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ABSTRACT 
 
How the power required for bird flight varies as a function of forward speed can be used to predict the flight style and 
behavioral strategy of a bird for feeding and migration. A U-shaped curve was observed between the power and flight 
velocity in many birds, which is consistent to the theoretical prediction by aerodynamic models. In this article, we 
present a general genetic model for fine mapping of quantitative trait loci (QTL) responsible for power curves in a 
sample of birds drawn from a natural population. This model is developed within the maximum likelihood context, 
implemented with the EM algorithm for estimating the population genetic parameters of QTL and the simplex 
algorithm for estimating the QTL genotype-specific parameters of power curves. Using Monte Carlo simulation 
derived from empirical observations of power curves in the European starling (Sturnus vulgaris), we demonstrate how 
the underlying QTL for power curves can be detected from molecular markers and how the QTL detected affect the 
most appropriate flight speeds used to design an optimal migration strategy. The results from our model can be 
directly integrated into a conceptual framework for understanding flight origin and evolution. 
 

 
INTRODUCTION 

 
Our ability to predict the evolutionary trend of avian 
flight is currently limited by our ability to decipher the 
genetic architecture of flight performance that involves a 
series of internal biochemical and physiological 
processes (1). One promising approach is to integrate 
two traditionally separated fields, molecular genetics and 
flight biology, into a unified framework for mapping 
genetic loci (i.e., quantitative trait loci or QTL) regulating 
the biological process of bird flight. Flapping flight is 
among the most energetically expensive activities that 
vertebrates perform (2, 3). The metabolic cost of flight is 
a function of forward speeds and can be quantified on 
the basis of separate rates of energy flow leaving a bird 
into its environment. The energy budget of a flying bird 
can be determined by the increase in the kinetic energy 
of the air caused by the passage of the bird (metabolic  

 
power output) (4) or by the mechanical work performed 
by the flight muscles at the shoulder point (mechanical 
power output) (5). Mathematical models have been 
derived to predict mechanical and metabolic power 
output (6), but direct measurements of these two outputs 
can be made possible using three-dimensional kinematic 
modeling and wind tunnels (7). 
 
The mechanical power required to fly in relation to 
forward velocity is the sum of three main drag 
components: induced, parasite and profile drag 
(Appendix; 8). According to aerodynamic theory applied 
to flying birds, mechanical power (P, W) should vary as a 
function of forward speed (V, ms-1) in a U-shaped curve 
(9, 10). But many empirical observations in different 
birds, such as the black-billed magpie and 
hummingbirds, suggest that the power curves of bird 
flight may also be J- or L-shaped (5, 6, 11). Figure 1 
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presents an excellent example, recently published in 
Nature (7), in which dramatic differences exist in power 
curve among different bird species. Some physiological 
and biomechanical explanations are offered about the 
deviation of the shape of biological power curves from 
that expected aerodynamic theory (1, 4). It is likely that 
these different shapes of power curves that have been 
identified both between and within species (4) include 
the genetic basis, although little genetic data have been 
collected. 
 

 
Fig. 1: Comparative mass-specific pectoralis power as a function of flight 
velocity in cockatiels, doves and magpies. Bird silhouettes are shown to 
scale, digitized from video. These different power curves can be described 
by equation (1), with different parameters combinations (α,β,γ). Adapted 
from Tobalske et al. (2003). 

 
In this article, we derive a statistical model for 
identifying specific genes or quantitative trait loci (QTL) 
that are responsible for differences in the power curve of 
bird flight. In principle, this model is a combination of 
functional mapping proposed to map function-valued 
traits (12) and linkage disequilibrium mapping designed to 
provide high resolution mapping of QTL by making use 
of recombination events created at a historic time (13). 
We implement a closed-form solution for the EM 
algorithm to estimate the population genetic parameters 
of QTL segregating in a bird population and the simplex 
algorithm to estimate the curve parameters describing 
the power of bird in response to different flight speeds. 
Extensive simulations are performed to investigate the 
statistical properties of our model. It is expected that our 
theoretical model can stimulate systematic research into 

the genetic basis of ecological and evolutionary processes 
in birds using genomic mapping approaches. 
 

MATHEMATICAL MODELLING OF POWER 
CURVE 

 
Based on physiological and biomechanical principles 
underlying bird flight, a general parabola has been 
derived to describe power curve for a flying bird, which 
is expressed as 
 

3P V
V
α β γ= + +  (1) 

 
where the three terms correspond to induced power, 
parasite power and profile power, respectively 
(Appendix), and parameters α, β, and γ depend on a 
birdʹs physical structure, body mass, force and flight 
style, as demonstrated in Tobalske et al. (7). A unique 
combination (α, β, and γ) of these three parameters 
determines the shape of power curve in bird flight; 
different (α, β, and γ)-combinations are associated with 
different curve shapes. The three parameters in power 
curves can be estimated by fitting equation (1) to 
observed power data measured at a range of flight 
speeds based on non-linear regression approaches. But in 
this study we will develop a mixture model-based 
likelihood approach to test the existence of a segregating 
QTL for power curves and estimate these curve 
parameters for different QTL genotypes. 
 

POPULATION AND QUANTITATIVE GENETIC 
MODELS 

 
Suppose there is a natural population for a bird species 
at Hardy-Weinberg equilibrium, from which a sample of 
birds (of size n) is randomly drawn. In this population, 
there are υ segregating biallelic QTL, Q1,Q2,…,Qυ, that 
exert genetic effects individually or epistatically on 
power curves of flying birds. The genotype frequencies 
of these υ (each with three genotypes) forming 3υ 
genotypes in total, are the products of maternally- and 
paternally-derived gamete frequencies under the 
assumption that the population is randomly mating (14). 
A statistical model will be developed to characterize 
these QTL based on polymorphic markers, such as single 
nucleotide polymorphisms (SNPs), genotyped from the 
avian genome. We attempt to genotype each sampled 
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bird at ϖ SNP markers, M1,M2,…,Mϖ, throughout the 
entire avian genome to identify all possible QTL based 
on this newly developed model. The basic assumption 
for such identification is that there exist significant 
linkage disequilibria, i.e., non-random associations, 
among the alleles of QTL and markers. In general, one or 
more markers can be used to identify a QTL, but it is not 
recommended to identify multiple QTL based on a single 
marker. 
 
If all the markers and QTL are located on the same region 
of a chromosome, there are a total of 2v+γ marker-QTL 
haplotypes. Let 

1 2 1 2j j j k k kp
ϖ νK K (j1,j2,…,jϖ = 1,0 for two 

alternative marker alleles M and m and k1,k2,…,kv = 1,0 for 
two alternative QTL alleles A and a) be the haplotype 
frequency which is expressed as a function of marker 
and QTL allele frequencies and linkage disequilibria of 
different orders among these loci (14). To clearly describe 
this relationship, consider one SNP of alleles M (in a 
probability of p) and m (in a probability of 1 - p), and one 
QTL of two alleles A (in a probability of q) and a (in a 
probability of 1 - q). With such a one-SNP/one-QTL 
model, we can, with a relative ease, develop a multiple-
SNP/multiple-QTL model. For the one-SNP/one-QTL 
model, the frequencies of the four marker-QTL 
haplotypes are expressed as 
 

11

10

01

00

                        for 
(1 )                 for 

(1 )                 for 
(1 )(1 )         for m

p pq D MA
p p q D Ma
p p q D mA
p p q D a

= +
= − −

= − −
= − − +

 (2) 

 
where D is the coefficient of linkage disequilibrium 
between the marker and QTL. Large D values imply 
tighter nonrandom associations between the two loci. 
Similarly, we give a model for specifying the linkage 
disequilibria among two SNPs, M1 and M2, and one QTL. 
The frequencies of eight haplotypes constructed by the 
three loci are expressed as 
 
p111 = p1qp2 + p1DA2 + p2D1A + qD12 + D1A2 for M1AM2 

p110 = p1q(1-p2) - p1DA2 + (1-p2)D1A - qD12 - D1A2 for M1AM2 
p011 = (1-p1)qp2 + (1-p1)DA2 - p2D1A - qD12 - D1A2 for M1AM2 
p010 = (1-p1)q(1-p2) - (1-p1)DA2 - (1-p2)D1A + qD12 + D1A2 for M1AM2 

p101 = p1qp2 - p1DA2 - p2D1A + (1-q)D12 - D1A2 for M1AM2 
p100 = p1q(1-p2) + p1DA2 - (1-p2)D1A - (1-q)D12 + D1A2 for M1AM2 
p001 = (1-p1)qp2 - (1-p1)DA2 + p2D1A - (1-q)D12 + D1A2 for M1AM2 
p000 = (1-p1)q(1-p2) + (1-p1)DA2 + (1-p2)D1A + (1-q)D12 - D1A2 for M1AM2     (3) 

where DA2, D1A and D12 are the digenic linkage 
disequilibria between QTL and M2, M1 and QTL, and M1 
and M2, respectively, and D1A2 is the trigenic linkage 
disequilibrium among the three loci. 
 
Our aim is to estimate the allele frequencies of QTL and 
their linkage disequilibria with the markers in the 
population. These population genetic parameters 
provide important information about the history, 
structure and dynamics of a bird population (14). Our 
model will be developed to estimate the haplotype 
frequencies from which QTL allele frequencies and QTL-
marker linkage disequilibria can be estimated by solving 
equation (1) or (2). 
 
As expected, a QTL forms three possible genotypes. If a 
QTL affects the power curve, its three genotypes should 
have different shapes of the curve and therefore different 
(α,β,γ)-combinations. By testing the genotypic difference 
in these parameter combinations, one can determine 
whether the QTL affects power curves. However, it is 
difficult to estimate the curve parameters for different 
QTL genotypes because the QTL cannot be directly 
observed. By incorporating QTL genotypes into the 
mixture model, we derive an algorithm to estimate these 
curve parameters for each of the three QTL genotypes. 
Hypothesis tests will provide a basis for claiming 
genotypic differences in the estimated parameters. 
 

STATISTICAL METHODS 
 

Mixture model 
 
The basic statistical model for mapping QTL is a mixture 
model (14), in which each observation y is assumed to 
have arisen from one of L groups of QTL genotypes, each 
group being modelled by a density from the parametric 
family f. The population density function of y is 
expressed as 
 

y ~ p(y|ϖ,φ,η) = ϖ1f(y;φ1,η) + … + ϖLf(y; φk,η) (4) 
 

where ϖ=(ϖ1,…,ϖl) are the mixture proportions which are 
constrained to be non-negative and sum to unity; 
φ=(φ1,…,φl) are the genotype-specific parameters, with φ1 
being specific to genotype group 1; and η is a parameter 
which is common to all genotype groups. The mixture 
proportions denoted as the frequencies of QTL 
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genotypes depend on the marker genotypes of a given 
marker(s) associated with the QTL. The normal density 
functions associated with different QTL genotypes are 
expressed in terms of the expected value of each 
genotype. 
 
In QTL mapping, we use known (observable) marker 
information to infer unknown (unobservable) QTL 
genotypes based on their co-segregation in a population. 
Thus, the mixture proportions of QTL genotypes are 
determined by the conditional probabilities of QTL 
genotypes given marker genotypes. These conditional 
probabilities are expressed in terms of QTL-marker 
recombination fractions for linkage mapping based on 
controlled crosses (14), or QTL-marker haplotype 
frequencies for linkage disequilibrium (LD) mapping in 
natural populations (13). For bird species, most of which 
are still in a wild status, LD mapping based on random 
samples drawn from a natural population is a better 
choice for QTL mapping than linkage mapping relied on 
the availability of well-designed pedigrees. The LD-
based strategy has received a surge of interest in QTL 
mapping because it has proven to be a powerful tool for 
fine-scale mapping of genes for complex diseases (15, 16). 
Our model will provide the estimates of these so-called 
population genetic parameters denoted by Ωp. Wang and 
Wu (17) proposed a closed form for the EM algorithm to 
estimate the marker-QTL haplotype frequencies that 
constitute the conditional probabilities of QTL genotype 
genotypes given marker genotypes. 
 
In QTL mapping for the power-speed curves in flying 
birds, each observation y will be a vector containing the 
power data at any number (say S) of flight speeds. We 
use vector y of S dimensions to denote multivariate 
phenotypes for each bird. Thus, the phenotypes of each 
QTL genotype group follow a multivariate normal 
density 
 

1
1/ 2/ 2

1 1exp[ ( ) ( )]
2(2 )

l l lS
f y yµ µ

π
−′= − − Σ −

Σ
 (5) 

 
where µl is the vector of the expected genotypic values of 
QTL genotype l for the power trait measured at S speeds 
and Σ is the residual variance-covariance matrix of the 
variables. According to the functional mapping theory 
put forward in earlier studies (12, 18), the genotypic 

values (µl) of the power trait for a QTL genotype at 
different flight speeds are fit by a biologically meaningful 
power curve function. Thus, estimating the genotypic 
values (and therefore additive, dominant and epistatic 
genetic effects) is equivalent to estimating the 
mathematical parameters (αl,βl,γl) that specify the shape 
of power curves. In modelling functional mapping, we 
usually estimate the structured form of the variance-
covariance matrix to increase the modelʹs power rather 
than estimate every element in the matrix. In Wu et al. 
(18), the first-order autoregressive [AR(1)] model is used, 
which assumes the stationarity of the residual variance 
and correlation over different flight speeds. For the AR(1) 
model, only two parameters, residual variance (σ2) and 
correlation per a unit speed interval (ρ), that specify the 
(co)variance matrix are estimated. Other approaches for 
structuring the matrix and the advantages of doing so are 
discussed in (19-21). The parameters contained in the 
normal distribution are the so-called quantitative genetic 
parameters denoted by Ωq. 
 
Computational algorithms 
 
A number of computational algorithms have been 
developed to estimate unknown genetic values contained 
in the normal density functions, QTL allele frequencies 
and QTL-marker linkage disequilibria, arrayed by 
Ω=(Ωp,Ωq). They include the maximum likelihood-based 
EM algorithm (14), Bayesian-based Markov chain Monte 
Carlo method (22) and optimization techniques used in 
operations research (23). We have previously derived an 
efficient computational algorithm for fine mapping of 
QTL based on the principle of linkage disequilibrium 
(13). This algorithm offers closed-form solutions for 
estimating population genetic parameters and represents 
the most powerful computational tool of its kind by 
allowing for the estimation of allele frequencies and 
disequilibria of different orders. Meanwhile, a simplex 
algorithm (23) is implemented within the EM algorithm 
to provide the estimates of curve parameters for different 
QTL genotypes. These curve parameters can be used to 
estimate various gene actions and gene interactions on 
bird flight. Our EM-simplex hybrid algorithm allows for 
the mapping of any possible QTL of gene effects on the 
differentiation of power curves in bird flight.  
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Hypothesis tests 
 
The existence of a QTL that regulates power curves in 
bird flight can be tested by testing whether different 
curves each corresponding to a QTL genotype are 
overlapped. This is equivalent to the null hypothesis (H0) 
formulated as α1=α2=α3, β1=β2=β3 and γ1=γ2=γ3, and, 
where the subscripts 2, 1, and 0 denote the QTL genotype 
QQ, Qq and qq, respectively. The alternative hypothesis 
(H1) proposes that these three curves are not overlapped 
and therefore a QTL exists. The test statistic for testing 
the hypotheses H0 vs. H1 is calculated as the log-
likelihood ratio (LR) 
 

ˆ ˆ2[ln ( , ) ln ( , )]p q p qLR L L= − Ω Ω − Ω Ω% %  (6) 

 
where the tildes and hats denote the MLEs of the 
unknown parameters under the H0 and H1, respectively. 
The LR is asymptotically χ2-distributed with 6 degrees of 
freedom. An empirical approach for determining the 
critical threshold is based permutation tests. By 
repeatedly shuffling the relationships between marker 
genotypes and phenotypes, a series of the maximum log-
likelihood ratios are calculated, from the distribution of 
which the critical threshold is determined. 
 
One of the significant strengths of our model is that it 
allows for the tests of a number of ecologically or 
evolutionary hypotheses which is not possible for 
existing genetic mapping models. These hypotheses 
include whether the QTL detected also exerts an effect on 
two ecologically important flight speeds, the minimum 
power speed (Vmp) and the maximum range speed (Vmr). 
These two speeds affect the strategies for bird migration 
(8). 
 
To test the effect of the power curve QTL on Vmp and Vmr, 
we pose constraints 
 

31 2

1 2 3

αα α
β β β

= = , 

and 
 

 2 0 0 2 0 1 1 01 2 2 1

2 0 0 2 1 2 2 1 0 1 1 0

α β α β α β α βα β α β
β γ β γ β γ β γ β γ β γ

− −−
= =

− − −
 

 
respectively. The corresponding null and alternative 

hypotheses for each of these two tests can be formulated, 
whose LR test statistics are calculated. The determination 
of critical thresholds for these two tests is based on 
simulation studies, in which marker and phenotype data 
under the null hypothesis are simulated repeatedly (e.g., 
1,000 times) to estimate the 1%-percentile of the LR 
distribution. 

 
MONTE CARLO SIMULATION 

 
To demonstrate the power of our model for functional 
mapping of power curves, we use a simulated data set to 
mimic the relationship between the metabolic power and 
flight speed established in starlings (Sturnus vulgaris) 
detected by Ward et al. (4). These authors measured 
metabolic power at 8 different flight speeds in the 
European startling Sturnus vulgaris. They used a 
respirometry mask to measure the rates of oxygen 
consumption and carbon dioxide production during 
wind tunnel flight. The parameters of power curves 
fitted to their data were estimated using the least squares 
approach. We hypothesized different curves within the 
ranges of these parameters, each curve corresponding to 
a QTL genotype. Marker genotypes of arbitrarily many 
loci were simulated for a number of assumed starling 
birds based on given allele frequencies and linkage 
disequilibria (Tables 1 and 2), whereas power data at 8 
different flight speeds were simulated for each QTL 
genotype based on the multivariate normal distribution 
(equation (4)). 
 
We simulated 200 starlings as a random sample from a 
panmictic population, in which ν QTL determine part of 
inter-individual variation in the shape of power curves. 
There is the variation among these 200 simulated birds in 
metabolic power required to fly in a relation to flight 
speeds due to the effects of the underlying QTL and 
residual errors. The residual errors followed a 
multivariate normal distribution with the zero mean 
vector and the residual (co)variance matrix specified by 
σ2 and ρ. The determination of σ2 depends on the size of 
the heritability of the QTL. In this study, we compare the 
results from two different heritability levels, 0.1 and 0.4. 
We simulated the genotypes of the birds at ω SNPs, of 
which some are associated with the QTL underlying 
power curves, whereas the others display no 
disequilibria with the QTL. The simulated power curves 
and SNP genotypes are analyzed by our functional 
mapping model. 
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Table 1: Maximum likelihood estimates of the population genetic 
parameters describing the three power curves, each corresponding to 
a QTL, and marker allele frequency, QTL allele frequency and 
marker-QTL linkage disequilibrium with 8 speeds for a sample size 
of 200. The numbers in parentheses are the sampling errors of the 
estimates (One-SNP/one-QTL model). 

   Heritability 

Parameters Genotype 
True 
value 0.1 0.4 

α AA 2.7 2.6386(0.3036) 2.6901(0.0766) 
 Aa 2 2.0425(0.2940) 1.9876(0.1473) 
 aa 4 4.0720(0.2365) 4.0047(0.0806) 
β AA 0.0006 0.0006(9.7e-5) 0.0006(2.4e-5) 
 Aa 0.0008 0.0008(7.9e-5) 0.0008(4.2e-5) 
 aa 0.0012 0.0012(5.8e-5) 0.0012(2.8e-5) 
γ AA 4.25 4.3492(0.3028) 4.2516(0.0603) 
 Aa 5.08 5.0582(0.1497) 5.0772(0.1150) 
 aa 4.81 4.8156(0.1183) 4.8081(0.0574) 
ρ  0.6 0.5922(0.0292) 0.5974(0.0288) 
σ2  0.95 0.9335(0.0620)  
  0.16  0.1591(0.0224) 
p  0.6 0.5969(0.0246) 0.6017(0.0231) 
q  0.6 0.5789(0.0660) 0.5948(0.0264) 
D  0.08 0.0846(0.0182) 0.0795(0.0161) 

 
For simplicity, we first explain our results from a one-
SNP/one-QTL model, with the results compared with 
those from a two-SNP/one-QTL model. For the one-
SNP/one-QTL model, the SNP with allele frequency p=0.6 
is associated with the QTL with allele frequency q=0.6, 
both loci having a linkage disequilibrium of D=0.08. Our 
results suggest that the QTL responsible for power 
curves can be detected using the SNP in association with 
the QTL. The estimated LR values for the heritability of 
0.1 and 0.4 range 110--255 and 245--487, respectively, 
strikingly larger the critical threshold, 24.67 (P=0.01), 
calculated from simulation studies. The parabola 
parameters (α,β,γ) for the power curve of each QTL 
genotype can be estimated accurately (Table 1), having 
the estimated values consistent with the hypothesized 
values under the power curve heritability of 0.1 (Fig. 2). 
The population genetic parameters of the QTL can be 
estimated with reasonably high precision using our 
closed-form solution approach. The means of the 
estimates from 100 simulations are obtained as p=0.597 
and q=0.583 for allele frequencies and D=0.085 for 
marker-QTL linkage disequilibrium. We compare the 
power of our model under different heritability levels, 
disequilibrium levels and sample sizes. The QTL effects 
as reflected by the differences in curve parameters, QTL 
allele frequencies and QTL-marker disequilibria can be 
estimated more precisely for a QTL displaying a greater 
proportion of the observed variation and a higher QTL-

marker disequilibrium than for displaying a smaller 
proportion and lower disequilibrium (see Table 1 for 
some of the results). According to our study, a sample of 
200 is reliably enough to obtain precise parameter 
estimation for a modest heritability of power curve (0.1) 
although increased sample sizes and higher heritabilities 
can improve the estimation precision. 
 
Table 2: Maximum likelihood estimates of the quantitative genetic 
parameters describing the three power curves, each corresponding to 
a QTL, and marker allele frequency, QTL allele frequency and 
marker-QTL linkage disequilibrium with 8 speeds for a sample size 
of 200. The numbers in parentheses are the sampling errors of the 
estimates (Two-SNP/one-QTL model). 

   Heritability 

Parameters Genotype 
True 
value 0.1 0.4 

α AA 2.7 2.6754(0.3607) 2.6964(0.0910) 
 Aa 2 2.0134(0.2031) 2.0035(0.0559) 
 aa 4 3.9981(0.2319) 3.9958(0.0630) 
β AA 0.0006 0.0006(9.8e-5) 0.0006(2.8e-5) 
 Aa 0.0008 0.0008(6.0e-5) 0.0008(1.5e-5) 
 aa 0.0012 0.0012(6.9e-5) 0.0012(2.0e-5) 
γ AA 4.25 4.2809(0.2771) 4.2581(0.0543) 
 Aa 5.08 5.0658(0.1087) 5.0775(0.0294) 
 aa 4.81 4.8166(0.1185) 4.8157(0.0401) 
ρ  0.6 0.5951(0.0164) 0.5960(0.0139) 
σ2  0.95 0.9381(0.0352)  
  0.16  0.1568(0.0053) 

p1  0.6 0.5982(0.0252) 0.5969(0.0252) 
q  0.6 0.5971(0.0507) 0.5908(0.0347) 
p2  0.6 0.5977(0.0249) 0.5980(0.0250) 

D1A  0.08 0.0808(0.0204) 0.0792(0.0163) 
DA2  0.08 0.0794(0.0194) 0.0773(0.0158) 
D12  0.08 0.0811(0.0160) 0.0815(0.0163) 
D1A2  0.01 0.0107(0.0109) 0.0106(0.0086) 

 
Our model provides an elegant means for testing the 
genetic control of ecologically significant or ‘optimal’ 
flight speeds, such as the minimum power speed (Vmp) 
and the maximum range speed (Vmr) (8). Vmp, obtained 
from dP / dV = 0, is associated with a minimum rate of 
fuel consumption, with no consideration of flight 
distance, whereas Vmr (>Vmp), obtained from dP / dV = P / V 
is associated with a minimum energy cost per unit 
distance flown. At Vmp, birds can be kept airborne for the 
maximum duration using only the take-off fuel store. 
Birds minimizing energy cost on migration should fly at 
Vmr, but the birds should fly slightly faster than Vmr if they 
are minimizing the overall migration time (8). In the 
simulation example derived from the starling 
experiment, we found that the QTL for overall power 
curves exerts significant effects on the speed for 
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minimum power (LRmp = 101.5, P<0.001) and the speed 
for maximum flight range (LRmr = 102.2, P<0.001). The 
differences in these two speeds among different QTL 
genotypes are illustrated in Fig. 2, in which Vmr can be 
found by drawing a tangent from the origin to the power 
curve. 
 

 
Fig. 2: Estimated power curves (solid) for each of the three QTL genotypes, 
QQ (green), Qq (blue) and qq (red), in a comparison with the hypothesized 
curves (dot) used to 200 simulate individual power curves (under the 
heritability of 0.4). The consistency between the estimated and 
hypothesized curves suggests that our model can provide the precise 
estimation of the genetic control over power curves in flying birds. The 
differences among the three curves are highly significant (LR = 395, P < 
0.001), suggesting that the assumed QTL plays a pivotal role in shaping 
the power curve in birds. This power curve QTL is further tested for its 
genetic effects on two ecologically important flight speeds, the minimum 
power speed (Vmp) and the maximum range speed (Vmr). The three 
genotype-dependent values for each of these two speeds differ 
significantly (P < 0.001), implying that the detected QTL also affects the 
two speeds and, thus, the strategy for bird migration. 
 
As expected, when more associated SNPs are used to 
map a QTL, the accuracy and precision of parameter 
estimation can be improved, but depending on the level 
of heritability. The greater improvement occurs when a 
power curve displays a low heritability. For example, 
under the curve heritability of 0.1, the MLE of the QTL 
allele frequency is 0.5971 from the two-SNP/one-QTL 
model (Table 2), which is closer to the true value 0.6, 
compared with 0.5789 from the one-SNP/one-QTL model 
(Table 1). The sampling error of the MLE is also smaller 
from the two-SNP/one-QTL model (0.0026) than from the 
one-SNP/one-QTL model (0.0043). The advantage of the 
two-SNP/one-QTL over one-SNP/one-QTL model 
becomes more pronounced when the marker and QTL 
display weak disequilibria and when a small sample size 
is used (result not shown). 

DISCUSSION 
 

We build up a statistical framework for mapping specific 
QTL that account for variation in metabolic rates at 
different flight speeds characterized by a mathematical 
equation of power curves (equation (1)). We based our 
modelling on a general power curve -- parabola -- in bird 
flight constructed from the aerodynamic theory (10) and 
energetic cost of locomotion (1, 4). The framework 
embraces two advanced mapping strategies – linkage 
disequilibrium analysis with power for fine scale 
mapping of QTL (13, 15, 16) and functional mapping 
capable of detecting biologically meaningful QTL (12, 
18). As demonstrated by simulation studies, this 
framework can be well used to detect the QTL that affect 
bird flight. 
 
Although our idea was described by a simple one-QTL 
model based on one or two SNPs, its extension to use any 
number of markers has been derived although such a 
linkage disequilibrium analysis with high-dimensional 
SNP data will face computational burden. The number of 
SNPs used for association studies seems to rely upon the 
structure and organization of the avian genome. In 
humans, empirical molecular studies have suggested that 
the human genome can be broken into a series of discrete 
haplotype blocks based on different associations of SNPs 
measured by the coefficients of linkage disequilibrium 
(24-26). In each haplotype block, consecutive sites are in 
complete (or nearly complete) linkage disequilibrium 
with each other and there is limited haplotype diversity 
due to little (coldspot) inter-site recombination. Adjacent 
blocks are separated by sites that show evidence of 
historical recombination (hotspot). Actually, there is a 
low haplotype diversity within blocks and, therefore, it is 
possible that a small number of haplotype-tagging SNPs 
(htSNPs) can be identified for explaining a large portion 
of haplotype diversity. If a block-like structure is also 
found in birds, a relatively low number of htSNPs can be 
well used to detect the underlying QTL for bird flight. 
 
Our model allows for the incorporation of any 
biochemical and physiological properties related to bird 
flight (3). Its power is demonstrated by its ability to 
reliably estimate the QTL for power curves in a flying 
bird and to test whether the power curve QTL trigger 
significant effects on the most appropriate flight speeds 
for the birdʹs optimal migration strategy. The model can 
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be extended to include the pleiotropic effect of QTL on 
both the magnitude and shape of power curves and the 
physical structure, body mass and flight style of birds (7). 
Also, a number of statistical issues in power curve 
mapping remain solved that include optimal structuring 
of the (co)variance matrix, missing data problems and 
QTL × QTL and QTL × environment interactions. These 
issues will be discussed elsewhere. 
 
Although it is statistically an extension of our previous 
functional mapping models developed to map growth 
trajectories in forest trees, our model presented in this 
study is original in that it provides a unique idea and 
tool for addressing fundamental ecological and 
evolutionary problems in bird flight. We anticipate that 
its publication can stimulate the integration of traditional 
avian biology and avian genomics to gain new insights 
into the genetic architecture of any biological processes 
related to bird flight. Thus, the most appealing and 
powerful feature of our model is that its deployment in 
an avian biological research project can shed great light 
on the origin and evolution of animal flight. 
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APPENDIX: MECHANICS OF POWERED BIRD FLIGHT 
 
Power (P) required for flight in relation to forward speed (V) is obtained from the sum of three main drag components: 
induced, parasite and profile drag. 
 
Induced power 
 
A simple approach to calculate induced drag represents the bird as circular disk (Sd) with the wing span as diameter, 
which in aeronautical terms is an actuator disk that produces an induced downwards velocity to the air flowing 
though it. The mass flow through the wing disk is the volume flow, Sd = µb2 / 4 × forward speed (V) × air density (ρ), 
and written as SdVp. By multiplying the mass flow (unit kg S-1) by the speed acquired in the far wake (2vi, where vi is 
the induced velocity of the flow around the wing disk) we get the force by which the bird is pushing on the air to 
support its weight as mg = 2νiSdVp. This can be rearranged to determine the induced velocity as νi = mg / (2SdVp). Power 
is force × speed and the power required to generate the induced velocity, or equivalently to generate a sufficient lift to 
balance the weight, is the induced power:  
 

2( )
2ind

d

k mgP
S Vρ

=  

 
where k is the induced power factor that accounts for deviations from the ideal elliptic lift distribution. 
 
Parasite power 
 
Parasite drag is the drag of the body isolated from the wings and is calculated as 
 

 2
,

1
2par b D parD S C Vρ=  

 
where Sb is the body frontal area and CD,par is a dimensionless drag coefficient. Parasite drag occurs mainly because the 
body causes an increase of pressure in front of it, which tends to decelerate oncoming flow. A large frontal area causes 
a relatively high drag, whereas a slim and streamlined body allows oncoming air molecules to flow past more easily 
resulting in low drag. The parasite power Ppar is simply parasite drag × forward speed as 
  

,
1
2par b d parP S C Vρ=  

 
Profile power 
 
The wings also cause profile drag in addition to the induced drag associated with lift generation. If the wings are held 
in a position so that they do not generate any lift, they will still produce pressure and friction drag, which is the profile 
drag that the flight muscles must overcome to rotate the wings for flapping. In flapping flight, the magnitude of the 
profile drag depends on both the rotation speed of the wings, which changes along the wingspan from zero at the 
wing root to maximum at the wing tip, and the forward speed. There is a tradeoff between the profile drag coefficient 
(decreasing with increasing forward speed) and the profile drag owing to forward speed, resulting in a near-constant 
profile power in the range of typical cruising speeds. Profile power (Ppro) is provisionally calculated as  
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pro amP XP= , 

 
where X is a constant and Pam is the minimum of the sum of induced and parasite power. At fast speeds, the profile 
power will increase with speed in a similar way as the parasite power and so this approximation cannot be 
extrapolated outside the range in which it is valid. 
 
Mechanical power of bird flight The total mechanical power (Pmech) required to fly is 
 

mech ind par proP P P P= + +  

 
which is a function of forward speed, bird morphology and air density. 
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