be sketched as follows. First, since g is
degenerate along /¢, its non-trivial part is just its projection Gup. Second, ¢,p fixes the
connection on S; it is only the quantity S, := Dgnp that is not constrained by Gup, where
ng is a 1-form on A orthogonal to S, normalized so that ¢*n, = —1. It is easy to show
that S,p is symmetric and the contraction of one of its indices with £¢ gives wy: £%Sqp = Waq.
Furthermore, it turns out that if w,¢* # 0, the field equations completely determine the
angular part of Sy, in terms of @, and ¢,p. Finally, recall that the surface gravity is not
fixed on A because of the rescaling freedom in £%; thus the /-component of w, is not part of
the free data. Putting all these facts together, we see that the pair (Gup,w,) enables us to
reconstruct the isolated horizon geometry uniquely up to diffeomorphisms.

Rest frame of a non-expanding horizon
As at null infinity, a preferred foliation of A can be thought of as providing a ‘rest frame’
for an isolated horizon. On the Schwarzschild horizon, for example, the 2-spheres on which
the Eddington—Finkelstein advanced time coordinate is constant — which are also integral
manifolds of the rotational Killing fields — provide such a rest frame. For the Kerr metric,
this foliation generalizes naturally. The question is whether a general prescription exists to
select such a preferred foliation.

On any non-extremal NEH, the 1-form w, can be used to construct preferred foliations of A.
Let us first examine the simpler, non-rotating case in which Im U5 = 0. Then Equation (9)
implies that w, is curl-free and therefore hypersurface orthogonal. The 2-surfaces orthogonal
to w, must be topologically S? because, on any non-extremal horizon, fw, # 0. Thus,
in the non-rotating case, every isolated horizon comes equipped with a preferred family of
cross-sections which defines the rest frame [26]. Note that the projection @, of w, on any
leaf of this foliation vanishes identically.

The rotating case is a little more complicated since w, is then no longer curl-free. Now the
idea is to exploit the fact that the divergence of the projection @, of w, on a cross-section is
sensitive to the choice of the cross-section, and to select a preferred family of cross-sections
by imposing a suitable condition on this divergence [16]. A mathematically natural choice
is to ask that this divergence vanish. However, (in the case when the angular momentum is
non-zero) this condition does not pick out the v = const. cuts of the Kerr horizon where v is
the (Carter generalization of the) Eddington—Finkelstein coordinate. Pawlowski has provided
another condition that also selects a preferred foliation and reduces to the v = const. cuts of
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the Kerr horizon:
dive = —Aln |,/ (10)

where A is the Laplacian of ¢,5. On isolated horizons on which |¥s| is nowhere zero — a
condition satisfied if the horizon geometry is ‘near’ that of the Kerr isolated horizon — this
selects a preferred foliation and hence a rest frame. This construction is potentially useful to
numerical relativity.

Symmetries of an isolated horizon

By definition, a symmetry of an IH (A, [¢]) is a diffeomorphism of A which preserves the
geometry (qap, D, [£]). (On a WIH, the symmetry has to preserve (qap,wa, [¢]). There are
again three universality classes of symmetry groups as on an IH.) Let us denote the symmetry
group by Ga. First note that diffeomorphisms generated by the null normals in [(?] are
symmetries; this is already built into the very definition of an isolated horizon. The other
possible symmetries are related to the cross-sections of A. Since we have assumed the cross-
sections to be topologically spherical and since a metric on a sphere can have either exactly
three, one or zero Killing vectors, it follows that Ga can be of only three types [15]:

e Type I: The pair (gu, D,) is spherically symmetric; G is four dimensional.
e Type II: The pair (qqp, D,) is axisymmetric; Ga is two dimensional.

e Type III: Diffeomorphisms generated by ¢% are the only symmetries of the pair (gup, Da);
G A is one dimensional.

In the asymptotically flat context, boundary conditions select a universal symmetry group
at spatial infinity, e.g., the Poincaré group, because the space-time metric approaches a fixed
Minkowskian one. The situation is completely different in the strong field region near a black
hole. Because the geometry at the horizon can vary from one space-time to another, the
symmetry group is not universal. However, the above result shows that the symmetry group
can be one of only three universality classes.

2.2 Dynamical horizons

This section is divided into three parts. In the first, we discuss basic definitions, in the second we
introduce an explicit example, and in the third we analyze the issue of uniqueness of dynamical
horizons and their role in numerical relativity.

2.2.1 Definitions

To explain the evolution of ideas and provide points of comparison, we will introduce the notion
of dynamical horizons following a chronological order. Readers who are not familiar with causal
structures can go directly to Definition 5 of dynamical horizons (for which a more direct motivation
can be found in [31]).

As discussed in Section 1, while the notion of an event horizon has proved to be very convenient
in mathematical relativity, it is too global and teleological to be directly useful in a number
of physical contexts ranging from quantum gravity to numerical relativity to astrophysics. This
limitation was recognized early on (see, e.g., [113], page 319) and alternate notions were introduced
to capture the intuitive idea of a black hole in a quasi-local manner. In particular, to make the
concept ‘local in time’, Hawking [111, 113] introduced the notions of a trapped region and an
apparent horizon, both of which are associated to a space-like 3-surface M representing ‘an instant
of time’. Let us begin by recalling these ideas.
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Hawking’s outer trapped surface S is a compact, space-like 2-dimensional sub-manifold in
(M, gap) such that the expansion O, of the outgoing null normal £¢ to S is non-positive. Hawking
then defined the trapped region T (M) in a surface M as the set of all points in M through which
there passes an outer-trapped surface, lying entirely in M. Finally, Hawking’s apparent horizon
0T (M) is the boundary of a connected component of 7 (M). The idea then was to regard each
apparent horizon as the instantaneous surface of a black hole. One can calculate the expansion
O () of S knowing only the intrinsic 3-metric g, and the extrinsic curvature K, of M. Hence, to
find outer trapped surfaces and apparent horizons on M, one does not need to evolve (qup, Kap)
away from M even locally. In this sense the notion is local to M. However, this locality is achieved
at the price of restricting S to lie in M. If we wiggle M even slightly, new outer trapped surfaces
can appear and older ones may disappear. In this sense, the notion is still very global. Initially,
it was hoped that the laws of black hole mechanics can be extended to these apparent horizons.
However, this has not been possible because the notion is so sensitive to the choice of M.

To improve on this situation, in the early nineties Hayward proposed a novel modification of this
framework [117]. The main idea is to free these notions from the complicated dependence on M.
He began with Penrose’s notion of a trapped surface. A trapped surface S ala Penrose is a compact,
space-like 2-dimensional sub-manifold of space-time on which ©,)©,) > 0, where £* and n* are
the two null normals to S. We will focus on future trapped surfaces on which both expansions are
negative. Hayward then defined a space-time trapped region. A trapped region T a la Hayward
is a subset of space-time through each point of which there passes a trapped surface. Finally,
Hayward’s trapping boundary 07 is a connected component of the boundary of an inextendible
trapped region. Under certain assumptions (which appear to be natural intuitively but technically
are quite strong), he was able to show that the trapping boundary is foliated by marginally trapped
surfaces (MTSs), i.e., compact, space-like 2-dimensional sub-manifolds on which the expansion of
one of the null normals, say ¢%, vanishes and that of the other, say n®, is everywhere non-positive.
Furthermore, £,0y) is also everywhere of one sign. These general considerations led him to define
a quasi-local analog of future event horizons as follows:

Definition 4: A future, outer, trapping horizon (FOTH) is a smooth 3-dimensional sub-manifold
H of space-time, foliated by closed 2-manifolds S, such that

1. the expansion of one future directed null normal to the foliation, say £, vanishes, © ) = 0;
2. the expansion of the other future directed null normal n® is negative, O,y < 0; and

3. the directional derivative of © ) along n® is negative, L, Oy < 0.

In this definition, Condition 2 captures the idea that H is a future horizon (i.e., of black hole
rather than white hole type), and Condition 3 encodes the idea that it is ‘outer’ since infinitesimal
motions along the ‘inward’ normal n® makes the 2-surface trapped. (Condition 3 also serves to
distinguish black hole type horizons from certain cosmological ones [117] which are not ruled out
by Condition 2). Using the Raychaudhuri equation, it is easy to show that H is either space-like
or null, being null if and only if the shear o,; of £* as well as the matter flux T,,¢*¢* across H
vanishes. Thus, when H is null, it is a non-expanding horizon introduced in Section 2.1. Intuitively,
H is space-like in the dynamical region where gravitational radiation and matter fields are pouring
into it and is null when it has reached equilibrium.

In truly dynamical situations, then, H is expected to be space-like. Furthermore, it turns out
that most of the key results of physical interest [30, 31], such as the area increase law and general-
ization of black hole mechanics, do not require the condition on the sign of £,© . It is therefore
convenient to introduce a simpler and at the same time ‘tighter’ notion, that of a dynamical
horizon, which is better suited to analyze how black holes grow in exact general relativity [30, 31]:

Definition 5: A smooth, three-dimensional, space-like sub-manifold (possibly with boundary) H
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of space-time is said to be a dynamical horizon (DH) if it can be foliated by a family of closed
2-manifolds such that

1. on each leaf S the expansion Oy of one null normal {* vanishes; and
2. the expansion Oy of the other null normal n® is negative.

Note first that, like FOTHs, dynamical horizons are ‘space-time notions’, defined quasi-locally.
They are not defined relative to a space-like surface as was the case with Hawking’s apparent
horizons nor do they make any reference to infinity as is the case with event horizons. In partic-
ular, they are well-defined also in the spatially compact context. Being quasi-local, they are not
teleological. Next, let us spell out the relation between FOTHs and DHs. A space-like FOTH is a
DH on which the additional condition £,, © () < 0 holds. Similarly, a DH satisfying L, © ) < 0
is a space-like FOTH. Thus, while neither definition implies the other, the two are closely related.
The advantage of Definition 5 is that it refers only to the intrinsic structure of H, without any
conditions on the evolution of fields in directions transverse to H. Therefore, it is easier to verify
in numerical simulations. More importantly, as we will see, this feature makes it natural to analyze
the structure of H using only the constraint (or initial value) equations on it. This analysis will
lead to a wealth of information on black hole dynamics. Reciprocally, Definition 4 has the advan-
tage that, since it permits H to be space-like or null, it is better suited to analyze the transition
to equilibrium [31].

A DH which is also a FOTH will be referred to as a space-like future outer horizon (SFOTH).
To fully capture the physical notion of a dynamical black hole, one should require both sets of
conditions, i.e., restrict oneself to SFOTHs. For, stationary black holes admit FOTHS and there
exist space-times [166] which admit dynamical horizons but no trapped surfaces; neither can be
regarded as containing a dynamical black hole. However, it is important to keep track of precisely
which assumptions are needed to establish specific results. Most of the results reported in this
review require only those conditions which are satisfied on DHs. This fact may well play a role
in conceptual issues that arise while generalizing black hole thermodynamics to non-equilibrium
situations®.

2.2.2 Examples

Let us begin with the simplest examples of space-times admitting DHs (and SFOTHs). These are
provided by the spherically symmetric solution to Einstein’s equations with a null fluid as source,
the Vaidya metric [179, 137, 186]. (Further details and the inclusion of a cosmological constant are
discussed in [31].) Just as the Schwarzschild-Kruskal solution provides a great deal of intuition
for general static black holes, the Vaidya metric furnishes some of the much needed intuition
in the dynamical regime by bringing out the key differences between the static and dynamical
situations. However, one should bear in mind that both Schwarzschild and Vaidya black holes are
the simplest examples and certain aspects of geometry can be much more complicated in more
general situations. The 4-metric of the Vaidya space-time is given by

2GM
Jab = — (1 — r(”)> VooV + 2V (V1 + 12 (Va0V40 + sin® 0V,6V0) (11)

where M (v) is any smooth, non-decreasing function of v. Thus, (v, r, 6, ¢) are the ingoing Eddington—
Finkelstein coordinates. This is a solution of Einstein’s equations, the stress-energy tensor Ty, being

3Indeed, the situation is similar for black holes in equilibrium. While it is physically reasonable to restrict
oneself to IHs, most results require only the WIH boundary conditions. The distinction can be important in certain
applications, e.g., in finding boundary conditions on the quasi-equilibrium initial data at inner horizons.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-10


http://www.livingreviews.org/lrr-2004-10

22 Abhay Ashtekar and Badri Krishnan

given by )
M(v)
2

Top = VvV, (12)

4drr
where M = dM /dv. Clearly, Ty, satisfies the dominant energy condition if M > 0, and vanishes if
and only if M =0. Of special interest to us are the cases illustrated in Figure 4: M (v) is non-zero
until a certain finite retarded time, say v = 0, and then grows monotonically, either reaching an
asymptotic value My as v tends to infinity (panel a), or, reaching this value at a finite retarded
time, say v = vg, and then remaining constant (panel b). In either case, the space-time region
v < 0is flat.

Let us focus our attention on the metric 2-spheres, which are all given by v = const. and
r = const.. It is easy to verify that the expansion of the outgoing null normal ¢* vanishes if and
only if (v = const. and) r = 2GM (v). Thus, these are the only spherically symmetric marginally
trapped surfaces MTSs. On each of them, the expansion O, of the ingoing normal n® is negative.
By inspection, the 3-metric on the world tube r = 2GM (v) of these MTSs has signature (+, +, +)
when M (v) is non-zero and (0, +,4) if M(v) is zero. Hence, in the left panel of Figure 4 the
surface r = 2GM (v) is the DH H. In the right panel of Figure 4 the portion of this surface
v < g is the DH H, while the portion v > vy is a non-expanding horizon. (The general issue
of transition of a DH to equilibrium is briefly discussed in Section 5.) Finally, note that at these
MTSs, L0 = —2/r? < 0. Hence in both cases, the DH is an SFOTH. Furthermore, in the case
depicted in the right panel of Figure 4 the entire surface r = 2GM (v) is a FOTH, part of which is
dynamical and part null.

This simple example also illustrates some interesting features which are absent in the stationary
situations. First, by making explicit choices of M (v), one can plot the event horizon using, say,
Mathematica [189] and show that they originate in the flat space-time region v < 0, in anticipation
of the null fluid that is going to fall in after v = 0. The dynamical horizon, on the other hand,
originates in the curved region of space-time, where the metric is time-dependent, and steadily
expands until it reaches equilibrium. Finally, as Figures 4 illustrate, the dynamical and event hori-
zons can be well separated. Recall that in the equilibrium situation depicted by the Schwarzschild
space-time, a spherically symmetric trapped surface passes through every point in the interior of
the event horizon. In the dynamical situation depicted by the Vaidya space-time, they all lie in the
interior of the DH. However, in both cases, the event horizon is the boundary of J=(ZT). Thus,
the numerous roles played by the event horizon in equilibrium situations get split in dynamical
contexts, some taken up by the DH.

What is the situation in a more general gravitational collapse? As indicated in the beginning of
this section, the geometric structure can be much more subtle. Consider 3-manifolds 7 which are
foliated by marginally trapped compact 2-surfaces S. We denote by ¢* the normal whose expansion
vanishes. If the expansion of the other null normal n® is negative, 7 will be called a marginally
trapped tube (MTT). If the tube 7 is space-like, it is a dynamical horizon. If it is time-like, it will be
called time-like membrane. Since future directed causal curves can traverse time-like membranes
in either direction, they are not good candidates to represent surfaces of black holes; therefore they
are not referred to as horizons.

In Vaidya metrics, there is precisely one MTT to which all three rotational Killing fields are
tangential and this is the DH H. In the Oppenheimer—Volkoff dust collapse, however, the situation
is just the opposite; the unique MTT on which each MTS S is spherical is time-like [180, 47]. Thus
we have a time-like membrane rather than a dynamical horizon. However, in this case the metric
does not satisfy the smoothness conditions spelled out at the end of Section 1 and the global time-
like character of 7 is an artifact of the lack of this smoothness. In the general perfect fluid spherical
collapse, if the solution is smooth, one can show analytically that the spherical MTT is space-like
at sufficiently late times, i.e., in a neighborhood of its intersection with the event horizon [102].
For the spherical scalar field collapse, numerical simulations show that, as in the Vaidya solutions,
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[ [

Figure 4: Penrose diagrams of Schwarzschild—Vaidya metrics for which the mass function M (v)
vanishes for v < 0 [137]. The space-time metric is flat in the past of v = 0 (i.e., in the shaded
region). In the left panel, as v tends to infinity, M wvanishes and M tends to a constant value Mo.
The space-like dynamical horizon H, the null event horizon E, and the time-like surface r = 2M
(represented by the dashed line) all meet tangentially at i*. In the right panel, for v > vy we
have M = 0. Space-time in the future of v = vy is isometric with a portion of the Schwarzschild
space-time. The dynamical horizon H and the event horizon E meet tangentially at v = vy. In

both figures, the event horizon originates in the shaded flat region, while the dynamical horizon
exists only in the curved region.
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the spherical MTT is space-like everywhere [102]. Finally, the geometry of the numerically evolved
MTTs has been examined in two types of non-spherical situations: the axi-symmetric collapse of a
neutron star to a Kerr black hole and in the head-on collision of two non-rotating black holes [48].
In both cases, in the initial phase the MTT is neither space-like nor time-like all the way around its
cross-sections S. However, it quickly becomes space-like and has a long space-like portion which
approaches the event horizon. This portion is then a dynamical horizon. There are no hard results
on what would happen in general, physically interesting situations. The current expectation is
that the MTT of a numerically evolved black hole space-time which asymptotically approaches the
event horizon will become space-like rather soon after its formation. Therefore most of the ongoing
detailed work focuses on this portion, although basic analytical results are available also on how
the time-like membranes evolve (see Appendix A of [31]).

2.2.3 Uniqueness

Even in the simplest, Vaidya example discussed above, our explicit calculations were restricted to
spherically symmetric marginally trapped surfaces. Indeed, already in the case of the Schwarzschild
space-time, very little is known analytically about non-spherically symmetric marginally trapped
surfaces. It is then natural to ask if the Vaidya metric admits other, non-spherical dynamical
horizons which also asymptote to the non-expanding one. Indeed, even if we restrict ourselves to
the 3-manifold » = 2GM (v), can we find another foliation by non-spherical, marginally trapped
surfaces which endows it with another dynamical horizon structure? These considerations illustrate
that in general there are two uniqueness issues that must be addressed.

First, in a general space-time (M, gqs), can a space-like 3-manifold H be foliated by two distinct
families of marginally trapped surfaces, each endowing it with the structure of a dynamical horizon?
Using the maximum principle, one can show that this is not possible [93]. Thus, if H admits a
dynamical horizon structure, it is unique.

Second, we can ask the following question: How many DHs can a space-time admit? Since
a space-time may contain several distinct black holes, there may well be several distinct DHs.
The relevant question is if distinct DHs can exist within each connected component of the (space-
time) trapped region. On this issue there are several technically different uniqueness results [27].
It is simplest to summarize them in terms of SFOTHs. First, if two non-intersecting SFOTHs
H and H' become tangential to the same non-expanding horizon at a finite time (see the right
panel in Figure 4), then they coincide (or one is contained in the other). Physically, a more
interesting possibility, associated with the late stages of collapse or mergers, is that H and H'
become asymptotic to the event horizon. Again, they must coincide in this case. At present, one
can not rule out the existence of more than one SFOTHs which asymptote to the event horizon if
they intersect each other repeatedly. However, even if this were to occur, the two horizon geometries
would be non-trivially constrained. In particular, none of the marginally trapped surfaces on H
can lie entirely to the past of H’.

A better control on uniqueness is perhaps the most important open issue in the basic framework
for dynamical horizons and there is ongoing work to improve the existing results. Note however
that all results of Sections 3 and 5, including the area increase law and the generalization of black
hole mechanics, apply to all DHs (including the ‘transient ones’ which may not asymptote to the
event horizon). This makes the framework much more useful in practice.

The existing results also provide some new insights for numerical relativity [27]. First, suppose
that a MTT 7 is generated by a foliation of a region of space-time by partial Cauchy surfaces M;
such that each MTS S; is the outermost MTS in M;. Then 7 can not be a time-like membrane.
Note however that this does not imply that 7 is necessarily a dynamical horizon because 7 may
be partially time-like and partially space-like on each of its marginally trapped surfaces S. The
requirement that 7 be space-like — i.e., be a dynamical horizon — would restrict the choice of the
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foliation M, of space-time and reduce the unruly freedom in the choice of gauge conditions that
numerical simulations currently face. A second result of interest to numerical relativity is the
following. Let a space-time (M, gqp) admit a DH H which asymptotes to the event horizon. Let
My be any partial Cauchy surface in (M, gqp) which intersects H in one of the marginally trapped
surfaces, say Sp. Then, Sy is the outermost marginally trapped surface — i.e., apparent horizon in
the numerical relativity terminology — on M.
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3 Area Increase Law

As mentioned in the introduction, the dynamical horizon framework has led to a monotonicity
formula governing the growth of black holes. In this section, we summarize this result. Our
discussion is divided into three parts. The first spells out the strategy, the second presents a brief
derivation of the basic formula, and the third is devoted to interpretational issues.

3.1 Preliminaries

The first law of black hole mechanics (1) tells us how the area of the black hole increases when it
makes a transition from an initial equilibrium state to a nearby equilibrium state. The question
we want to address is: Can one obtain an integral generalization to incorporate fully dynamical
situations? Attractive as this possibility seems, one immediately encounters a serious conceptual
and technical problem. For, the generalization requires, in particular, a precise notion of the flux of
gravitational energy across the horizon. Already at null infinity, the expression of the gravitational
energy flux is subtle: One needs the framework developed by Bondi, Sachs, Newman, Penrose, and
others to introduce a viable, gauge invariant expression of this flux [54, 33, 185]. In the strong field
regime, there is no satisfactory generalization of this framework and, beyond perturbation theory,
no viable, gauge invariant notion of the flux of gravitational energy across a general surface.

Yet, there are at least two general considerations that suggest that something special may
happen on DHs. Consider a stellar collapse leading to the formation of a black hole. At the
end of the process, one has a black hole and, from general physical considerations, one expects
that the energy in the final black hole should equal the total matter plus gravitational energy
that fell across the horizon. Thus, at least the total integrated flux across the horizon should be
well defined. Indeed, it should equal the depletion of the energy in the asymptotic region, i.e.,
the difference between the ADM energy and the energy radiated across future null infinity. The
second consideration involves the Penrose inequality [157] introduced in Section 1. Heuristically,
the inequality leads us to think of the radius of a marginally trapped surface as a measure of the
mass in its interior, whence one is led to conclude that the change in the area is due to influx
of energy. Since a DH is foliated by marginally trapped surfaces, it is tempting to hope that
something special may happen, enabling one to define the flux of energy and angular momentum
across it. This hope is borne out.

In the discussion of DHs (Sections 3 and 4.2) we will use the following conventions (see Figure 5).
The DH is denoted by H and marginally trapped surfaces that foliate it are referred to as cross-
sections. The unit, time-like normal to H is denoted by 7% with ¢.,7*7% = —1. The intrinsic
metric and the extrinsic curvature of H are denoted by qap := gap + 7a7p and Kap := ¢, %V T,
respectively. D is the derivative operator on H compatible with g5, Rqp its Ricci tensor, and R
its scalar curvature. The unit space-like vector orthogonal to S and tangent to H is denoted by 7°.
Quantities intrinsic to S are generally written with a tilde. Thus, the two-metric on S is gq and
the extrinsic curvature of S C H is Kqp, == G, °q, *D.74; the derivative operator on (S, gap) is D and
its Ricci tensor is Rap. Finally, we fix the rescaling freedom in the choice of null normals to cross-
sections via % := 747 and n® := 7% —7 (so that {*n, = —2). To keep the discussion reasonably
focused, we will not consider gauge fields with non-zero charges on the horizon. Inclusion of these
fields is not difficult but introduces a number of subtleties and complications which are irrelevant
for numerical relativity and astrophysics.
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Figure 5: H is a dynamical horizon, foliated by marginally trapped surfaces S. T% is the unit
time-like normal to H and 7™ the unit space-like normal within H to the foliations. Although H is
space-like, motions along 7™ can be regarded as ‘time evolution with respect to observers at infinity’.
In this respect, one can think of H as a hyperboloid in Minkowski space and S as the intersection
of the hyperboloid with space-like planes. In the figure, H joins on to a weakly isolated horizon A
with null normal £* at a cross-section Sp.

3.2 Area increase law

The qualitative result that the area ag of cross-sections S increases monotonically on H follows
immediately from the definition,

~ b o~ 1_, 1
K = §"™D,ry, = 5 "Vaolly —mp) = ~50m >0, (13)
since ©() = 0 and ©(,) < 0. Hence ag increases monotonically in the direction of 7. The

non-trivial task is to obtain a quantitative formula for the amount of area increase.
To obtain this formula, one simply uses the scalar and vector constraints satisfied by the Cauchy
data (qab, Kap) on H:

Hs =R+ K? — KK, = 167GT,, 77, (14)
H = Dy, (K — Kq®) = 8nGT* 7.4%,, (15)

where 1
Tab = Tab - Sﬂ_GAgabv (16)

and Ty is the matter stress-energy tensor. The strategy is entirely straightforward: One fixes two
cross-sections S7 and Sy of H, multiplies Hg and H{, with appropriate lapse and shift fields and
integrates the result on a portion AH C H which is bounded by S; and S5. Somewhat surprisingly,
if the cosmological constant is non-negative, the resulting area balance law also provides strong
constraints on the topology of cross sections S.

Specification of lapse N and shift N¢ is equivalent to the specification of a vector field £¢ =
NT®* 4+ N® with respect to which energy-flux across H is defined. The definition of a DH provides
a preferred direction field, that along £*. Hence it is natural set £* = N/* = N7T* + Nr*. We
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will begin with this choice and defer the possibility of choosing more general vector fields until
Section 4.2.

The object of interest now is the flux of energy associated with £* = N{% across AH. We
denote the flux of matter energy across AH by fl(fgmer:

Flhweri= [ Tude @V, a7)
AH

By taking the appropriate combination of Equations (14) and (15) we obtain
1

Fer = N (Hs + 27, H{) d*V
matter 167G AH ( S + 27 V)
1 A
= 765G )1 N (R+ K? — KK, + 27, Dy (K — Kq*°)) d*V. (18)
H

Since H is foliated by compact 2-manifolds S, one can perform a 2+ 1 decomposition of various
quantities on H. In particular, one first uses the Gauss—Codazzi equation to express R in terms
of R, K4, and a total divergence. Then, one uses the identity

T (Kap + Kap) = O(0) = 0 (19)
to simplify the expression. Finally one sets
Ogb = "uc('jbd vagba Ca = gab?fvceb~ (20)

(Note that o, is just the shear tensor since the expansion of ¢* vanishes.) Then, Equation (18)
reduces to
NRAV = 167G | T,7o d®V +/ N (lof* +2[¢?) &®V. (21)
AH AH AH
To simplify this expression further, we now make a specific choice of the lapse N. We denote
by R the area-radius function; thus R is constant on each S and satisfies ag = 47 R?. Since we
already know that area increases monotonically, R is a good coordinate on H, and using it the
3-volume d®V on H can be decomposed as d*V = |OR|"'dRd*V, where 0 denotes the gradient on
H. Therefore calculations simplify if we choose

N = |OR| = Ng. (22)
We will set Npl® = {{). Then, the integral on the left side of Equation (21) becomes
NrRd*V = / dRy{RcFV =I(Ry — Ry), (23)
AH Ry

where R; and R, are the (geometrical) radii of S; and Sa, and 7 is the Gauss—Bonnet topological
invariant of the cross-sections S. Substituting back in Equation (21) one obtains

A -
I (Ry — Ry) = 167G <Tab - m%b) TRy d°V +/ Ng (lo]* +2[¢[*) d*V. (24)
AH AH

This is the general expression relating the change in area to fluxes across AH. Let us consider its
ramifications in the three cases, A being positive, zero, or negative:

e If A > 0, the right side is positive definite whence the Gauss—Bonnet invariant Z is positive
definite, and the topology of the cross-sections S of the DH is necessarily that of S2.
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e If A = 0, then S is either spherical or toroidal. The toroidal case is exceptional: If it
occurs, the matter and the gravitational energy flux across H vanishes (see Section 3.3),
the metric g is flat, £,0) = 0 (so H can not be a FOTH), and £,0() = 0. In view
of these highly restrictive conditions, toroidal DHs appear to be unrelated to the toroidal
topology of cross-sections of the event horizon discussed by Shapiro, Teukolsky, Winicour,
and others [121, 167, 139]. In the generic spherical case, the area balance law (24) becomes

1 1
—(Ry— R1) = | Tu7"€p d®V 7/1\1 24 2/¢)?) d*V. 25
s(Fe = R) = [ T el @V + 1o [ N (o +20¢P) (25)
e If A < 0, there is no control on the sign of the right hand side of Equation (24). Hence,
a priori any topology is permissible. Stationary solutions with quite general topologies are
known for black holes which are asymptotically locally anti-de Sitter. Event horizons of these
solutions are the potential asymptotic states of these DHs in the distant future.

For simplicity, the remainder of our discussion of DHs will be focused on the zero cosmological
constant case with 2-sphere topology.

3.3 Energy flux due to gravitational waves

Let us interpret the various terms appearing in the area balance law (25).

The left side of this equation provides us with the change in the horizon radius caused by the
dynamical process under consideration. Since the expansion O vanishes, this is also the change
in the Hawking mass as one moves from the cross section S; to Ss. The first integral on the right
side of this equation is the flux fr(nl?tter of matter energy associated with the vector field £, . The
second term is purely geometrical and accompanies the term representing the matter energy flux.

Hence it is interpreted as the flux ]:g(ﬁz, of ng)—energy carried by the gravitational radiation:

1
() = —— [ Ng(lo]* +2/¢[*) &*V. 2
F = 1o | Na (ol +20cP) &V (26)

A priori, it is surprising that there should exist a meaningful expression for the gravitational
energy flux in the strong field regime where gravitational waves can no longer be envisaged as
ripples on a flat space-time. Therefore, it is important to subject this interpretation to viability
criteria analogous to the ‘standard’ tests one uses to demonstrate the viability of the Bondi flux
formula at null infinity. It is known that it passes most of these tests. However, to our knowledge,
the status is still partially open on one of these criteria. The situation can be summarized as
follows:

Gauge invariance
Since one did not have to introduce any structure, such as coordinates or tetrads, which is
auxiliary to the problem, the expression is obviously gauge invariant. This is to be contrasted
with definitions involving pseudo-tensors or background fields.

Positivity
The energy flux (26) is manifestly non-negative. In the case of the Bondi flux, positivity
played a key role in the early development of the gravitational radiation theory. It was per-
haps the most convincing evidence that gravitational waves are not coordinate artifacts but
carry physical energy. It is quite surprising that a simple, manifestly non-negative expression
can exist in the strong field regime of DHs. One can of course apply our general strategy
to any space-like 3-surface H, foliated by 2-spheres. However, if H is not a DH, the sign of
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the geometric terms in the integral over AH can not be controlled, not even when H lies in
the black hole region and is foliated by trapped (rather than marginally trapped) surfaces S.
Thus, the positivity of ]—'g(;i)v is a rather subtle property, not shared by 3-surfaces which are
foliated by non-trapped surfaces, nor those which are foliated by trapped surfaces; one needs
a foliation precisely by marginally trapped surfaces. The property is delicately matched to
the definition of DHs [31].

Locality

All fields used in Equation (26) are defined by the local geometrical structures on cross-
sections of H. This is a non-trivial property, shared also by the Bondi-flux formula. However,
it is not shared in other contexts. For example, the proof of the positive energy theorem by
Witten [188] provides a positive definite energy density on Cauchy surfaces. But since it
is obtained by solving an elliptic equation with appropriate boundary conditions at infinity,
this energy density is a highly non-local function of geometry. Locality of féﬁ’v enables one
to associate it with the energy of gravitational waves instantaneously falling across any cross
section S.

Vanishing in spherical symmetry
The fourth criterion is that the flux should vanish in presence of spherical symmetry. Sup-
pose H is spherically symmetric. Then one can show that each cross-section of S must be
spherically symmetric. Now, since the only spherically symmetric vector field and trace-free,
second rank tensor field on a 2-sphere are the zero fields, o,, = 0 and (* = 0.

Balance law

The Bondi-Sachs energy flux also has the important property that there is a locally defined
notion of the Bondi energy F(C') associated with any 2-sphere cross-section C' of future null
infinity, and the difference E(C7) — E(C2) equals the Bondi—Sachs flux through the portion
of null infinity bounded by Cs and C;. Does the expression (26) share this property? The
answer is in the affirmative: As noted in the beginning of this section, the integrated flux is
precisely the difference between the locally defined Hawking mass associated with the cross-
section. In Section 5 we will extend these considerations to include angular momentum.

Taken together, the properties discussed above provide a strong support in favor of the inter-
pretation of Equation (26) as the {(g)-energy flux carried by gravitational waves into the portion
AH of the DH. Nonetheless, it is important to continue to think of new criteria and make sure
that Equation (26) passes these tests. For instance, in physically reasonable, stationary, vacuum
solutions to Einstein’s equations, one would expect that the flux should vanish. However, on DHs
the area must increase. Thus, one is led to conjecture that these space-times do not admit DHs.
While special cases of this conjecture have been proved, a general proof is still lacking. Situation
is similar for non-spherical DHs in spherically symmetric space-times.

We will conclude this section with two remarks:

e The presence of the shear term |o|? in the integrand of the flux formula (26) seems natural
from one’s expectations based on perturbation theory at the event horizon of the Kerr fam-
ily [108, 66]. But the term |¢|? is new and can arise only because H is space-like rather than
null: On a null surface, the analogous term vanishes identically. To bring out this point, one
can consider a more general case and allow the cross-sections S to lie on a horizon which is
partially null and partially space-like. Then, using a 2+ 2 formulation [117] one can show
that flux on the null portion is given entirely by the term |o|? [28]. However, on the space-
like portion, the term |¢|? does not vanish in general. Indeed, on a DH, it cannot vanish in
presence of rotation: The angular momentum is given by the integral of (,©%, where ¢® is
the rotational symmetry.
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e The flux refers to a specific vector field §E‘R) and measures the change in the Hawking mass
associated with the cross-sections. However, this is not a good measure of the mass in
presence of angular momentum (see, e.g., [34] for numerical simulations). Generalization of
the balance law to include angular momentum is discussed in Section 4.2.
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4 Black Hole Mechanics

As mentioned in the introduction, the discovery of the laws of black hole mechanics has led to
fundamental insights in both classical and quantum gravity. In this section we discuss how the
standard framework tied to stationary space-times can be extended using WIHs and DHs.

4.1 Mechanics of weakly isolated horizons

The isolated horizon framework has not only extended black hole mechanics, but it has also led
to a deeper insight into the ‘origin’ of the laws of black hole mechanics. In this section we will
summarize these developments using WIHs. Along the way we shall also obtain formulas for the
mass and angular momentum of a WIH. For simplicity, in the main part of the discussion, we
will restrict ourselves to type II (i.e., axi-symmetric) WIHs on which all matter fields vanish.
Generalizations including various types of matter field can be found in [19, 26, 15, 75, 76, 77].

4.1.1 The zeroth law

The zeroth law of thermodynamics says that the temperature of a system in thermodynamic
equilibrium is constant. Its counterpart for black hole mechanics says that surface gravity of a
weakly isolated horizon is constant. This result is non-trivial because the horizon geometry is
not assumed to be spherically symmetric; the result holds even when the horizon itself is highly
distorted so long as it is in equilibrium. It is established as follows.

Recall from Section 2.1.3 that the notion of surface gravity is tied to the choice of a null normal
£ of the isolated horizon: k() := £*w,. Now, using Equation (5) in Definition 2 (of WIHs), we
obtain:

Low, = 0. (27)
Next, recall from Equation (9) that the curl of w, is related to the imaginary part of Ws:
dw =2 (ImTsy) e (28)

where ¢ is the natural area 2-form on A satisfying Ly¢ = 0 and ¢ - ¢ = 0. Hence we conclude
¢+ dw = 0 which in turn implies that () is constant on the horizon:

0=Liw=d{l -w)= dlﬁ(@). (29)

This completes the proof of the zeroth law. As the argument shows, given an NEH, the main
condition (5) in the definition of a WIH is equivalent to constancy of surface gravity. Note that
no restriction has been imposed on Wy which determines the mass and angular momentum mul-
tipoles [24]: as emphasized above, the zeroth law holds even if the WIH is highly distorted and
rapidly rotating.

If electromagnetic fields are included, one can also show that the electric potential is constant
on the horizon [26]. Finally, there is an interesting interplay between the zeroth law the action
principle. Let us restrict ourselves to space-times which admit a non expanding horizon as inner
boundary. Then the standard Palatini action principle is not well defined because the variation
produces a non-vanishing surface term at the horizon. The necessary and sufficient condition for
this surface term to vanish is precisely that the gravitational (and the electromagnetic) zeroth
laws hold [26]. Consequently, the standard action principle is well-defined if inner boundaries are
WIHs.
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4.1.2 Phase space, symplectic structure, and angular momentum

In field theories, conserved quantities such as energy and angular momentum can be universally
defined via a Hamiltonian framework: they are the numerical values of Hamiltonians generating
canonical transformations corresponding to time translation and rotation symmetries. In absence
of inner boundaries, it is this procedure that first led to the notion of the ADM energy and angular
momentum at spatial infinity [7]. At null infinity, it can also be used to define fluxes of Bondi
energy and angular momentum across regions of Z% [33], and values of these quantities associated
with any cross-section of ZT [18, 185].

This procedure can be extended to allow inner boundaries which are WIHs. The first ingredient
required for a Hamiltonian framework is, of course, a phase space. The appropriate phase space
now consists of fields living in a region of space-time outside the black hole, satisfying suitable
boundary conditions at infinity and horizon. Let M be the region of space-time that we are
interested in. The boundary of M consists of four components: the time-like cylinder 7 at spatial
infinity, two space-like surfaces M; and My which are the future and past boundaries of M, and
an inner boundary A which is to be the WIH (see Figure 6). At infinity, all fields are assumed to
satisfy the fall-off conditions needed to ensure asymptotic flatness. To ensure that A is a type II
horizon, one fixes a rotational vector field ¢* on A and requires that physical fields on M are such
that the induced geometry on A is that of a type II horizon with ¢® as the rotational symmetry.

Figure 6: The region of space-time M under consideration has an internal boundary A and is
bounded by two Cauchy surfaces My and My and the time-like cylinder 1o, at infinity. M is a
Cauchy surface in M whose intersection with A is a spherical cross-section S and the intersection
With Teo 18 Soo, the sphere at infinity.

Two Hamiltonian frameworks are available. The first uses a covariant phase space which
consists of the solutions to field equations which satisfy the required boundary conditions [26, 15].
Here the calculations are simplest if one uses a first order formalism for gravity, so that the
basic gravitational variables are orthonormal tetrads and Lorentz connections. The second uses a
canonical phase space consisting of initial data on a Cauchy slice M of M [55]. In the gravitational
sector, this description is based on the standard ADM variables. Since the conceptual structure
underlying the main calculation and the final results are the same, the details of the formalism are
not important. For definiteness, in the main discussion, we will use the covariant phase space and
indicate the technical modifications needed in the canonical picture at the end.

The phase space T is naturally endowed with a (pre-)symplectic structure €2 — a closed 2-form
(whose degenerate directions correspond to infinitesimal gauge motions). Given any two vector
fields (i.e., infinitesimal variations) d; and d on I', the action £2(d1, d2) of the symplectic 2-form on
them provides a function on I'. A vector field X on T is said to be a Hamiltonian vector field (i.e.,
to generate an infinitesimal canonical transformation) if and only if £Lx€ = 0. Since the phase
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space is topologically trivial, it follows that this condition holds if and only if there is a function
H on T such that Q(6,X) = dH for all vector fields 6. The function H is called a Hamiltonian
and X its Hamiltonian vector field; alternatively, H is said to generate the infinitesimal canonical
transformation X.

Since we are interested in energy and angular momentum, the infinitesimal canonical trans-
formations X will correspond to time translations and rotations. As in any generally covariant
theory, when the constraints are satisfied, values of Hamiltonians generating such diffeomorphisms
can be expressed purely as surface terms. In the present case, the relevant surfaces are the sphere
at infinity and the spherical section S = M N A of the horizon. Thus the numerical values of
Hamiltonians now consist of two terms: a term at infinity and a term at the horizon. The terms
at infinity reproduce the ADM formulas for energy and angular momentum. The terms at the
horizon define the energy and angular momentum of the WIH.

Let us begin with angular momentum (see [15] for details). Consider a vector field ¢* on
M which satisfies the following boundary conditions: (i) At infinity, ¢® coincides with a fixed
rotational symmetry of the fiducial flat metric; and, (ii) on A, it coincides with the vector field ¢°.
Lie derivatives of physical fields along ¢ define a vector field X4y on I'. The question is whether
this is an infinitesimal canonical transformation, i.e., a generator of the phase space symmetry. As
indicated above, this is the case if and only if there exists a phase space function J(%) satisfying:

6J@) = (3, X (4))- (30)

for all variations §. If such a phase space function J(#) exists, it can be interpreted as the Hamil-
tonian generating rotations.
Now, a direct calculation [16] shows that, in absence of gauge fields on A, one has:

1 a
Q((Sa X((b)) = _% 5%9 [((,0 (/Ja) 26} - (SJXQM =: 6J(¢) (31)

As expected, the expression for §.J(?) consists of two terms: a term at the horizon and a term
at infinity. The term at infinity is the variation of the familiar ADM angular momentum JX?))M
associated with ¢®. The surface integral at the horizon is interpreted as the variation of the horizon
angular momentum Ja. Since variations § are arbitrary, one can recover, up to additive constants,
J/gng and Ja from their variations, and these constants can be eliminated by requiring that both

of these angular momenta should vanish in static axi-symmetric space-times. One then obtains:

1

1
Ia = —g= Plune®) =~ § Fm{w) % (32)

where the function f on A is related to ¢® by O,f = €op’. In the last step we have used

Equation (28) and performed an integration by parts. Equation (32) is the expression of the

horizon angular momentum. Note that all fields that enter this expression are local to the horizon

and ¢ is not required to be a Killing field of the space-time metric even in a neighborhood of the

horizon. Therefore, Jo can be calculated knowing only the horizon geometry of a type II horizon.
We conclude our discussion of angular momentum with some comments:

The Hamiltonian J (%)
It follows from Equation (31) and (32) that the total Hamiltonian generating the rotation
along ¢“ is the difference between the ADM and the horizon angular momenta (apart from
a sign which is an artifact of conventions). Thus, it can be interpreted as the angular
momentum of physical fields in the space-time region M outside the black hole.
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Relation to the Komar integral
If ¢* happens to be a space-time Killing field in a neighborhood of A, then Ja agrees with
the Komar integral of ¢ [15]. If ¢® is a global, space-time Killing field, then both JXQM
as well as Ja agree with the Komar integral, whence the total Hamiltonian J(®) vanishes
identically. Since the fields in the space-time region M are all axi-symmetric in this case,
this is just what one would expect from the definition of J(%).

Ja for general axial fields ¢®
If the vector field ¢ is tangential to cross-sections of A, J(®) continues to the generator of
the canonical transformation corresponding to rotations along ¢%, even if its restriction % to
A does not agree with the axial symmetry ¢® of horizon geometries of our phase space fields.
However, there is an infinity of such vector fields ¢* and there is no physical reason to identify
the surface term Ja arising from any one of them with the horizon angular momentum.

Inclusion of gauge fields
If non-trivial gauge fields are present at the horizon, Equation (32) is incomplete. The horizon
angular momentum Jx is still an integral over S; however it now contains an additional term
involving the Maxwell field. Thus Ja contains not only the ‘bare’ angular momentum but
also a contribution from its electromagnetic hair (see [15] for details).

Canonical phase space
The conceptual part of the above discussion does not change if one uses the canonical phase
space [55] in place of the covariant. However, now the generator of the canonical transfor-
mation corresponding to rotations has a volume term in addition to the two surface terms
discussed above. However, on the constraint surface the volume term vanishes and the nu-
merical value of the Hamiltonian reduces to the two surface terms discussed above.

4.1.3 Energy, mass, and the first law

To obtain an expression of the horizon energy, one has to find the Hamiltonian on I' generating
diffeomorphisms along a time translation symmetry t* on M. To qualify as a symmetry, at infinity
t* must approach a fixed time translation of the fiducial flat metric. At the horizon, t* must be
an infinitesimal symmetry of the type II horizon geometry. Thus, the restriction of ¢t* to A should
be a linear combination of a null normal ¢* and the axial symmetry vector ¢,

t* = Bpl" — Qye”, (33)

where B(y ;) and the angular velocity ;) are constants on A.

However there is subtlety: Unlike in the angular momentum calculation where ¢ is required to
approach a fized rotational vector ¢ on A, the restriction of t* to A can not be a fixed vector field.
For physical reasons, the constants B ;) and 1) should be allowed to vary from one space-time
to another; they are to be functions on phase space. For instance, physically one expects {1
to vanish on the Schwarzschild horizon but not on a generic Kerr horizon. In the terminology of
numerical relativity, unlike %, the time translation t* must be a live vector field. As we shall see
shortly, this generality is essential also for mathematical reasons: without it, evolution along t*
will not be Hamiltonian!

At first sight, it may seem surprising that there exist choices of evolution vector fields ¢* for
which no Hamiltonian exists. But in fact this phenomenon can also happen in the derivations of
the ADM energy for asymptotically flat space-times in the absence of any black holes. Standard
treatments usually consider only those t* that asymptote to the same unit time translation at
infinity for all space-times included in the phase space. However, if we drop this requirement and
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choose a live t* which approaches different asymptotic time-translations for different space-times,
then in general there exists no Hamiltonian which generates diffeomorphisms along such a t¢.
Thus, the requirement that the evolution be Hamiltonian restricts permissible t*. This restriction
can be traced back to the fact that there is a fixed fiducial flat metric at infinity. At the horizon,
the situation is the opposite: The geometry is not fixed and this forces one to adapt t* to the
space-time under consideration, i.e., to make it live.

Apart from this important caveat, the calculation of the Hamiltonian is very similar to that for
angular momentum. First, one evaluates the 1-form Y{;) on I' whose action on any tangent vector
field 0 is given by

Vi (6) = (6. X)), (34)

where X4 is the vector field on T' induced by diffeomorphisms along ¢*. Once again, Y, () will
consist of a surface term at infinity and a surface term at the horizon. A direct calculation yields

k() t
Yo (6) = — g &0as = QopdJa + 6B by, (35)
where k() = B )0?w, is the surface gravity associated with the restriction of t to A, aa is

the area of A, and EX])DM is the ADM energy associated with ¢®. The first two terms in the right
hand side of this equation are associated with the horizon, while the E% ), term is associated
with an integral at infinity. Since the term at infinity gives the ADM energy, it is natural to
hope that terms at the horizon will give the horizon energy. However, at this point, we see an
important difference from the angular momentum calculation. Recall that the right hand side of
Equation (31) is an exact variation which means that J(®) is well defined. However, the right hand
side of Equation (35) is not guaranteed to be an exact variation; in other words, X(#) need not be
a Hamiltonian vector field in phase space. It is Hamiltonian if and only if there is a phase space
function E(At) — the would be energy of the WIH — satisfying

K()
831G

In particular, this condition implies that, of the infinite number of coordinates in phase space, E4,
K(t), and ;) can depend only on two: aa and Ja.

SEV = Y san + Q6. (36)
A (t)

Let us analyze Equation (36). Clearly, a necessary condition for existence of Eg) is just the
integrability requirement
(9/&@) 39(,5)
=8rG—=. 37
8JA T aaA ( )

Since r(y and Q) are determined by t*, Equation (37) is a constraint on the restriction to the

horizon of the time evolution vector field t*. A vector field t* for which E(At) exists is called a
permissible time evolution vector field. Since Equation (36) is precisely the first law of black hole
mechanics, t® is permissible if and only if the first law holds. Thus the first law is the necessary
and sufficient condition that the evolution generated by t* is Hamiltonian!

There are infinitely many permissible vector fields t*. To construct them, one can start with
a suitably regular function xg of ax and Ja, find B so that k) = ko, solve Equation (37) to
obtain €, and find a permissible t* with t* = B ;)£* — Q¢® on A [15]. Each permissible ¢

defines a horizon energy E(At) and provides a first law (36). A question naturally arises: Can one

select a preferred t§ or, alternatively, a canonical function ko(aa, Ja)? Now, thanks to the no-hair
theorems, we know that for each choice of (aa, Ja), there is precisely one stationary black hole in
vacuum general relativity: the Kerr solution. So, it is natural to set £g(aa, Ja) = Kkerr (@A, JA),
or, more explicitly,

R —4J%

2R3 \/RA +4J%’

Ho(aA,JA) = (38)
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where Rp is the area radius of the horizon, Ra = (aa/4m)'/2. Via Equation (37), this choice then

leads to . 5
\/ 4
M. (39)

Q(t) = QKerr(aA7 JA) = QGRA

The associated horizon energy is then:

(to) _ 1 4 2 72
E\ 2GRAW/RAJFZLG JX- (40)

This canonical horizon energy is called the horizon mass:
M = EY (41)

Note that, its dependence on the horizon area and angular momentum is the same as that in the

Kerr space-time. Although the final expression is so simple, it is important to keep in mind that this

is not just a postulate. Rather, this result is derived using a systematic Hamiltonian framework,

following the same overall procedure that leads to the definition of the ADM 4-momentum at

spatial infinity. Finally, note that the quantities which enter the first law refer just to physical

fields on the horizon; one does not have to go back and forth between the horizon and infinity.
We will conclude with three remarks:

Relation to the ADM and Bondi energy
Under certain physically reasonable assumptions on the behavior of fields near future time-
like infinity i T, one can argue that, if the WIH extends all the way to i, then the difference
Mapm — Ma equals the energy radiated across future null-infinity [14]. Thus, as one would
expect physically, Ma is the mass that is left over after all the gravitational radiation has
left the system.

Horizon angular momentum and mass
To obtain a well-defined action principle and Hamiltonian framework, it is essential to work
with WIHs. However, the final expressions (32) and (40) of the horizon angular momentum
and mass do not refer to the preferred null normals [¢] used in the transition from an NEH
to a WIH. Therefore, the expressions can be used on any NEH. This fact is useful in the
analysis of transition to equilibrium (Section 4.3) and numerical relativity (Section 5.1).

Generalizations of the first law

The derivation of the first law given here can be extended to allow the presence of matter
fields at the horizon [26, 15]. If gauge fields are present, the expression of the angular
momentum has an extra term and the first law (36) also acquires the familiar extra term
‘®HQ)’, representing work done on the horizon in increasing its charge. Again, all quantities
are defined locally on the horizon. The situation is similar in lower [23] and higher [133]
space-time dimensions. However, a key difference arises in the definition of the horizon mass.
Since the uniqueness theorems for stationary black holes fail to extend beyond the Einstein—
Maxwell theory in four space-time dimensions, it is no longer possible to assign a canonical
mass to the horizon. However, as we will see in Section 6, the ambiguity in the notion of
the horizon mass can in fact be exploited to obtain new insights into the properties of black
holes and solitons in these more general theories.

4.2 Mechanics of dynamical horizons

The variations § in the first law (36) represent infinitesimal changes in equilibrium states of horizon
geometries. In the derivation of Section 4.1, these variations relate nearby but distinct space-times
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in each of which the horizon is in equilibrium. Therefore Equation (36) is interpreted as the first
law in a passive form. Physically, it is perhaps the active form of the first law that is of more direct
interest where a physical process, such as the one depicted in the right panel of Figure 1 causes
a transition from one equilibrium state to a nearby one. Such a law can be established in the
dynamical horizon framework. In fact, one can consider fully non-equilibrium situations, allowing
physical processes in a given space-time in which there is a finite — rather than an infinitesimal —
change in the state of the horizon. This leads to an integral version of the first law.

Our summary of the mechanics of DHs is divided in to three parts. In the first, we begin with
some preliminaries on angular momentum. In the second, we extend the area balance law (25) by
allowing more general lapse and shift functions, which leads to the integral version of the first law.
In the third, we introduce the notion of horizon mass.

4.2.1 Angular momentum balance

As one might expect, the angular momentum balance law results from the momentum con-
straint (15) on the DH H. Fix any vector field ¢* on H which is tangential to all the cross-sections
S of H, contract both sides of Equation (15) with ¢%, and integrate the resulting equation over
the region AH to obtain®

8; g Kawm R ﬁ KabwaAb P’V = /A H(TabT T G(K“b anb)£¢Qab> V.

(42)
It is natural to identify the surface integrals with the generalized angular momentum J& associated
with cross-sections S and set

1
= K 2dV, 43
I5 871G ]{ a7’ = ’7G f{ (43)
where the overall sign ensures compatibility with conventions normally used in the asymptotically
flat context, and where we have introduced an angular momentum density j% := —K,,p%7" for

later convenience. The term ‘generalized’ emphasizes the fact that the vector field ¢ need not be
an axial Killing field even on S; it only has to be tangential to our cross-sections. If ¢* happens
to be the restriction of a space-time Killing field to S, then J& agrees with the Komar integral.
If the pair (qup, Kap) is spherically symmetric on S, as one would expect, the angular momenta
associated with the rotational Killing fields vanish.

Equation (42) is a balance law; the right side provides expressions of fluxes of the generalized
angular momentum across AH. The contributions due to matter and gravitational waves are
cleanly separated and given by

1
fatter = — [ Tup7@"d’V. fav = / PYLqay d°V, 44
jmatter /AH bT P ) jgrav 167TG pqab ( )
with P = K% — K¢, so that
ng - ng = jnfatter + jgfav' (45)

As expected, if ® is a Killing vector of the three-metric q4p, then the gravitational angular mo-
mentum flux vanishes: J£,, = 0.
As with the area balance law, here we worked directly with the constraint equations rather

than with a Hamiltonian framework. However, we could also have used, e.g., the standard ADM

4Note that we could replace T, with T, because g,;7%¢? = 0. Thus the cosmological constant plays no role in
this section.
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phase space framework based on a Cauchy surface M with internal boundary S and the outer
boundary at infinity. If ¢% is a vector field on M which tends to ¢® on S and to an asymptotic
rotational symmetry at infinity, we can ask for the phase space function which generates the
canonical transformation corresponding to the rotation generated by ¢®. When the constraints are
satisfied, as usual the value of this generating function is given by just surface terms. The term
at infinity provides the total angular momentum and, as in Section 4.1.2, it is natural to interpret
the surface term at S as the gp-angular momentum of S. This term can be expressed in terms of

the Cauchy data (Gap, Kap) on M as

_ 1 _
§=——0 ¢ Kyt d’ 4
S 87TG£ bpP T V, ( 6)

where 7% is the unit normal to S within M. However, since the right side involves the extrinsic
curvature of M, in general the value of the integral is sensitive to the choice of M. Hence, the
notion of the g-angular momentum associated with an arbitrary cross-section is ambiguous. This
ambiguity disappears if ¢® is divergence-free on S. In particular, in this case, one has J§ = jg .
Thus, although the balance law (42) holds for more general vector fields ¢®, it is robust only when
©® is divergence-free on S. (These considerations shed some light on the interpretation of the field
¢ in the area balance law (25). For, the form of the right side of Equation (43) implies that the
field ¢ vanishes identically on S if and only if J¢ vanishes for every divergence-free ¢* on S. In
particular then, if the horizon has non-zero angular momentum, the (-contribution to the energy
flux can not vanish.)

Finally, for J& to be interpreted as ‘the’ angular momentum, ¢® has to be a symmetry. An
obvious possibility is that it be a Killing field of g, on S. A more general scenario is discussed in
Section 8.

4.2.2 Integral form of the first law

To obtain the area balance law, in Section 3.2 we restricted ourselves to vector fields ng) = Ng(*,
i.e., to lapse functions Np = |0R| and shifts N® = Nr7®. We were then led to a conservation
law for the Hawking mass. In the spherically symmetric context, the Hawking mass can be taken
to be the physical mass of the horizon. However, as the Kerr space-time already illustrates, in
presence of rotation this interpretation is physically incorrect. Therefore, although Equation (25)
continues to dictate the dynamics of the Hawking mass even in presence of rotation, a more general
procedure is needed to obtain physically interesting conservation laws in this case. In the case of
WIHs, the first law incorporating rotations required us to consider suitable linear combinations of
£* and the rotational symmetry field ¢® on the horizon. In the same spirit, on DHs, one has to
consider more general vector fields than §E’R), i.e., more general choices of lapses and shifts.

As on WIHs, one first restricts oneself to situations in which the metric g, on H admits a
Killing field ¢ so that J& can be unambiguously interpreted as the angular momentum associated
with each S. In the case of a WIH, t* was given by t* = c/® + Qy® and the freedom was in
the choice of constants ¢ and €2. On a DH, one must allow the corresponding coefficients to be
‘time-dependent’. The simplest generalization is to choose, in place of 5?}2)7 vector fields

t* = N.L% 4+ Qp® = N, 7% + (N,.7% + Qp?), (47)

where (2 is an arbitrary function of R, and the lapse N, is given by N, = |0r| for any function r
of R. Note that one is free to rescale N, and Q by functions of R so that on each cross-section
(‘instant of time’) one has the same rescaling freedom as on a WIH. One can consider even more
general lapse-shift pairs to allow, e.g., for differential rotation (see [31]).
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Using t* in place of ng), one obtains the following generalization of the area balance equa-

tion [31]:
o, 1 ]{Q'wdwfg‘w?v/%dgf °d2v | =
2G 87TG So J S1 J Q1 Sj

1 1
Tt PV + —— | N, (lo|> +2[¢|?) &V — —— | QP™L_qu, d°V. 48
[ Tam @V g [N (o 2eP) 0 = o [ P (48)

Note that there is one balance equation for every vector field t* of the form (47); as in Section 4.1,
we have an infinite number of relations, now ensured by the constraint part of Einstein’s equations.

The right side of Equation (48) can be naturally interpreted as the flux F4 , of the ‘energy’
E' associated with the vector field ¢ across AH. Hence, we can rewrite the equation as

Te — 11 1 o o o o /“ ]{ )
Fhoy= — Q¢ 2V — ¢ Q9d*V — | dQ ¢ 2 dPV ). 49
an = —5a t g (7{9 J " o, M (49)

If 57 and Sy are only infinitesimally separated, this integral equation reduces to the differential
condition

das +Q06JE
s

1 1 dr
Bt=— (=—
OBs = 5ec <2RdR>

K

= g-gdus +QJE. (50)

Thus, the infinitesimal form of Equation (48) is a familiar first law, provided [(1/2R)(dr/dR)](S) is
identified as an effective surface gravity on the cross-section S. This identification can be motivated
as follows. First, on a spherically symmetric DH, it is natural to choose r = R. Then the surface
gravity reduces to 1/(2R), just as one would hope from one’s experience with the Schwarzschild
metric and more generally with static but possibly distorted horizons (See Appendix A of [14]).
Under the change R +— r(R), we have K, = (dr/dR) kg, which is the natural generalization of the
transformation property k. = ckg of surface gravity of WIHs under the change ¢ — ¢f. Finally,
R, can also be regarded as a 2-sphere average of a geometrically defined surface gravity associated
with certain vector fields on H [56, 31]; hence the adjective ‘effective’.

To summarize, Equation (48) represents an integral generalization of the first law of mechanics
of weakly isolated horizons to dynamical situations in which the horizon is permitted to make a
transition from a given state to one far away, not just nearby. The left side represents the flux
FL y of the energy associated with the vector field %, analogous to the flux of Bondi energy across
a portion of null infinity. A natural question therefore arises: Can one integrate this flux to obtain
an energy E% which depends only on fields defined locally on the cross-section, as is possible at
null infinity? As discussed in the next section, the answer is in the affirmative and the procedure
leads to a canonical notion of horizon mass.

4.2.3 Horizon mass

In general relativity, the notion of energy always refers to a vector field. On DHs, the vector field
is t*. Therefore, to obtain an unambiguous notion of horizon mass, we need to make a canonical
choice of t* = N,£* 4+ Qp?®, i.e., of functions N, and Q on H. As we saw in Section 4.1.3, on
WIHs of 4-dimensional Einstein—-Maxwell theory, the pair (aa, Ja) suffices to pick a canonical
time translation field ¢t§ on A. The associated horizon energy EZ) is then interpreted as the mass
Mn. This suggests that the pair (ag, J§) be similarly used to make canonical choices N0 and
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Q% on S. Thanks to the black hole uniqueness theorems of the 4-dimensional Einstein—Maxwell
theory, this strategy is again viable.

Recall that the horizon surface gravity and the horizon angular velocity in a Kerr solution can
be expressed as a function only of the horizon radius R and angular momentum J:

R* —4G?J? 2GJ
; Qkerr (R, J) 1= ——orn=.
2R3/ R* + 4G?J? RvVR*+ 4G?J?
Given a cross section S of H, the idea is to consider the unique Kerr solution in which the horizon

area is given by ag and angular momentum by Jg, and assign to S effective surface gravity kg and
angular velocity Qg through

kg = ﬂKcrr(RSa Jg)? QS = QKC”(RS’ Jg) (52)

K:Kerr(R7 J) =

(51)

Repeating this procedure on every cross-section, one obtains functions K°(R) and Q°(R) on H,
since J? is a function of R alone. The definition of the effective surface gravity then determines
a function ¥ of R and hence N,o uniquely. Thus, using Equation (51), one can select a canonical
vector field ¢ and Equation (49) then provides a canonical balance law:

ry —r? 1 Q3
FRy =20+ % i{on‘”dQV—?{on‘”dQV—/ dQOY{j“’dQV : (53)
AH 2G 87TG So S1 Q(l) S
The key question is whether this equation is integrable, i.e., if
Fin = Eg, — B, (54)

for some Ego which depends locally on fields defined on S. The answer is in the affirmative.
Furthermore, the expression of E% is remarkably simple and is identified with the horizon mass:

VR 4G22
2GR '

Thus, on any cross-section S, Mg is just the mass of the Kerr space-time which has horizon area
as and angular momentum Jg: As far as the mass is concerned, one can regard the DH as an
evolution through ‘a sequence of Kerr horizons’. The non-triviality of the result lies in the fact
that, although this definition of mass is so ‘elementary’, thanks to the balance law (48) it obeys a
Bondi-type flux formula,

M(R) := E"(R) = (55)

Mg, — Ms, :/ Tuy7 5 d°V + L/ Nyo (lof* +2[¢[*) d*V (56)
AH 167G AH

for a specific vector field t& = N,0l® + Q%% where each term on the right has a well-defined

physical meaning. Thus, DHs admit a locally-defined notion of mass and an associated, canonical

conservation law (56). The availability of a mass formula also provides a canonical integral version

of the first law through Equation (48):

0
Mo Mg =2, 1 j{QOj“"dQVfﬁoj‘/’dQV/deon{j*”dQV .67
2 ! 2G 87TG So Sq Q? S

The infinitesimal version of this equation yields the familiar first law dM = (/87 G)da + Q6J.

On weakly isolated as well as dynamical horizons, area a and angular momentum J arise as the
fundamental quantities and mass is expressed in terms of them. The fact that the horizon mass is
the same function of @ and J in both dynamical and equilibrium situations is extremely convenient
for applications to numerical relativity [34]. Conceptually, this simplicity is a direct consequence
of the first law and the non-triviality lies in the existence of a balance equation (48), which makes
it possible to integrate the first law.
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4.3 Passage of dynamical horizons to equilibrium

In physical situations, such as a gravitational collapse or black hole mergers, one expects the
dynamical horizon to approach equilibrium at late times and become isolated. Because of back
scattering, generically the approach is only asymptotic. However, the back scattering is generally
quite weak and in simulations, within numerical errors, equilibrium is reached at finite times. The
passage to equilibrium can be studied in detail in Vaidya solutions discussed in Section 2.2.2.
Moreover, in spherically symmetric examples such as these solutions, exact equilibrium can be
reached at a finite time (see right panel of Figure 4). The question then arises: In these situations,
do various notions introduced on dynamical horizons go over smoothly to those introduced on
WIHs? This issue has been analyzed only in a preliminary fashion [56, 31]. In this section we will
summarize the known results.

First, if the dynamical horizon is a FOTH, as the flux of matter and shear across H tends
to zero, H becomes null and furthermore a non-expanding horizon. By a suitable choice of null
normals, it can be made weakly isolated. Conditions under which it would also become an isolated
horizon are not well-understood. Fortunately, however, the final expressions of angular momentum
and horizon mass refer only to that structure which is already available on non-expanding horizons
(although, as we saw in Section 4.1, the underlying Hamiltonian framework does require the horizon
to be weakly isolated [26, 15]). Therefore, it is meaningful to ask if the angular momentum and
mass defined on the DHs match with those defined on the non-expanding horizons. In the case
when the approach to equilibrium is only asymptotic, it is rather straightforward to show that the
answer is in the affirmative.

In the case when the transition occurs at a finite time, the situation is somewhat subtle.
First, we now have to deal with both regimes and the structures available in the two regimes are
entirely different. Second, since the intrinsic metric becomes degenerate in the transition from
the dynamical to isolated regimes, limits are rather delicate. In particular, the null vector field
0 =7% 4+ 7 on H diverges, while n® = 7* — 7 tends to zero at the boundary. A priori therefore,
it is not at all clear that angular momentum and mass would join smoothly if the transition occurs
at a finite time. However, a detailed analysis shows that the two sets of notions in fact agree.

More precisely, one has the following results. Let @ = H U A be a C**! 3-manifold (with
k > 2), topologically S? x R as in the second Penrose diagram of Figure 4. Let the space-time
metric g, in a neighborhood of @ be C*. The part H of Q is assumed to have the structure of a
DH and the part A of a non-expanding horizon. Finally, the pull-back g4 of g to Q is assumed
to admit an axial Killing field ¢®. Then we have:

e The angular momentum J¥ and the mass M defined in the two regimes agree on the boundary
between H and A.

o The vector field t§ defined on H and used in the definition of mass matches with a preferred
vector field ¢§ used to define mass on A.

This agreement provides an independent support in favor of the strategy used to introduce the
notion of mass in the two regimes.
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5 Applications in Numerical Relativity

By their very nature, numerical simulations of space-times are invariably tied to choices of coordi-
nates, gauge conditions, dynamical variables, etc. Therefore, it is non-trivial to extract from them
gauge invariant physics, especially in the strong curvature regions. Traditionally, the analytical
infrastructure available for this purpose has been based on properties of the Kerr solution and its
perturbations. However, a priori it is not clear if this intuition is reliable in the fully dynamical,
strong curvature regime. On the numerical side, a number of significant advances have occurred
in this area over the past few years. In particular, efficient algorithms have been introduced to
find apparent horizons (see, e.g., [6, 168, 177]), black hole excision techniques have been success-
fully implemented [73, 3], and the stability of numerical codes has steadily improved [64]. To take
full advantage of these ongoing improvements, one must correspondingly ‘upgrade’ the analytical
infra-structure so that one can extract physics more reliably and with greater accuracy.

These considerations provided stimulus for a significant body of research at the interface of
numerical relativity and the dynamical and isolated horizon frameworks. In this section, we will
review the most important of these developments. Section 5.1 summarizes calculations of mass
and angular momentum of black holes. Section 5.2 discusses applications to problems involving
initial data. Specifically, we discuss the issue of constructing the ‘quasi-equilibrium initial data’ and
the calculation of the gravitational binding energy for a binary black hole problem. Section 5.3
describes how one can calculate the source multipole moments for black holes, and Section 5.4
presents a ‘practical’ approach for extracting gauge invariant waveforms. Throughout this section
we assume that vacuum equations hold near horizons.

5.1 Numerical computation of black hole mass and angular momentum

As we saw in Section 4, the mechanics of IHs and DHs provides expressions of angular momentum
and mass of the horizon. These expressions involve geometric quantities defined intrinsically on
the IH A and DH H. Numerical simulations, on the other hand, deal with the 3-metric G, and
extrinsic curvature K,; on (partial) Cauchy surfaces M. Therefore, the first task is to recast the
formulas in terms of this Cauchy data.

Simulations provide us with a foliation of space-time M by partial Cauchy surfaces M, each
of which has a marginally trapped 2-surface S as (a connected component of) its inner boundary.
The world tube of these 2-surfaces is a candidate for a DH or an IH. If it is space-like, it is a DH
H and if it is null (or, equivalently, if the shear o, of the outward null normal to S is zero) it is
a WIH A. The situation is depicted in Figure 7. It is rather simple to numerically verify if these
restrictions are met. To calculate mass and angular momentum, one assumes that the intrinsic
2-metric on the cross-sections S admits a rotational Killing field ¢® (see, however, Section 8 for
weakening of this assumption). A rather general and convenient method, based on the notion of
Killing transport, has been introduced and numerically implemented to explicitly find this vector
field ¢ [85].

Let us first suppose that, in a neighborhood of the cross-section .S of interest, the world tube of
marginally trapped surfaces constitutes an IH. Then the task is to recast Equation (32) in terms
of the Cauchy data (qup, Kap) on M. This task is also straightforward [85] and one arrives at®:

1

a="%c 1,

gp“RbKab d*v, (58)

where R® is the unit radial normal to S in M. This formula is particularly convenient numerically
since it involves the integral of a single component of the extrinsic curvature.

5This formula has a different sign from that given in [85] due to a difference in the sign convention in the definition
of the extrinsic curvature.
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