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Abstract

Because of the information they can yield about the equation of state of mat-
ter at extremely high densities and because they are one of the more possible
sources of detectable gravitational waves, rotating relativistic stars have been
receiving significant attention in recent years. We review the latest theoretical
and numerical methods for modeling rotating relativistic stars, including stars
with a strong magnetic field and hot proto-neutron stars. We also review non-
axisymmetric oscillations and instabilities in rotating stars and summarize the
latest developments regarding the gravitational wave-driven (CFS) instability

in both polar and axial quasi-normal modes.
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1 Introduction

Rotating relativistic stars are of fundamental interest in physics. Their bulk
properties restrict the proposed possible equations of state for densities larger
than nuclear density. Their oscillations can become unstable, producing gravi-
tational waves that could be detectable, providing thereby a new way of probing
the interior of neutron stars.

Recent research has considerably advanced our understanding of these ob-
jects. There now exist several independent numerical codes for obtaining accu-
rate models of rotating neutron stars in full general relativity. Three of these
codes have been shown to agree with each other to remarkable accuracy, and
one code is available as public domain for use by other researchers.

The numerically constructed maximum mass models, for different proposed
equations of state, differ by as much as a factor of two in mass, radius and
angular velocity, a factor of five in central density and a factor of eight in the
moment of inertia. These large uncertainties show that our understanding of
the properties of matter at very high densities is currently rather poor.

Despite the different maximum rotation rates, corresponding to different
candidates for the equation of state of neutron-star matter, one can place an
absolute upper limit on the rotation of relativistic stars by imposing causality
as the only requirement on the equation of state. It then follows that gravita-
tionally bound stars cannot rotate faster than 0.28 ms.

Although observed magnetic fields in neutron stars have a negligible effect on
neutron-star structure, a sufficiently strong magnetic field acts as a centrifugal
force on a relativistic star, flattening its shape and increasing the maximum mass
and rotation rate for a given equation of state. The magnetic field strength of a
stationary configuration has been shown to have an upper limit of B ~ 107 G.

Rapidly rotating proto-neutron stars are shown to have an extended enve-
lope, due to their high temperature and the presence of trapped neutrinos. If
the equation of state is softened, as the neutron star cools, by a large amplitude
phase transition, then the nascent neutron star may collapse to a black hole. A
surprising result is that a supramassive proto-neutron star, even though it con-
tracts during cooling, evolves to a cold neutron star of smaller angular velocity.

In rotating stars, nonaxisymmetric perturbations have been studied in the
Newtonian and post-Newtonian approximations, in the slow-rotation limit and
in the Cowling approximation; but fully relativistic quasi-normal modes (except
for neutral modes) are yet to be obtained. The effect of rotation on the quasi-
normal modes of oscillation is to couple polar and axial modes and to shift their
frequencies and damping times, causing some modes to become unstable.

Nonaxisymmetric instabilities in rotating stars can be driven by the emis-
sion of gravitational waves (CFS-instability) or by viscosity. The onset of the
CFS-instability has now been computed for fully relativistic, rapidly rotating
stars. Relativity has a strong influence on the onset of the instability, allow-
ing it to occur for less rapidly rotating stars than was suggested by Newtonian
computations.

Contrary to what was previously thought, nascent neutron stars can be
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subject to the | = 2 bar mode CFS-instability, emitting strong gravitational
waves. The frequency of the waves sweeps downward through the optimal LIGO
sensitivity window, and first estimates show that it could be detectable out to
the distance of 140 Mpc by the advanced LIGO detector.

The viscosity-driven instability is not favored by general relativity but, as a
new relativistic computation shows, is absent in rotating neutron stars, unless
the equation of state is unexpectedly stiff.

Axial fluid modes in rotating stars (r-modes) received renewed attention
since it was discovered that they are generically unstable to the emission of
gravitational waves. The r-mode instability can slow down a newly-born rapidly
rotating neutron star to Crab-like rotation rates. First results show that the
gravitational waves from the spin-down (directly, or as a stochastic background)
could be detectable by the advanced LIGO or VIRGO detectors.

The present article aims at presenting a summary of theoretical and numer-
ical methods that are used to describe the equilibrium properties of rotating
relativistic stars and their oscillations. In order to rapidly communicate new
methods and results, the article focuses on the most recently available preprints.
At the end of some sections, the reader is pointed to papers that could not be
presented in detail here. As new developments in the field occur, updated ver-
sions of this article will appear.
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2 The Equilibrium Structure of Rotating Rela-
tivistic Stars

2.1 Assumptions

Although a relativistic star has a complicated structure (solid crust, magnetic
field, possible superfluid interior, etc.), its bulk properties can be computed with
reasonable accuracy by making several simplifying assumptions.

The matter is modeled as a perfect fluid because observations of pulsar
glitches have shown that the departures from perfect fluid equilibrium due to
the solid crust are of order 1075 [43]. The temperature of a cold neutron star
is assumed to be 0 K because its thermal energy (<< 1MeV ~ 10'% K) is much
smaller than the Fermi energy of the interior (> 60 MeV). One can then use
a zero-temperature (one-parameter) equation of state (EOS) to describe the
matter:

e =¢(P), (1)

where € is the energy density and P is the pressure. At birth, a neutron star is
differentially rotating, but as the neutron star cools, shear viscosity, resulting
from neutrino diffusion, aided by convective and turbulent motions and possibly
by the winding-up of magnetic field lines, enforces uniform rotation. At present,
it is difficult to accurately compute the timescale in which uniform rotation is
enforced, but it is estimated to be of the order of thousands of seconds [50].

Within roughly a year after its formation, the neutron star temperature
becomes less than 10°K, and its outer core becomes superfluid (See [109] and
references therein.). Rotation causes the superfluid neutrons to form an array
of quantized vortices, with an intervortex spacing of

dy ~ 3.4 x 10730, %cm, (2)

where €2 is the angular velocity of the star in 102s~!. On scales much larger
than the intervortex spacing, e.g. on the order of 1 cm, the fluid motions
can be averaged and the rotation can be considered uniform [137].The error in
computing the metric is of order

lem o 11
— )~ 107", 3
(3) (3)
where R is a typical neutron star radius [13].
The above arguments show that the bulk properties of a rotating relativis-
tic star can be modeled accurately by a uniformly rotating, zero-temperature
perfect fluid.

2.2 Geometry of Space-Time

In relativity, the space-time geometry of a rotating star in equilibrium is de-
scribed by a stationary and axisymmetric metric of the form

ds® = —e?dt? + >V (d¢ — wdt)? + e2*(dr* + 12db?), (4)
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where v, ¥, w and « are four metric functions which depend on the coordinates
r and 6 only (unless otherwise noted, we assume ¢ = G = 1). The perfect fluid
has a stress-energy tensor

T% = (e + P)uu® + Pg®, (5)

a four velocity
e—V
ut = ———(t* + Qp?), 6
il T ©)

and a 3-velocity with respect to a zero angular momentum observer of
v=(Q—-w)e’", (7)

where t* and ¢ are the two killing vectors associated with the time and trans-
lational symmetries of the space-time, g, is the metric tensor, and €2 is the
angular velocity. Having specified an equation of state for very dense matter,
the structure of the star is computed by solving four components of Einstein’s
gravitational field equations

1
Rab = 87T(Tab - §gabT)a (8)
(where R, is the Ricci tensor and T'= T/%) and the equation of hydrostationary
equilibrium.

2.3 Equations of State

The simplest equation of state one can use to model relativistic stars is the
relativistic polytropic EOS [148]

P=K,", (9)

P
2
= — 10
€= p+ (10)
where p is the rest mass density, K is a constant, and I' is the polytropic
exponent. Instead of I', one often uses the polytropic index N, defined through

1
r=1+4+—. 11
e (1)

For this equation of state, the quantity ¢("'=2)/(T'=1,/K1/(U'~-1) /G has units
of length. In gravitational units (¢ = G = 1), one can thus use K/? as a
fundamental length scale to define dimensionless quantities. Equilibrium models
are then characterized by the polytropic index N and their properties can be
scaled to different values, using an appropriate value for K. For N < 1.0
(N > 1.0), one obtains stiff (soft) models, while for N = 0.5 — 1.0, one obtains
models with bulk properties that are comparable to those of observed neutron
stars.
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Note that for the above polytropic EOS, the polytropic index I' coincides
with the adiabatic index of a relativistic isentropic fluid

e+ PdP

I = -
P de

(12)

This is not the case for the polytropic equation of state, P = Ke', that has
been used by other authors, which satisfies (12) only in the Newtonian limit.

The true equation of state that describes the interior of compact stars is
largely unknown. This results from the inability to verify experimentally the
different theories that describe the strong interactions between baryons and the
many-body theories of dense matter at densities larger than about twice the
nuclear density (i.e. at densities larger than about 5 x 10*gr/cm?).

To date, many different realistic EOSs have been proposed which produce
neutron stars that satisfy the currently available observational constraints (Cur-
rently, the two main constraints are that the EOS must admit nonrotating
neutron stars with gravitational mass of at least 1.44M and allow rotational
periods at least as small as 1.56 ms, see [122, 86].). The proposed EOSs are qual-
itatively and quantitatively very different from each other. Some are based on
relativistic many-body theories, while others use nonrelativistic theories with
baryon-baryon interaction potentials. A classic collection of early proposed
EOSs was compiled by Arnett and Bowers [7], while recent EOSs are described
in Salgado et al. [129].

High density equations of state with pion condensation have been proposed

by Migdal [110] and Sawyer and Scalapino [132]. The possibility of Kaon conden-
sation is discussed by Brown and Bethe [21] and questioned by Pandharipande
et al. [120]. Many authors have examined the possibility of stars composed of

strange quark matter, and a recent review can be found in [154].

The realistic EOSs are supplied in the form of an energy density vs. pressure
table, and intermediate values are interpolated. This results in some loss of accu-
racy because the usual interpolation methods do not preserve thermodynamical
consistency. Recently however, Swesty [143] devised a cubic Hermite interpo-
lation scheme that does preserve thermodynamical consistency; the scheme has
been shown to indeed produce higher accuracy neutron star models in Nozawa
et al. [110].

e Going further. A discussion of hybrid stars, which have a mixed-phase
region of quark and hadronic matter, can be found in [152]. A study of
the relaxation effect in dissipative relativistic fluid theories is presented in

[95]-

2.4 Numerical Schemes

Out of the ten components of the field equations that describe the geometry of
a rotating relativistic star, only four are independent; one has the freedom to
choose which four components to use. After choosing four field equations, there
are different methods one can use to solve them. First models were obtained by
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Wilson [155] and Bonazzola and Schneider [20]. Here we will review the following
methods: Hartle’s slow rotation formalism, the Newton-Raphson linearization
scheme due to Butterworth and Ipser [24], a scheme using Green’s functions
by Komatsu et al. [33, 84], a minimal surface scheme due to Neugebauer and
Herold [115], and two spectral methods by Bonazzola et al. [18, 17]. Below we
give a description about each method and its various implementations (codes).

2.4.1 Hartle

To O(9Q?) the structure of a star changes only by quadrupole terms, and the
equilibrium equations become a set of ordinary differential equations. Hartle’s
[59, 62] method computes rotating stars in this slow-rotation approximation;
a review of slowly rotating models has been compiled by Datta [34]. Weber
et al. [150], [153] also implement Hartle’s formalism to explore the rotational
properties of four new EOSs.

Weber and Glendenning [151] attempt to improve on Hartle’s formalism in
order to obtain a more accurate estimate of the angular velocity at the mass-
shedding limit, but their models show large discrepancies compared to corre-
sponding models computed with fully rotating schemes [129]. Thus, Hartle’s
formalism cannot be used to compute models of rapidly rotating relativistic
stars with sufficient accuracy.

2.4.2 Butterworth and Ipser (BI)

The Bl-scheme [24] solves the four field equations following a Newton-Raphson
like linearization and iteration procedure. One starts with a nonrotating model
and increases the angular velocity in small steps, treating a new rotating model
as a linear perturbation of the previously computed rotating model. Each lin-
earized field equation is discretized, and the resulting linear system is solved.
The four field equations and the hydrostationary equilibrium equation are solved
separately and iteratively until convergence is achieved.

The space is truncated at a finite distance from the star, and the boundary
conditions there are imposed by expanding the metric potentials in powers of
1/r. Angular derivatives are approximated by high-accuracy formulae, and
models with density discontinuities are treated specially at the surface. An
equilibrium model is specified by fixing its rest mass and angular velocity.

The original BI code was used to construct uniform density models and

polytropic models [24, 23]. Friedman et al. [15, 46] extend the BI code to
obtain a large number of rapidly rotating models based on a variety of realistic
EOSs. Lattimer et al. [94] used a code which was also based on the BI scheme

to construct rotating stars using recent “exotic” and schematic EOSs, including
pion or Kaon condensation and self-bound strange quark matter.

2.4.3 Komatsu, Eriguchi and Hachisu (KEH)

In the KEH scheme [83, 84], the same set of field equations as in BI is used,
but the three elliptic-type field equations are converted into integral equations
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using appropriate Green’s functions. The boundary conditions at large distance
from the star are thus incorporated into the integral equations, but the region
of integration is truncated at a finite distance from the star. The fourth field
equation is an ordinary first-order differential equation. The field equations
and the equation of hydrostationary equilibrium are solved iteratively, fixing
the maximum energy density and the ratio of the polar radius to the equatorial
radius, until convergence is achieved. In [33, 84] and [37] the original KEH
code is used to construct uniformly and differentially rotating stars for both
polytropic and realistic EOSs.

Cook, Shapiro and Teukolsky (CST) improve on the KEH scheme by intro-
ducing a new radial variable which maps the semi-infinite region [0, 00) to the
closed region [0,1]. In this way, the region of integration is not truncated and
the model converges to a higher accuracy. Details of the code are presented in
[29] and polytropic and realistic models are computed in [30] and [31].

Stergioulas and Friedman (SF) implement their own KEH code following the
CST scheme. They improve on the accuracy of the code by a special treatment
of the second order radial derivative that appears in the source term of the
first-order differential equation for one of the metric functions. This derivative
was introducing a numerical error of 1% — 2% in the bulk properties of the most
rapidly rotating stars computed in the original implementation of the KEH
scheme. The SF code is presented in [141] and in [140]. It is available as a
public domain code, named rns, and can be downloaded from [139].

2.4.4 Neugebauer and Herold (NH)

The scheme by Neugebauer and Herold [115] implements the minimal surface
formalism for rotating axisymmetric space-times [114, , ], in which Ein-
stein’s field equations are equivalent to the minimal surface equations in an
abstract Riemannian potential space with a well-defined metric, whose coordi-
nates are the four metric functions of the usual stationary, axisymmetric metric.
A finite element technique is used, and the system of equations is solved by a
Newton-Raphson method. Models based on realistic EOSs are presented in
[115, ]. The NH scheme has been used to visualize rapidly rotating stars by
embedding diagrams and 4D-ray-tracing pictures (See [64] for a review.).

2.4.5 Bonazzola et al. (BGSM)

In the BGSM scheme [18], the field equations are derived in the 3+1 formulation.
All four equations describing the gravitational field are of elliptic type. This
avoids the problem with the second-order radial derivative in the source term
of the ODE used in BI and KEH. The equations are solved using a spectral
method, i.e. all functions are expanded in terms of trigonometric functions in
both the angular and radial directions, and a Fast Fourier Transform (FFT) is
used to obtain coefficients. Outside the star, a redefined radial variable is used,
which maps infinity to a finite distance.

In [130] the code is used to construct a large number of models based on
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recent EOSs. The accuracy of the computed models is estimated using two
general relativistic Virial identities, valid for general asymptotically flat space-
times, that were discovered by Gourgoulhon and Bonazzola [541, 15].

While the field equations used in the BI and KEH schemes assume a perfect
fluid, isotropic stress-energy tensor, the BGSM formulation makes no assump-
tion about the isotropy of Ty;. Thus, the BGSM code can compute stars with
magnetic field, solid crust or solid interior, and it can also be used to construct
rotating boson stars.

Since it is based on the 3 + 1 formalism, the BGSM code is also suitable
for providing high-accuracy, unstable equilibrium models as initial data for an
axisymmetric collapse computation.

2.4.6 Bonazzola et al. (BGM-98)

The BGSM spectral method has been improved by Bonazzola et al. [17] allowing
for several domains of integration. One of the domain boundaries is chosen to
coincide with the surface of the star, and a regularization procedure is introduced
for the infinite derivatives at the surface (that appear in the density field when
stiff equations of state are used). This allows models to be computed that
are free of Gibbs phenomena at the surface. The method is also suitable for
constructing quasi-stationary models of binary neutron stars.

2.4.7 Direct Comparison of Numerical Codes

The accuracy of the above numerical codes can be estimated, if one constructs
exactly the same models with different codes and compares them directly. The
first such comparison of rapidly rotating models constructed with the FIP and
SF codes is presented by Stergioulas and Friedman in [141]. Rapidly rotating
models constructed with several EOS’s agree to 0.1% — 1.2% in the masses and
radii and to better than 2% in any other quantity that was compared (angular
velocity and momentum, central values of metric functions etc.). This is a very
satisfactory agreement, considering that the BI code was using relatively few grid
points, due to limitations of computing power at the time of its implementation.

In [141], it is also shown that a large discrepancy between certain rapidly
rotating models, constructed with the FIP and KEH codes, that was reported
by Eriguchi et al. [37], was only due to the fact that a different version of a
tabulated EOS was used in [37] than by FIP.

Recently, Nozawa et al. [116] have completed an extensive direct comparison
of the BGSM, SF and the original KEH codes, using a large number of models
and equations of state. More than twenty different quantities for each model
are compared, and the relative differences range from 1072 to 10~* or better,
for smooth equations of state. The agreement is excellent for soft polytropes,
which shows that all three codes are correct and compute the desired models to
an accuracy that depends on the number of grid-points used to represent the
spacetime.
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If one makes the extreme assumption of uniform density, the agreement is
at the level of 1072. In the BGSM code this is due to the fact that the spectral
expansion in terms of trigonometric functions cannot accurately represent func-
tions with discontinuous first-order derivatives at the surface of the star. In the
KEH and SF codes, the three-point finite-difference formulae cannot accurately
represent derivatives across the discontinuous surface of the star.

The accuracy of the three codes is also estimated by the use of the two Virial
identities due to Gourgoulhon and Bonazzola [54, 15]. Overall, the BGSM and
SF codes show a better and more consistent agreement than the KEH code
with BGSM or SF. This is largely due to the fact that the KEH code does not
integrate over the whole spacetime but within a finite region around the star,
which introduces some error in the computed models.

e Going further. A review of spectral methods in general relativity can
be found in [13]. A formulation for nonaxisymmetric, uniformly rotating
equilibrium configurations in the second post-Newtonian approximation
is presented in [8].

2.5 Properties of Equilibrium Models
2.5.1 Bulk Properties of Equilibrium Models

Neutron star models constructed with various realistic EOSs have considerably
different bulk properties, due to the large uncertainties in the equation of state
at high densities. Very compressible (soft) EOSs produce models with small
maximum mass, small radius, and large rotation rate. On the other hand, less
compressible (stiff) EOSs produce models with a large maximum mass, large
radius, and low rotation rate.

The gravitational mass, equatorial radius and rotational period of the max-
imum mass model constructed with one of the softest EOSs (EOS B) (1.63M,
9.3km, 0.4ms) are a factor of two smaller than the mass, radius and period of the
corresponding model constructed by one of the stiffest EOSs (EOS L) (3.27Mg),
18.3km, 0.8ms). The two models differ by a factor of 5 in central energy density
and a factor of 8 in the moment of inertial

Not all properties of the maximum mass models between proposed EOSs
differ considerably. For example, most realistic EOSs predict a maximum mass
model with a ratio of rotational to gravitational energy T/W of 0.11 £+ 0.02, a
dimensionless angular momentum c.J/GM? of 0.64 4 0.06 and an eccentricity
of 0.66 & 0.04, [413]. Hence, between the set of realistic EOSs, some properties
are directly related to the stiffness of the EOS while other properties are rather
insensitive to stiffness.

Compared to nonrotating stars, the effect of rotation is to increase the equa-
torial radius of the star and also to increase the mass that can be sustained
at a given central energy density. As a result, the mass of the maximum mass
rotating model is roughly 15% — 20% higher than the mass of the maximum
mass nonrotating model, for typical realistic EOSs. The corresponding increase
in radius is 30% — 40%.
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The deformed shape of a rapidly rotating star creates a distortion, away from
spherical symmetry, in its gravitational field. Far from the star, the distortion
is measured by the quadrupole-moment tensor (Q,;. For uniformly rotating,
axisymmetric and equatorially symmetric configurations, one can define a scalar
quadrupole moment (), which can be extracted from the asymptotic expansion,
at large r, of the metric function v.

Laarakkers and Poisson [87], numerically compute the scalar quadrupole
moment @ for several equations of state, using the rotating neutron star code
rns [139]. They find that, for fixed gravitational mass M, the quadrupole
moment is given as a simple quadratic fit

J2
Q=075 (13)
where J is the angular momentum of the star, and a is a dimensionless quantity
that depends on the equation of state. The above quadratic fit reproduces @)
with a remarkable accuracy. The quantity a varies between a ~ 2 for very soft
EOSs and a ~ 8 for very stiff EOSs, for M = 1.4Mg neutron stars.

For a given zero-temperature EOS, the uniformly rotating equilibrium mod-
els form a 2-dimensional surface in the 3-dimensional space of central energy
density, gravitational mass and angular momentum [141]. The surface is lim-
ited by the nonrotating models (J = 0) and by the models rotating at the
mass-shedding (Kepler) limit, i.e. at the maximum allowed angular velocity so
that the star does not shed mass at the equator. Cook et al. [29, 30, 31] have
shown that the model with maximum angular velocity does not coincide with
the maximum mass model, but is generally very close to it in central density and
mass. Stergioulas and Friedman [1411] show that the maximum angular velocity
and maximum baryon mass equilibrium models are also distinct. The distinc-
tion becomes significant in the case where the EOS has a large phase transition
near the central density of the maximum mass model, otherwise the models of
maximum mass, baryon mass, angular velocity and angular momentum can be
considered to coincide for most purposes.

2.5.2 An Empirical Formula for the Kepler Velocity

In the Newtonian limit, the maximum angular velocity of uniformly rotating
polytropic stars is, Quar =~ (2/3)%2(GM/R?)'/? (see [134]). For relativistic
stars, the empirical formula [58, 46,

IGMma:v
Qmaz = 0.67 m7 (14)

gives the maximum angular velocity in terms of the mass and radius of the max-
imum mass nonrotating model with an accuracy of 5% — 7%, without actually
having to construct rotating models.

The empirical formula results from universal proportionality relations that
exist between the mass and radius of the maximum mass rotating model and
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those of the maximum mass nonrotating model for the same EOS. Lasota et
al. [91] find that, for most EOSs, the coefficient in the empirical formula is an
almost linear function of the parameter

2GMma:1:
Rpaxc? ’

Xs = (15)
When this relation is taken into account in the empirical formula, it reproduces
the exact values with a relative error of only 1.5%.

Weber and Glendenning [150, ] try to reproduce analytically the empirical
formula in the slow rotation approximation, but the formula they obtain involves
the mass and radius of the maximum mass rotating configuration, which is
different from what is involved in (14).

2.5.3 The Upper Limit on Mass and Rotation

The maximum mass and minimum period of rotating relativistic stars computed
with realistic EOSs from the Arnett and Bowers collection [7] are about 3.3M,
(EOS L) and 0.4ms (EOS B), while 1.4M¢ neutron stars, rotating at the Ke-
pler limit, have a rotational periods between 0.53ms (EOS B) and 1.7ms (EOS
M) [31]. The maximum, accurately measured, neutron star mass is currently
1.44Mg, but there are also indications for 2.0M¢ neutron stars [74]. The min-
imum observed pulsar period is 1.56ms [36], which is close to the experimental
sensitivity of recent pulsar searches (an ongoing experiment is designed to detect
sub-millisecond pulsars, if they exist [22]).

In principle, neutron stars with maximum mass or minimum period could
exist, if they are born as such in a core collapse, or if they accrete the right
amount of matter and angular momentum during an accretion-induced spin-up
phase. Such a phase could also follow the creation of an 1.4Mg neutron star
during the accretion induced collapse of a white dwarf.

In reality, only a very small fraction, if any, of neutron stars will be close
to the maximum mass or minimum period limit. In addition, rapidly rotating
nascent neutron stars are subject to a nonaxisymmetric instability, which lowers
their initial rotation rate and neutron stars with a strong magnetic field have
their rotation rate limited by the Kepler velocity at their Alfven radius, where
the accretion pressure balances the magnetospheric pressure [306].

e Going further. A recent review by J. L. Friedman on the upper limit
on rotation of relativistic stars can be found in [42].

2.5.4 The Upper Limit on Mass and Rotation Set by Causality

Current proposed EOSs are reliable only to about twice nuclear density and
result in very different values for the maximum mass and minimum period of
neutron stars. If one is interested in obtaining upper limits on the mass and
rotation rate, independent of the proposed EOSs, one has to rely on fundamental
physical principles.
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Instead of using realistic EOSs, one constructs a set of artificial EOSs that
satisfy only a minimal set of physical constraints, which represent what we
know about the equation of state of matter with high confidence. One then
searches among all these EOSs to obtain the one that gives the maximum mass
or minimum period. The minimal set of constraints that have been used in such
searches is:

1. the high density EOS matches to the known low density EOS at some
matching energy density €,,,

2. the matter at high densities satisfies the causality constraint (the speed of
sound is less than the speed of light).

In relativistic perfect fluids, the speed of sound is the characteristic velocity of
the fluid evolution equations, and the causality constraint translates into the
requirement

dp/de < 1. (16)

(see e.g. Geroch and Lindblom [50]). It is assumed that the fluid will still
behave as a perfect fluid when it is perturbed from equilibrium.

For nonrotating stars, Rhoades and Ruffini showed that the EOS that satis-
fies the above two constraints and yields the maximum mass consists of a high
density region as stiff as possible (i.e. at the causal limit, dp/de = 1), that
matches directly to the known low density EOS. For a chosen matching density
€m, they computed a maximum mass of 3.2Ms. However, this is not the theo-
retically maximum mass of nonrotating neutron stars, as is often quoted in the
literature. Hartle and Sabbadini [61] point out that M., is sensitive to the
matching energy density, and Hartle [60] computes M4, as a function of €,.

2 x 10 S\1/2
x 10 gr/cm) M., (17)

M, =48 (

€m

In the case of rotating stars, Friedman and Ipser [44] assume that the abso-
lute maximum mass is obtained by the same EOS as in the nonrotating case and
compute M., as a function of matching density, assuming the BPS EOS holds
at low densities. Stergioulas and Friedman [111] recompute M/% = for rotating
stars using the more recent FPS EOS at low densities, obtaining very nearly

the same result

M =6.1

max

2 x 10 gr/cm®\ 1/2
(L i ey, ()

€m

where, 2 x 10'4gr/ cm? is roughly nuclear saturation density for the FPS EOS.
A first estimate of the absolute minimum period of uniformly rotating, grav-
itationally bound stars was computed by Glendenning [52] by constructing non-
rotating models and using the empirical formula (14) to estimate the minimum
period. Koranda, Stergioulas and Friedman [35] improve on Glendenning’s re-
sults by constructing accurate rapidly rotating models and show that Glenden-
ning’s results are accurate to within the accuracy of the empirical formula.
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Furthermore, they show that the EOS satisfying the minimal set of con-
straints and yielding the minimum period star consists of a high density region
at the causal limit, which is matched to the known low density EOS through an
intermediate constant pressure region (that would correspond to a first-order
phase transition). Thus, the EOS yielding absolute minimum period models is
as stiff as possible at the central density of the star (to sustain a large enough
mass) and as soft as possible in the crust, in order to have the smallest possible
radius (and rotational period).

The absolute minimum period of uniformly rotating stars is an (almost lin-
ear) function of the maximum observed mass of nonrotating neutron stars

Prin = 0.28ms + 0.2( M2t — 1.44 M), (19)

and is rather insensitive to the matching density €, (the above result was com-
puted for a matching number density of O.lfm_?’).

In [85], it is also shown that an absolute limit on the minimum period exists
even without requiring that the EOS matches to a known low density EOS (This
is not true for the limit on the maximum mass.). Thus, using causality as the
only constraint on the EOS, P,,;, is lowered by only 3%, which shows that the
currently known part of the nuclear EOS plays a negligible role in determining
the absolute upper limit on the rotation of uniformly rotating, gravitationally
bound stars.

2.5.5 Spin-Up Prior to Collapse

Since rotation increases the mass that a neutron star of given central density can
support, there exist sequences of neutron stars with constant baryon number
that have no nonrotating member. Such sequences are called supramassive as
opposed to normal sequences that do have a nonrotating member. A nonrotating
star can become supramassive by accreting matter and spinning-up to large
rotation rates; in another scenario, neutron stars could be born supramassive
after a core collapse. A supramassive star evolves along a sequence of constant
baryon mass, slowly loosing angular momentum. Eventually, the star reaches
a point where it becomes unstable to axisymmetric perturbations and collapses
to a black hole. The instability grows on a secular timescale, in the sense that
it is limited by the time required for viscosity to redistribute the star’s angular
momentum. This timescale is comparable with the spin-up time following a
glitch [43].

Cook et al. [29, 30, 31] have discovered that a supramassive star approaching
the axisymmetric instability will actually spin-up before collapse, even though
it loses angular momentum. This, potentially observable, effect is independent
of the equations of state, and it is more pronounced for rapidly rotating massive
stars. In a similar phenomenon, normal stars can spin-up by loss of angular
momentum near the Kepler limit, if the equation of state is extremely stiff or
extremely soft.
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2.5.6 Rotating Magnetized Neutron Stars

The presence of a magnetic field was ignored in the models of rapidly rotating
relativistic stars that were considered in the previous sections. The reason is
that the observed surface dipole magnetic field strength of pulsars ranges be-
tween B = 10® G and B = 2 x 10'® G. These values of B imply a magnetic
field energy density that is too small compared to the energy density of the
fluid to significantly affect the structure of a neutron star. However, one cannot
exclude the existence of neutron stars with higher magnetic field strengths or
the possibility that neutron stars are born with much stronger magnetic fields,
which then decay to the observed values. (Of course there are also many ar-
guments against magnetic field decay in neutron stars [122].) In addition, even
though moderate magnetic field strengths do not alter the bulk properties of
neutron stars, they may have an effect on the damping or growth rate of various
perturbations of an equilibrium star, affecting its stability. For these reasons,
a fully relativistic description of magnetized neutron stars is desirable; and,
in fact, Bocquet et al. [11] achieved the first numerical computation of such
configurations. Here we give a brief summary of their work:

A magnetized relativistic star in equilibrium can be described by the coupled
Einstein-Maxwell field equations for stationary, axisymmetric rotating objects
with internal electric currents. The stress-energy tensor includes the electro-
magnetic energy density and is non-isotropic (in contrast to the isotropic perfect
fluid stress- energy tensor). The equilibrium of the matter is given not only by
the balance between the gravitational force and the pressure gradient, but the
Lorentz force due to the electric currents also enters the balance. For simplicity,
Bocquet et al. consider only poloidal magnetic fields, which preserve the cir-
cularity of the space-time. Also, they only consider stationary configurations,
which excludes magnetic dipole moments non-aligned with the rotation axis,
since in that case the star emits electromagnetic and gravitational waves. The
assumption of stationarity implies that the fluid is necessarily rigidly rotating
(if the matter has infinite conductivity) [18]. Under these assumptions, the elec-
tromagnetic field tensor F'* is derived from a potential 1-form A, with only two
non-vanishing components, A; and Ay, which are given by a scalar Poisson and
a vector Poisson equation respectively. Thus, the two equations describing the
electromagnetic field are of similar type as the four field equations that describe
the gravitational field.

The construction of magnetized models with B < 10'® G confirms that
magnetic fields of this strength have a negligible effect on the structure of the
star. However, if one increases the strength of the magnetic field above 10'* G,
one observes significant effects, such as a flattening of the star. The magnetic
field cannot be increased indefinitely, but there exists a maximum value of the
magnetic field strength, of the order of 107 G, for which the magnetic field
pressure at the center of the star equals the fluid pressure. Above this value, the
fluid pressure decreases more rapidly away from the center along the symmetry
axis than the magnetic pressure. Instead of pressure, there is tension along the
symmetry axis and no stationary configuration can exist.
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The shape of a strongly magnetized star is flattened because the Lorentz
forces exerted by the E/M field on the fluid act as centrifugal forces. A star
with a magnetic field near the maximum value for stationary configurations
displays a pinch along the symmetry axis because there, the magnetic pressure
exceeds the fluid pressure. The maximum fluid density inside the star is not
attained at the center, but away from it. The presence of a strong magnetic
field also allows a maximum mass configuration with larger M,,,, than for the
same EOS with no magnetic field; this is in analogy with the increase of M4
induced by rotation. For nonrotating stars, the increase in M, 4, due to a
strong magnetic field, is 13% — 29%, depending on the EOS. Following the
increase in mass, the maximum allowed angular velocity for a given EOS also
increases in the presence of a magnetic field.

Bocquet et al. are planning to use their code in the study of two types
of possible instabilities in magnetized neutron stars: i) a pure E/M instability
towards another electric current/magnetic field distribution of lower energy, and
ii) a nonaxisymmetric instability for rapidly rotating models, which would be
the analog of a Jacobi-type transition in non-magnetized stars. In perfect fluid
models with a magnetic field, one would also expect a CFS-instability driven by
electromagnetic waves.

2.5.7 Rapidly Rotating Proto-Neutron Stars

Following the gravitational collapse of a massive stellar core, a proto-neutron
star (PNS) is born. Initially it has a large radius of about 100km and a tempera-
ture of 50-100MeV. The PNS may be born with a large rotational kinetic energy,
and initially it will be differential