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Abstract. Despite the improvements in drug screening, high levels of drug attrition persist.
Although high-throughput screening platforms permit the testing of compound libraries, poor
compound efficacy or unexpected organ toxicity are major causes of attrition. Part of the
reason for drug failure resides in the models employed, most of which are not representative
of normal organ biology. This same problem affects all the major organs during drug
development. Hepatotoxicity and cardiotoxicity are two interesting examples of organ disease
and can present in the late stages of drug development, resulting in major cost and increased risk
to the patient. Currently, cell-based systems used within industry rely on immortalized or primary
cell lines from donated tissue. These models possess significant advantages and disadvantages,
but in general display limited relevance to the organ of interest. Recently, stem cell technology
has shown promise in drug development and has been proposed as an alternative to current
industrial systems. These offerings will provide the fieldwith exciting newmodels to study human
organ biology at scale and in detail. We believe that the recent advances in production of stem
cell-derived hepatocytes and cardiomyocytes combined with cutting-edge engineering technol-
ogies make them an attractive alternative to current screening models for drug discovery. This
will lead to fast failing of poor drugs earlier in the process, delivering safer and more efficacious
medicines for the patient.
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INTRODUCTION

Despite improvements in drug screening, there is still a high
percentage of drug attrition during development. This presents in
either in pre-clinical modeling, clinical trials or after drug approval,
with greater expense incurred the further along the pipeline the
compounds are removed. Therefore, fast failing is key to improving
the success and the cost of human drug development. The
percentage of drug failure at phase II and phase III is high and
themain reasons for failure are the lack of efficacy, 48% in phase II
and 55% inphase III, and safety, 25% in phase II and 14% inphase

III (1). A recent study analyzed the main reasons for a drug
withdrawn from themarket because of adverse effects from1950 to
2014. Hepatotoxicity (18%) represented the first reason for drug
withdrawal followed by immune-related reactions (17%) and with
cardiotoxicity third (14%). Hepatotoxicity and cardiotoxicity
represent serious concerns in drug development. Side toxic effects
are often detected at later stages of the development or even after
the drug approval. Because of that, there is a need to improve
current screening models to improve the early detection of
hepatotoxic and cardiotoxic drugs (2). Although high-throughput
screening platforms permit the testing of large compound libraries
during drug development, the high attrition rates demonstrate the
need for improved screening platforms and more reliable pre-
clinicalmodels. An essential component of this is to improvemodel
fidelity (for a detailed review see (3)). Key to this is our ability to
recapitulate organ physiology ‘in the dish’. Improvements in this
space will likely lead to improved safety, efficacy and reduced
development costs (3).

Current cell-based models used within industry rely heavily
on immortalized cell lines, usually derived from human tumors.
Thesemodels have advantages, such as cost-effective scale up and
well to well consistency. Additionally, these cell lines are
amenable to genetic engineering, permitting gain and loss of
function analysis. While these models demonstrate advantages,
they offer limited biological relevance when compared to the
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intact organ and primary cell types. Currently, primary cells and
tissue slices are the gold standard for drug discovery, as they
exhibit greater resemblance to the organ of interest. There are
however drawbacks with these resources. The main disadvan-
tages of using primary cell types or tissue slices are their labor
intensive isolation from diseased organs, the scarcity of donor
tissue, the rapid loss of cell phenotype, and significant batch to
batch variation (4).

Stem cell technology has shown promise in drug screening
(5,6) and has been proposed as a suitable alternative to overcome
the above-mentioned limitations with primary cell types. Current
advances in embryonic stem cell (ESC) and induced pluripotent
stem cell (iPSC) differentiation protocols better mimic primary
cells than the immortalized lines (7). This, in combination with
enabling techniques such as 3D culture, microfabrication, fluid
flow, and cell encapsulation, offers the prospect of more accurate
models to study organ biology. Through model refinement and
cost-effective scale up, it is now possible to prototype systems for
drug development scientists from defined genetic backgrounds to
study andbetter understand the biology behind idiosyncratic drug-
induced liver injury (8–10). The power of these systems in
combination with label free technologies and multiparametric
data analysis offer exciting prospects for the future (3,6,11,12). In
this concise review, we will highlight some past and present efforts
in the field.

HUMAN DRUG METABOLISM

The liver plays a central role in drug disposition; it is
responsible for drug uptake, metabolism and excretion. Several
factors are involved in the off-target effects of drugs with
differential metabolism playing a key role. Cytochrome P450
enzymes play an important roles during drug metabolism, with
five family members (CYP1A2, CYP2C9, CYP2C19, CYP2D6,
and CYP3A4) responsible for the metabolism of approximately
90% of marketed drugs. Genetic polymorphisms in the CYP450
family members affects drug metabolism, efficacy and safety
(13,14). Polymorphisms in phase II enzymes, such as UDP-
glucuronosyltransferases, N-acetyltransferases, and glutathione
S-transferases, and ABC transporters are also known to
influence metabolism and drug exposure (for a review please
see (14)). Following drug metabolism, the metabolites are an
important concern. Those can be active and provide patient
benefit; however, they also expose the organ to adverse events,
including endoplasmic reticulum stress (19,20). This can lead to
alterations in cell signaling pathways that can alter the cell fate
upon toxic insult such as NF-κB and Nrf-2 (15,16).
Mitochondrial stress is also evident, altering cellular ATP and
reactive oxygen species levels triggering cell death pathways
(17,18). Drug metabolism and cell stress are therefore key
concerns during the drug development process to reduce
possible side effects of new drugs.

Detection of potential cardiotoxic drugs is also important due
to the percentage of heart disease that exists in the population (21).
Drug metabolites can cause cardiotoxicity via changes in action
potentials and altered ion channel activity. Themost commondrug-
induced cardiotoxicity is the Torsade de Pointes (TdP), a type of
ventricular arrhythmia caused by ion cahnnel blocking.
Additionally, the Ether-à-go-go-Related Gene (hERG) channel is
commonly blocked by drug interaction which can result in the
development of long QT syndrome (22). Notably, multiple drugs

can alter QT interval prolongation increasing the risk of cardiac
failure, including anticancer drug metabolites (23,24).

The factors discussed above are important considerations for
drug development. Onemajor consideration is the diversity of the
population, which is not captured by many in vitro models. This
requires the development of more sophisticated systems for
human drug development. We believe that stem cell-based
technologies have the power to capture variability observed in
the population. Stemcell-derived hepatocytes and cardiomyocytes
have been used successfully to study drug metabolism on defined
genetic backgrounds, providing critical proof of concept that
pluripotent stem cell-derived cell types are enabling for human
drug development (for reviews see 25 and 26).

HEPATOCYTE SCREENING MODELS

The gold standard model for the study of drug metabolism
during drug development is the primary hepatocyte. The main
disadvantages of primary hepatocytes are their rapid loss of
phenotype post isolation and isolation costs (4 23). Therefore,
researchers have searched for more accessible and cheaper
alternatives. Cancer-derived cell lines, such as HepG2, HuH-7,
Hep3B, or Fa2N-4, and HepaRG have been used to character-
ize some determinants of dug metabolism (24,27,28).
Pluripotent cell-derived models have been proposed as an
alternative cell source for screening (6,29,30). In many cases,
pluripotent cell-derived models exhibit drug sensitivities pat-
terns similar to primary cells (5,7,31–33). Moreover, the use of
pluripotent stem cells allows the user to derive somatic cells
from defined background, thereby offering insight into idiosyn-
cratic DILI (34,35). To date, most of the work has focused on
monolayer hepatocyte systems derived from induced pluripo-
tent stem cells, through defined and reproducible differentiation
protocols. Despite these advances, monolayer cultures of
hepatocytes face significant limitations and do not emulate
the complexity of the liver in terms of tissue organization,
blood flow, and different cell-cell interactions. To overcome
these limitations, organoid or spheroid models have been
developed showing promising results (36,37). Although they
require more complex differentiation protocols, organoids/
spheroids better recapitulate human tissue structure and
display more mature and functional phenotype such as
improved cytochrome P450 3A4 activity, greater expression
of Phase II and III enzymes, combined with reduced fetal gene
expression and longer lifespan (38). While promising the
current challenges that face the B3D field^ is cost-effective
manufacture, experimental reproducibility and automated
scale-up for application.

Hepatocyte Differentiation from Pluripotent Stem Cells

Several groups have established differentiation protocols
that allow the efficient differentiation of human pluripotent
stem cells into hepatocyte-like cells (HLCs). Hepatocyte
differentiation attempts to recreate aspects of human liver
development using growth factors and small molecules
(5,12,39–50)(summarized in Table I).

Hepatocyte monolayer differentiation systems usually
consist of stagewise approach where the stem cell populations
are driven to definitive endoderm using growth factors such as,
activin A andWnt3a (41,51) (Fig. 1). This is followed by hepatic
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progenitor cell specification (42,43,49) and hepatocyte matura-
tion (39,44–48,50,52) (Fig. 1). These protocols produce HLCs
that express hepatocyte markers such as HNF4a, albumin, and
cytochrome P450 proteins (Fig. 1) (6,8,29,30).Advantages of the
2D systems include the automated and cost effective scale up,
and limited batch variation, making them ideal prototypes for
drug screening. However, 2D systems do face some limitations,
such as the mixture of fetal and adult hepatocyte traits, limited
tissue structure and as a consequence cannot recapitulate all
situations that occur in vivo (53).

HLCs as a Tool for Disease Modeling and Drug Screening

Recent advances in the last decade have demonstrated the
potential of HLCs as a tool to model human diseases and drug
exposure and some examples follow. Rashid et al. (46) and Cayo
et al. (54) produced HLCs from patient-derived human iPSC cell
lines which accurately modeled human metabolic liver disease.
Similarly, Graffman et al. developed a system to study non-
alcoholic fatty liver disease from human pluripotent stem cells,
inducing fat storage in HLCs and detecting dysregulated
expression of metabolism-associated genes (55). More recently,
a study performed by Kim et al. (56) provided proof of concept
that HLCs can predict drug-induced hepatotoxicity in which the
immune system played a role. HLCs secreted pro-inflammatory
cytokines and chemokines, such us TNF-α, interleukin1β,
interferon α, and chemokine (C-C motif) ligand 5, which
activated immune cell lines. Additionally, Lucendo-Villarin et al.
(57) showed how HLCs can be used to study fetal hepatotoxicity
when exposed to tobacco derivatives. Relative to other types of
hepatocyte sources, HLCs were found to be more sensitive than
the cancer cell line HepG2 (58) and exhibit a comparable
response to primary hepatocytes when challenged with toxins
(33,58), suggesting that HLCs are suitable for drug screening.
Drug repurposing is another potential use of stem cell-based
technologies. While continued research into the cell niche is
required to further improve the HLC phenotype, the studies
described above evidence the power of stem cell-derivedHLCs to
model human disease and improve drug discovery.

In addition to the above, collections of iPSC-derived cell
lines from multiple donors would facilitate studies aimed to
determine whether Bdonor specific^ factors modify the pharma-
cological profile of drug candidates. For example, panels of
human iPSC-derived HLCs with distinct CYP450 genotypes
would be useful to uncover potentially significant sources of
interindividual variability in drug metabolism. However, wide-
spread implementation of this attractive paradigm is limited by
difficulties inherent to the production and characterization of
relatively large numbers of iPSC-derived cell lines (59).
Furthermore, it remains to be determined whether the impact
of Bdonor specific^ factors such as functional genetic polymor-
phisms and epigenetic signatures is closely reproduced within the
milieu of iPSC-derived cell types. In this regard, a recent study by
Takayama et al. showed that HLCs exhibit interindividual
differences in drug metabolism that are similar to the ones found
in the originating primary human hepatocytes (PHHs) (31). The
authors generated 12 individual HLCs cell lines and performed
extensive comparisons with the originating PHHs by using an
array of phenotypic assays. Notable findings includedCYP1A2,
CYP2C9, and CYP3A4 activities between HLCs vs PHHs
exhibited good correlation (r2 > 0.7); HLCs and PHHs

displayed similar CYP2C9-mediated metabolism for the hepato-
toxic substrate benzbromarone; and the impact of CYP2D6
polymorphic variants on CYP2D6 activity was comparable
between HLCs and the originating PHHs. The authors noted
that future studies should examine whether HLCs differentiated
from other cell can also recapitulate interindividual differences in
drug metabolism.

Engineering Approaches to Improve HLC Differentiation
and Maturation

Randomly distributed 2D cultures/co-cultures containing
primary human hepatocytes (PHHs) and HLCs are straight-
forward to create but do not allow control over homotypic/
heterotypic cell-cell interactions and cell-ECM signaling that
are known to affect liver functions in vivo. In contrast, several
engineering tools, such as cellular microarrays, protein
micropatterning, microfluidics, biomaterial scaffolds, and
bioprinting, now allow precise control over the cellular
microenvironment to enhance hepatocellular function. Long-
term (4+ weeks) stabilization of function typically requires co-
cultivation with liver- or non-liver-derived non-parenchymal
cell types (52). For instance, Berger et al. developed a
micropatterned co-culture platform (iMPCC) in which human
iPSC-derived HLCs were organized into collagen-coated
domains of empirically optimized dimensions and subse-
quently surrounded by 3 T3-J2 murine embryonic fibroblasts
(60), a cell type that expresses molecules present in the liver
(61 62). In contrast to phenotypically declining HLC
monolayers, iMPCCs displayed high and stable liver func-
tions (i.e., CYP450 enzyme activities) and a significant
reduction in fetal markers (i.e., alpha-fetoprotein) for 4+
weeks. Ware et al. subsequently treated iMPCCs in 96-well
plates with 47 drugs for 6 days, and evaluated function/
viability endpoints (albumin, urea, and ATP) over time (32).
Results showed 65% sensitivity (24 of 37 hepatotoxic drugs)
and 100% specificity (9 of 9 non-liver-toxic drugs) in
iMPCCs, which were remarkably similar to the sensitivity/
specificity (70%/100%) in MPCCs containing PHHs treated
with the same drugs for 5–9 days (63). Such studies suggest
iMPCC utility for an initial hepatotoxicity screen in early
drug development.

In addition to the MPCC platform, PHHs (64), stem cell-
derived HLCs (65,66), and adult human liver bipotential cells
(67) can be differentiated and stabilized in 3D spheroids/
organoids, which leads to the establishment of homotypic cell-
cell interactions and the presence of ECM proteins within and
around the cells. Hepatic spheroids can spontaneously form on
non-treated culture plates or those coated with various polymers
(64,68). Such spheroids/organoids have been shown to display
high viability/functions and in vivo-like responses to drugs (64);
however, it is difficult to control the spheroid size and smaller
spheroids canmerge to form larger spheroids with necrotic cores
due to poor diffusion of oxygen/nutrient. To mitigate such a
challenge, specialized plates and scaffolds have been developed
to direct the assembly of uniformly sized spheroids that remain
separated for interrogation following drug/stimuli treatment.
For instance, Takayama et al. utilized a nanopillar plate to create
HLC spheroids, which were more sensitive to drug toxicity than
HepG2 spheroids (65); however, HLCs spheroids displayed
lower sensitivity than conventional PHH monolayers,
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suggesting that further maturation of the HLCs is likely
required. Similarly, Tasnim et al. encapsulated human pluripo-
tent stem cell-derived hepatocyte-like cells in galactosylated
cellulosic sponges, which promoted the formation and retention
of spheroids (69); such spheroids were more sensitive to the
toxicity of hepatotoxic drugs as compared to conventional
monolayers, and responses in stem cell spheroids were like
those observed in PHHs. The above-mentioned approaches to
form spheroids typically result in a randomly distributed/
heterogeneous architecture. In contrast, Ma et al. utilized
bioprinting to create liver lobule-like hexagonal organoids
containing HLCs, endothelial cells, and adipose-derived stem
cells embedded in a hydrogel (70). Liver gene expression and
functions in co-cultured organoids were detected for ~ 32 days at
higher levels than in mono-cultures. Ultimately, standardization
of protocols to form spheroids via different approaches, as well
as cost reduction, will be required for routine deployment in
drug development.

The engineering approaches described above improve
HLC function, but do not always elucidate the microenviron-
mental signals (and their combinations) underlying the observed
responses. On the other hand, cellular microarrays, in which
viable cells are seeded onto printed spots of materials/biomol-
ecules, represent a powerful approach for precisely defining the
optimalmicroenvironment of cells (71–75). Cellularmicroarrays
based on spotted biomaterial libraries have been applied to
several investigations aimed at exploring stem cell functions on
changing polymer backbone chemistries and end-group
functionalization (76–80). For instance, Kaylan et al. utilized an
ECM microarray approach to demonstrate that ECM compo-
sition exhibits a significant influence on the adhesion and degree
of differentiation of mouse liver progenitor cells when they are

induced to differentiate (81). We anticipate that the use of
cellular microarrays for defining precise molecular conditions
for HLC differentiation will continue to grow in this field.

STEM CELL-DERIVED CARDIOMYOCYTES

Differentiation of Cardiomyocytes from Pluripotent Stem
Cells

In 2006 and 2007, Takahashi and Yamanaka demonstrated
that the introduction of specific factors into differentiated
fibroblasts, of fetal and adult origin, induce cellular
reprogramming into PSCs (82,83). The generation of iPSCs
from differentiated fibroblasts is achieved through viral expres-
sion of the transcription factors such as Oct4, Sox2, Klf4, and
cMyc. Further differentiation of iPSC into cardiomyocytes can
be performed using several methods, including the traditional
embryoid body formation, activation/inhibition of signaling
pathways with specific proteins, and modulation of the Wnt
signaling pathway via small molecule regulators. Most of the
current protocols for the generation of cardiomyocytes from
iPSC result in mixtures of ventricular, atrial and nodal-like
cardiomyocytes (84).

Cardiomyocytes derived from iPSCs maintain an imma-
ture phenotype in culture. For example, iPSC-derived
cardiomyocytes are small, have irregular shapes, and exhibit
lower membrane capacitance in comparison to mature
cardiomyocytes. Structurally, iPSC-derived cardiomyocytes are
mono- rather than bi- ormulti-nucleated cells that lack T-tubules,
have disarrayed sarcomeres with immature patterns of myofi-
brillar isoforms, and have relatively low mitochondrial content.
iPSC cardiomyocytes use glucose instead of fatty acids as a

Fig. 1. Stagewise differentiation of pluripotent stem cells to hepatocyte-like cells. Pluripotent stem cells are differentiated to
definitive endoderm, then primed to the hepatoblast stage. Following this, the progenitors are matured to hepatocyte-like cells. A
panel of markers can be employed to assess successful differentiation at each stage of the process. Those include; OCT3/4 - octamer-
binding transcription factor 4, SSEA-4—stage-specific embryonic antigen 4, SSEA-3—stage-specific embryonic antigen 3, GATA2 -
GATA binding protein 2, GATA4—GATA binding protein 4, GATA6—GATA binding protein 6, FOXA2—forkhead box protein
A2, FOXA1—forkhead box protein A1, FGF17—fibroblast growth factor 17, hHex—hematopoietically-expressed homeobox,
HNF4α—hepatocyte nuclear factor 4 alpha, HNF1α—hepatocyte nuclear factor 1 alpha, AFP—alpha-fetoprotein,
CK8—cytokeratin 8, CK18—cytokeratin 18, CK19—cytokeratin 19, GSTA1—glutathione S-transferase A1,
APOA1—apolipoprotein A1, MRP2—multidrug resistance-associated protein 2, CYP1A2—cytochrome P450 1A2,
CYP2A6—cytochrome P450 2A6, CYP2B6—cytochrome P450 2B6, CYP2C9—cytochrome P450 2C9, CYP3A4—cytochrome
P450 3A4, CYP3A7—cytochrome P450 3A7
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metabolic substrate. iPSC-derived cardiomyocytes and mature
cardiomyocytes also exhibit differences in relevant electrophys-
iological parameters (e.g., upstroke velocity, and resting mem-
brane potential), contractile force, Ca2+ handling properties, and
response to beta adrenergic stimulation (84). Several approaches
are being tested to induce phenotypic maturation of iPSC-
cardiomyocytes. These strategies are based on long-term culture,
the use of topographical and biochemical cues, and co-culture
with other cell types (85). Exploitation of the full potential of the
iPSC-cardiomyocyte model for research and clinical applications
still requires the development of strategies for the induction of
mature cellular phenotypes. These strategies need to be
reproducible, amenable to large scale culturing and screening
applications, and suitable to produce Bclinical grade^ cells.

iPSC-Derived Cardiomyocytes in Pharmaceutical Development

iPSC-derived cardiomyocytes are an attractive model for
pharmaceutical research applications. The use of iPSC-derived
cardiomyocytes in the context of pharmaceutical applications
can be divided in two broad categories: (1) screening of drug
candidates to identify compounds with cardiotoxic potential,
and (2) in vitromodeling of cardiac diseases for the identification
and validation of pharmacological targets. In general, cultures of
iPSC cardiomyocytes are suitable for medium to high-
throughput assays and high content imaging. There are diverse
functional screening platforms that provide a range of informa-
tion derived from the analysis of either single cells or multiple
cells per well (for a review please see (86)). Cellular parameters
such as contractility, membrane depolarization, and motion are
inferred from the analysis of various readouts derived from
fluorescent and luminescent Ca2 + indicators, small molecule
voltage probes, patch clamp, multi-electrode arrays, impedance
measurements, and bright field microscopy.

Examples of the Use of iPSC-Derived Cardiomyocytes
for Drug Toxicity Studies

The iPSC-derived cardiomyocyte model has become a
popular platform for evaluating the impact of drugs on various
cellular parameters relevant to cardiac physiology. Some exam-
ples include early work by Tanaka et al. investigating the effects of
ion channel inhibitors and beta-adrenergic agonists on electro-
physiological properties (e.g., field potential waveform) of human
iPSC-cardiomyocytes (87). Work by Yokoo et al. demonstrated
that drugs that affect cardiac beating frequency and contractility
in the clinic (e.g., adrenaline, isoproterenol, procainamide, and
verapamil) also modify beating parameters on iPSC-
cardiomyocytes (88). Also, early work by Braam et al. described
the development of Bchip-based^ approaches amenable to
medium to high-throughput modalities to facilitate the evaluation
of drugs by measuring changes in action potential in clusters of
electrically connected iPSC-cardiomyocytes. The authors evalu-
ated a range of cardioactive and non-cardioactive compounds; in
general, the iPSC-cardiomyocyte model was a good predictor of
clinical effects (89). In a landmark study, Moretti et al. derived
patient-specific iPSC-cardiomyocytes from two patients (and two
non-affected controls) with long QT-syndrome; patient-derived
iPSC-cardiomyocytes exhibited electrophysiological alterations
typical of the syndrome and had increased susceptibility to
cathecolamine-induced tachyarrhythmia (90). The generation

and evaluation of Blibraries^ of iPSC-cardiomyocytes from
patients with different genetic cardiac disorders allows evaluating
whether differences in susceptibility to cardiotoxic drugs are
associated to the individual’s genetic background (91). This
paradigm has been extended towards the characterization of
molecular determinants for drug-induced cardiotoxicity in other
clinical settings. For example, an interesting study by Burridge
et al. showed that iPSC-cardiomyocytes derived from patients
with breast cancer who developed anthracycline-related
cardiotoxicity were more susceptible to doxorubicin toxicity than
iPSC-cardiomyocytes from similarly treated patients who did not
develop cardiotoxicity (92). Recent advancements in genome
editing technologies will allow the generation of engineered iPSC-
cardiomyocyte lines to examine the role of genetic variants during
the development of specific types of drug cardiotoxicity.

MOVING BEYOND CURRENT IN VITRO
LIMITATIONS

Despite the advances, further refinement is required to better
model the physiology of the organ of interest. Doing so will
increase specificity and sensitivity of the screening models, thereby
reducing the potential for off target drug events and failure. The
ability to move beyond the current limitations requires interdisci-
plinary collaboration. By combining the best stem cell models with
chemistry, physics, and engineering, new automated screening
assays with improved function and physiology can be developed.
Current areas of promise are discussed in the final section.

Biomaterials and Scaffolds for In Vitro Model Maturation

Biomaterials and recombinant extra-cellular matrices have
been shown to improve cell phenotype and cell maturity (93,94)
in both hepatocytes (8) and cardiomyocytes (95) when cultured
within 2D or 3D platforms. Organoid encapsulation by hydrogels
such as alginate can be used for controlling the maturation, size
and microenvironment of developing organoids (94,96).
Moreover, hydrogels can be supplemented with specific ECM
proteins or growth factors to mimic a specific tissue or disease
environment for improved modeling. Current biomaterials have
proven cost-effective and highly reproducible towards signifi-
cantly reducing batch variation. Scaffolds can be obtained from
natural materials such as laminins, alginate, or hyaluronic acid
(8,95,97) or synthetic materials such as polyvinyl alcohol (PVA),
polylactide-co-glycolide (PLG), poly [2-(methacryloyloxy) ethyl
dimethyl-(3-sulfopropyl) ammonium hydroxide] (PMEDSAH)
or poly (caprolactone) (PCL), (93,98).

Automation and High Content Analysis as an Efficient Scale
Up Production of ES-Derived Models

For screening proposes, stem cell differentiation proce-
dures must be fully reproducible, display low levels of variation
between wells and plates and be amenable to high content
analysis and multiplexing. Automation of the protocols and a
high-throughput assay development is pivotal for this; auto-
mated liquid handling systems allows the generation of large
quantities of cells with reduced variation making them suitable
for testing large compound libraries. Combining this with
multiparametric profiling assays such as automated microscopy
(99,100) or high-throughput genomics (101) allows the user to
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create a multi-parametric profile in response to the test
compounds. Recent studies have probed the practical use of
stem cell technology for high content screening for toxic drugs
by a combination of high content microscopy and single
endpoint assays (6,102). A clear example of the significance of
these technologies is captured by the work of Bray at (103,104).
They tested over 30,000 small molecules in a cell line using the
Bcell paint^ assay, a multiplexed assay that allows in-depth
morphological and organelle profiling at an acceptable cost.
in vitro organ-on-chip for as a multiorgan toxicity model.

While hepatotoxicity and cardiotoxicity are critical issues to
address during pharmaceutical drug development, drugs can
also cause toxicity to other organ systems resulting in adverse
outcomes. Thus, culture platforms that can adequately mimic
organ-organ interaction upon drug exposure are also required.
By combiningmicrofluidics, micropatterning, and 3D cultures, it
is now possible to model organ microenvironment and organ-
organ interaction (105,106). Such Bhuman-on-a-chip^ systems
modulate the physiological fluid shear stress and can maintain a
constant delivery of oxygen to the system, while also enabling
paracrine communication between multiple tissue types via the
flowing culture medium. Recently, Maschmeyer et al. (107)
created an organ-on-a-chip platform that allowed paracrine
interaction of 4 tissue types, namely intestine, liver, skin and
kidney. This platform was used to study ADME and repeated
dose toxicity testing, providing proof of concept of such an
approach. We anticipate that adaptation of organ-on-a-chip
technology to stem-cell-derived differentiated cells will offer a
powerful tool to study mechanism of drug target and off target
effects before progressing to in vivo testing.

CONCLUSION

We believe that with the recent advances in stem cell
differentiation, scale up, and performance, it is possible to create
more accurate human tissue models for drug development.
Advances in stem cell biology over the last decade has provided
the field with more accurate human cell-based models that
recapitulate key aspects of human drug metabolism, with better
precision than cancer lines. These systems also provide compa-
rable activity to primary cells. While this is encouraging, further
improvements are necessary to improve predictive power.
Tissue engineering has already played an important role in this
space, with organ-on-chip devices now available via several
commercial sources. Future efforts in the field should focus on
developing high-throughput multi-organ systems, capable of
real-time monitoring and multiplexing to reduce costs and
improve the quality of data output.
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