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Abstract. Quantitative systems pharmacology (QSP) modeling has become increasingly
important in pharmaceutical research and development, and is a powerful tool to gain
mechanistic insights into the complex dynamics of biological systems in response to drug
treatment. However, even once a suitable mathematical framework to describe the
pathophysiology and mechanisms of interest is established, final model calibration and the
exploration of variability can be challenging and time consuming. QSP models are often
formulated as multi-scale, multi-compartment nonlinear systems of ordinary differential
equations. Commonly accepted modeling strategies, workflows, and tools have promise to
greatly improve the efficiency of QSP methods and improve productivity. In this paper, we
present the QSP Toolbox, a set of functions, structure array conventions, and class
definitions that computationally implement critical elements of QSP workflows including data
integration, model calibration, and variability exploration. We present the application of the
toolbox to an ordinary differential equations-based model for antibody drug conjugates. As
opposed to a single stepwise reference model calibration, the toolbox also facilitates
simultaneous parameter optimization and variation across multiple in vitro, in vivo, and
clinical assays to more comprehensively generate alternate mechanistic hypotheses that are in
quantitative agreement with available data. The toolbox also includes scripts for developing
and applying virtual populations to mechanistic exploration of biomarkers and efficacy. We
anticipate that the QSP Toolbox will be a useful resource that will facilitate implementation,
evaluation, and sharing of new methodologies in a common framework that will greatly
benefit the community.

KEY WORDS: quantitative systems pharmacology; ordinary differential equations; optimization; virtual

patient; virtual population.

INTRODUCTION

QSP has been characterized as a “quantitative anal-
ysis of the dynamic interactions between drug(s) and a
biological system that aims to understand the behavior of
the system as a whole (1).” There are various existing
QSP approaches and applications, and one common
feature of QSP models is that they strive to incorporate

Electronic supplementary material The online version of this article
(d0i:10.1208/s12248-017-0100-x) contains supplementary material,
which is available to authorized users.

! Bristol-Myers Squibb, PO Box 4000, Princeton, New Jersey 08543-
4000, USA.

2To whom correspondence should be addressed. (e-mail:
brian.schmidt@bms.com)

1550-7416/17/0400-1002/0 © 2017 The Author(s). This article is an open access publication

key biological pathways from the systems of interest and
the pharmacology of therapeutic interventions, aiming not
only a better holistic understanding of the biology but also
“optimal and translatable pharmacological pathway inter-
ventions (2).” QSP models are often multi-scale in that
they characterize processes that occur at multiple scales of
space and time (e.g., ligand binding vs. disease progres-
sion) and mechanistic meaning that fundamental biological
processes are represented with mechanistic fidelity. This
“systems” approach can better inform target selection and
the decision process for advancing compounds through
preclinical and clinical research (3); as such, it is becoming
increasingly important in pharmaceutical research and
development as a potential means of reducing attrition
and improving productivity (4-7). QSP models often are
developed to impact drug discovery and development, and
often enable the investigation of relationships between
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biological pathways and observed biomarkers, efficacious
dose projections, and population variability (1).

QSP modeling approaches have been categorized into
statistical data-driven, logic-based, differential equations,
cellular automata and agent-based, and hybrid and integrated
models (8). Ordinary differential equation (ODE) modeling
frameworks are commonly, but not exclusively, employed in
QSP models. ODE models may be broadly applied to
describe tissue, cellular, and molecular and biochemical
systems, with inherent strengths and limitations that must be
evaluated for a given application (8,9).

The similarities in intended applications for many QSP
models suggest common conceptual workflows for how to
develop and apply QSP models. Furthermore, given mathe-
matical similarities in QSP models, computational
implementations of QSP workflows are also generalizable
for many applications. Common workflows and their compu-
tational implementation facilitate: (i) standardization of
modeling approaches within the community; (ii) increased
efficiency of model development and application; (iii) greater
sharing of models between groups; and (iv) providing
guidance to modelers on best practices (10,11).

Conceptual QSP workflows spanning model develop-
ment to application have been proposed. They have involved
an assessment of pathways to include (which may be assisted
by data (12, 13)), simulation of physiologic phenotypes,
modeling of populations, and evaluation of predictions (13).
Rather than a workflow, Friedrich proposed a model quali-
fication method intended to guide staged QSP modeling
projects (14). Critical elements include assessing: (i) whether
a model scope is appropriate for a research question and if
appropriate pathways are included; (ii) whether both quali-
tative uncertainty, such as the impact of knowledge gaps, and
quantitative uncertainty, such as parameter values, are
assessed; (iii) whether the model captures both known
variability in mechanisms as well as variability in potential
clinical outcomes; and (iv) whether the model results are both
qualitatively consistent with relevant data and matches
selected quantitative test data. Recently, Gadkar er al
proposed a comprehensive conceptual workflow for QSP
modeling, which was described in six stages as: (i) “project
needs and goals;” (ii) “reviewing the biology: determining the
project scope;” (iii) “representing the biology: developing the
model structure;” (iv) “capturing behaviors & building
confidence: calibrating ‘reference’ subjects;” (v) “exploring
knowledge gaps and variability: alternate parameterizations;”
and (vi) “supporting experimental and clinical design: refining
knowledge (8).”

While prior work has been presented in the context of
components of potential conceptual workflows, arguably QSP
is not at a point yet where generally accepted and optimized
methods for accomplishing tasks frequently required on QSP
projects have been enumerated. Furthermore, such best
practices even once established are not static, and workflows
should continue to evolve (15). Another shortcoming is the
limited availability of computational implementations of
proposed QSP workflows, which would help to standardize
methods and enable QSP modelers to more efficiently
exchange knowledge and compare techniques. For example,
in sub-specialties of systems biology and also in
pharmacometrics, standardized tools and add-ons exist to
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facilitate conceptual workflows exactly as applied in the
literature (for a few tools available for systems biology and
pharmacometrics, see (16-18)). Although tools exist to
facilitate QSP workflows (19), readily available packages that
directly handle integration of multiple stages in proposed
conceptual workflows, especially model calibration, explora-
tion of uncertainties and variability, and application for study
design would broadly facilitate efforts in QSP model applica-
tion for many researchers.

We provide the QSP Toolbox, a set of functions, structure
arrays, and class definitions that computationally implement
critical elements of QSP workflows, and demonstrate how to use
it by method of example. In the current version, the QSP
Toolbox reads ODE QSP models built in MATLAB®
SimBiology®. We describe the implemented computational
QSP workflow, the toolbox features and organization, and
demonstrate various aspects of the toolbox utilities with a QSP
model of the pharmacodynamics of antibody drug conjugates
(ADCs) as well as a smaller test model for demonstrating some
of the most computationally demanding algorithms. The
examples and models are included with the toolbox. We
anticipate that this tutorial to get started using the QSP Toolbox
and implement steps in QSP workflows will be broadly
beneficial for many modelers that may not have utilized these
approaches, and will be a useful reference resource for QSP
modelers that have implemented similar methods. We also
anticipate releasing the QSP Toolbox as an additional tool will
help to further strengthen the communication and efficiency
within the QSP community (20).

Availability and Requirements. The QSP Toolbox is pro-
vided as MATLAB® files, and the following MATLAB®
toolboxes are required: SimBiology, Optimization, Global
Optimization, Parallel Computing, and Statistics and Machine
Learning. A 12-core Haswell machine (2x E5-2620V3) with
64 GB RAM or better is recommended to run the tutorial
examples. A working familiarity with MATLAB® and
SimBiology® is also assumed.

QSP Workflow

As previously discussed, stages iv—vi described by
Gadkar et al. are essential elements in the execution of the
workflow after an initial mechanistic model is built (8). Since
the QSP Toolbox addresses these elements, they are elabo-
rated upon below.

Calibration

To ensure a QSP model can capture system behaviors
with sufficient fidelity, it is critical to calibrate the model to
observed data under various interventions or experimental
conditions. QSP models often contain large numbers of
parameters and it may be computationally demanding to
perform optimization of all simultaneously. Sensitivity analy-
sis, subsystem/modular calibration, and model reduction can
be used to enable model calibration and avoid simultaneous
large-scale parameter estimation (8). As noted previously,
which of these methods are best suited for a project, as well as
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their order, may vary depending on project goals and model
formulation (8).

Analyses of the sensitivity of model outputs to different
parameters in the model can determine which parameters
should be the focus of optimization. This reduces the
dimensions of the optimization problem and the associated
computational demand. In addition to specifying the param-
eters to explore, their potential ranges should also be
specified (8), which requires a systematic evaluation of
available data. We refer to the combination of a parameter
and the allowed range as a mechanistic axis (see Table I for a
more complete description). Global sensitivity analysis
methods are generally useful during model calibration as
they can help establish whether it is possible to calibrate
model outcomes to within desired ranges, or if model
revisions are needed (8). Additionally, sensitivity analysis
can help to identify key parameters to focus on during model
calibration (8), and even guide the evaluation of the potential
impact of structural uncertainties in model equations (14).

Subsystem/modular calibration refers to initial calibra-
tion of simple model subsystems from specified experimental
data and literature. Some parameters can be directly calcu-
lated based on physiological mechanisms and literature, and
some parameters can be estimated utilizing specified
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experimental datasets. This subsystem/modular calibration
can reduce the parameter space to estimate in the integrated
model considerably. For example, Cheng and Othmer mod-
ularized a signal transduction network and the submodule
parameters were estimated using a combination of experi-
mental data and steady state analysis. The integrated model
was able to capture various signal transduction characteristics
(21). Subsystem/submodule calibration is capable of justifying
the model topology and capturing corresponding datasets,
which makes subsequent integrated model calibration
manageable.

Model reduction takes a different approach by simplify-
ing the model network topology to reduce the number of
model parameters. By identification of relationships among
model states, the system of differential equations is trans-
formed into one of lower order which still retains the key
dynamic information. Different model reduction techniques
have been proposed (8,22), including lumped methods,
sensitivity analysis-based techniques, and time-scale-based
approaches. The number of parameters can be reduced
substantially following these techniques, therefore making
their identification based on experimental data more feasible.
In addition to reducing the number of parameters that need
to be considered during calibration, time-scale-based methods

Table I. Terminology used the QSP Toolbox and this tutorial

Term

Description

Virtual patient

Virtual patient
cohort
Mechanistic axis

Mechanistic
axis coefficients

Response type
element

Response type
Plausible virtual
patient
Reference
virtual patient
Prevalence weight

Virtual population
Intervention

Worksheet

Variant type

Type value set

A single model parameterization. Here, a virtual patient may equivalently be called a virtual subject or, in the case of
the included ADC model examples, a virtual xenograft
An ensemble of unique virtual patients

A set of model parameters as well as upper and lower bounds for each. A mechanistic axis generally constitutes a
single model parameter and bounds, but may include multiple parameters and bounds combined and scaled
together. A linear or logarithmic scale may be applied.

A numerical value that indicates how far along a mechanistic axis a parameter (or parameter set) lies for a particular
virtual patient. A value of zero indicates the parameter value(s) are set at the lower bound, and a value of 1 indicates
the parameter value(s) are set at the higher bound.

A mapping of a virtual patient characteristic to desired values and a method for evaluating the degree to which they
agree. For example, this may include data in response to an intervention at a given time point and a specification of
the objective function that should be used to assess agreement. A response type element would generally include a
mapping of simulated outcomes to target values. However, one might also employ this strategy to help to develop
VPs biased towards mechanistic characteristics (parameter values).

A set of response type elements and a method for combining their respective objective function evaluations.

A virtual patient that meets constraints imposed on response type element objective functions and/or a combined
objective function evaluation for the response type

A plausible virtual patient that has been designated as a “reference” due to meeting additional physiologic criteria,
for example biomarker trends characteristic of responders to a given therapy or a mean of population characteristics
A weight assigned to a plausible virtual patient in order to optimize the agreement of virtual patient cohort outcomes
with observed data statistics. The prevalence weights for all included plausible virtual patients sum to one.

A cohort of plausible virtual patients and one associated set of prevalence weights.

A simulated experiment or trial. In the QSP Toolbox, an intervention may include a pharmacological intervention or
overwriting of some virtual patient parameters in order to properly recreate the effect of the experimental or clinical
condition.

A data structure in the QSP Toolbox that includes VP definition, intervention definition, data, and response types to
help develop and assess virtual patients.

Each variant type contains a consistent grouping of parameters that are used to help define virtual patients and
interventions. A variant type can essentially be thought of as a parameter set. The type name is specified by the
description before the delimiter in the variant name, “___” by default.

A particular set of values for all parameters in a variant type. A type value set could also be referred to as a value
set. The value set name is specified after the delimiter in the variant name, “___” by default.
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can also improve model simulation performance by replacing
“fast” processes with suitable quasi-steady state approxima-
tions. As one example, Schmidt et al. illustrate development
of a quasi-steady state approximation to reduce a model of
bone remodeling (23).

Model calibration may also require an appropriate
optimization scheme that can match results of different
experiments (for example, different cellular assays) or
multiple clinical outcomes (for example, the response to
alternate therapeutic interventions). Optimization strategies
may focus on producing an exact match of the simulation with
observed trajectories, or on producing responses that fall
within bounds, which are often defined as a time series of
numerical bounds of observed responses. In this latter case, it
may be practical to identify many degenerate solutions with
optimal objective function values, since alternate parameter-
izations may equivalently fall within target bounds. In either
case, establishing agreement with datasets from different
groups of individuals with different interventions may also
be necessary.

Variability

Due to biological complexities, model parameters may
be poorly constrained by available datasets (24). Therefore, it
is important to evaluate the impacts of known variability and
uncertainty, where QSP models often use ensembles of
alternative parameterizations that appear to be plausibly in
agreement with observed data (8,25,26). As one concrete
example, it is not uncommon to find quantitatively different
in vitro measures of the same process reported by two
different labs. QSP models enable testing the impact of
mechanistic differences that would be inferred from inter-
lab variability on endpoints of interest in silico, and therefore
help triage impactful uncertainty that must be resolved or
explained from uncertainty that is not impactful and is
therefore not worth investing experimental or clinical re-
sources to resolve. Alternate parameterizations are referred
to as virtual subjects (8), or virtual patients (VPs) (26,27), and
the ensembles are referred to as a virtual cohort or cohort of
virtual patients (see Table I). Note that verification of
plausibility generally may or may not be assumed in the
description of a virtual patient depending on the workflow
and algorithm (25), and here these are specifically referred to
as “plausible virtual patients” to avoid ambiguity.

Reference virtual patients (8), or any set of plausible
virtual patients, can be used as a basis to develop a larger
cohort of VPs by adding stochastic noise to their parameter-
izations. Moreover, one can generate a cohort of plausible
VPs by repeated application of a sampling-acceptance/rejec-
tion algorithm. It is essential to make sure the cohort spans all
typical phenotypes observed in experiments, or to identify a
mechanistic rationale if this does not appear to be possible.
Therefore, cohort generation can be a time-consuming
iterative process of building a cohort, identifying missing
phenotypes, and refining the cohort.

After iterative refinement of a cohort of VPs, they can be
used to explore a broad range of responses following a variety
of simulated interventions. However, population-level distri-
butions for the cohort may not match experimentally and
clinically observed response statistics (for example, mean,

1005

standard deviation, clinical response bins, etc., see Fig. 1).
The cohort can provide a sense of mechanistic factors
responsible for possible outcomes, but it is difficult to
interpret whether the cohort resembles a clinical trial
population or the probability of observing certain outcomes
(25). To overcome this obstacle, strategies have been
proposed to add another layer of optimization to improve
the statistical agreement between simulations and observed
data (25-29). Several algorithms have been proposed to
assign a statistical weight, often called a prevalence weight,
to each VP in the cohort so calculated statistics for the cohort
better match observations (26-29). A VP cohort that has been
calibrated to better match clinical data is called a virtual
population (VPop, see Table I). Due to the availability of
published source code for detailed review and also to the
ability of the algorithm to integrate outcomes from alternate
interventions based on marginal distribution data, the previ-
ously described Mechanistic Axes Population Ensemble
Linkage (MAPEL) algorithm for assigning prevalence
weights was implemented as an initial method for developing
VPops (26). In MAPEL, a prevalence weight is assigned to
each VP with the goal of optimizing VPop agreement with
experimental or trial data distributions or summary statistics
(see Fig. 1). A composite goodness-of-fit (GOF) statistic is
calculated, enabling assessment of agreement to multiple
endpoints across multiple interventions. The resulting VPop
can then be used for prediction of responses to new
interventions and to analyze prevalence-weighted correla-
tions among parameters or simulated outcomes.

Application

One can explore different mechanistic hypotheses using
a cohort of plausible VPs. Clustering algorithms, such as
partitioning around medoids, can also be used to reduce
cohort size while maintaining phenotypic and parametric
variability. A weighted VPop, on the other hand, can be used
to predict population-level statistics under new interventions,
like mean, standard deviation, and clinical response fractions.
One important feature of QSP models is that they are often
used to generate hypotheses to identify/rule out mechanisms
related to the questions of interests; therefore, they are
exploratory in nature (30). It is often informative about
underlying biology when there are discrepancies between a
QSP model prediction and observed data.

THE QSP TOOLBOX: OVERVIEW

The QSP Toolbox is designed to support QSP workflows
including calibrating the model using experimental data,
defining and generating VPs, exploring model variability by
the unweighted cohort of VPs and weighted VPops, and
predicting new experimental/trial outcomes. In this section,
we will introduce some key features of the toolbox and its
organization.

Toolbox Features

To build an initial cohort of plausible VPs, one needs to
develop a number of alternative parameterizations to capture
observed variability. Meanwhile, model calibration often
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Fig. 1. Description of MAPEL algorithm. a Statistics for the simulated outcomes in the cohort may not match observed clinical or experimental
data. PD progressive disease; SD stable disease; PR partial response; CR complete response (as an example, although other marginal
distribution bins, mean, or standard deviation may be used in the included version of MAPEL). b The cohort of plausible VPs is prevalence-
weighted to the calculated statistics match trial or experiment data. Each VP is assigned a prevalence weight, and the weights are optimized

using MAPEL. Portions adapted from (26)

involves integration of various datasets from different condi-
tions, described as different “interventions” in the QSP
Toolbox terminology (Table I). For example, calibration
may use cell culture or xenograft experiments from preclinical
settings as well as different indications or dosing scenarios in
clinical settings. To coordinate the calibration complexity and
variability exploration in QSP workflow, the QSP Toolbox
employs a “worksheet” structure array to manage VPs and
interventions. To be more specific, the creation of a
worksheet starts by setting relevant characteristics that
defines a VP into parameter groups, which we define as
variant types to maintain consistency with the terminology of
variants in the underlying SimBiology® model. Parameters
could include molecular, cellular level, or tissue level
properties which can be determined subjectively or algorith-
mically. As the toolbox is implemented, if variants are
specified in the SimBiology® project, the naming must follow
a convention. Every variant must have a variant type (see
Table T), and each VP must use exactly one set of values for
each variant type in the project, denoted as a type value set.
One can specify the characteristics that define a particular
intervention with variants and doses. In SimBiology®,
“doses” are specified separately from variants, but they are
also in the intervention definition. Mechanistic axes can also
be defined. The combination of the VP definition by type
value sets and mechanistic axes as well as intervention by
type value sets and doses defines a unique VP on an
intervention for simulation. A scheme of the worksheet data
structure is shown in Fig. 2. The worksheet data structure
provides a convenient way of organizing VPs and interven-
tions, enables quick access to manipulate optimization
simultaneously across multiple parameters and interventions,
and enables functions like clustering and reducing VPs.
Another important feature of the QSP Toolbox is the
processing and integration of various experimental data. The
QSP Toolbox maps experimental data to model variables and
includes appropriate datasets in objective function evalua-
tions when optimization is necessary. Various optimizations,
samplings, and plotting scripts are also included in the

toolbox to support statistical calibration to measured end-
points to develop a VPop.

Development of a cohort of plausible VPs and weighted
VPops could be computationally expensive and time-consum-
ing. The QSP Toolbox has the feature to compile the model
to run in an accelerated manner and parallelize the compu-
tation by distributing simulations over available cores.

Toolbox Organization

Similar to various script-based toolboxes that have been
developed to facilitate systems research (for a couple examples,
see (17, 31)), the QSP Toolbox is provided in MATLAB® and
can be run from the MATLAB® command line. It reads QSP
models deployed in SimBiology®, a VP definition table file, an
intervention definition table file, and various available experi-
mental dataset files. By providing the functionality necessary for a
more comprehensive QSP workflow, the toolbox helps to develop
a cohort of VPs, weighted VPops, and miscellaneous visualiza-
tions. Predictions for new interventions using developed VPs and
VPops can be easily achieved by adding new interventions to a
worksheet. Utilization of the toolbox is demonstrated in detail in
the examples, which are also discussed in the “Examples” section.

There are eight main folders in the package: “docs,”
“io,” “external,” “plotting,” “worksheet,” “cohort,” “popula-
tion,” “examples,” and “bakery.” The “docs” and “examples”
folders are helpful for getting started with the QSP Toolbox.
The “docs” folder includes two posters demonstrating the
development of one QSP model and application of the
toolbox (32,33), and the “examples” folder provides script
files of toolbox application that can be followed to learn how
to use critical toolbox functions. Additional help is available
in the header for the individual functions and object
definitions, and can be accessed by typing “help
[mFileName]” at the command line once the QSP Toolbox
is initialized. Key elements of the QSP workflow are built in
the “io,” “external,” “plotting,” “worksheet,” “cohort,” and
“population” folders. Various scripts for reading and writing
information are included in “io,” “external” includes several
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VP 1 VP 2

Attribute A 1
Attribute B 1
Attribute C 1
Attribute D 1
Attribute E 1

Choose the C C
characteristics

. . Attribute A 1
for intervention 1 Attribute B 1
(e.g. cell culture) & simulate

Attribute A 2
Attribute B 2
Attribute C 2
Attribute D 2
Attribute E 2

Set multiscale
characteristics:
molecular, cellular, tumor
(random or algorithmic)

Attribute A 2
Attribute B 2

Choose the

characteristics

for intervention 2

(e.g. cell xenograft) & simulate

Attribute A 1
Attribute B 1
Attribute D 1
Attribute E 1

Attribute A 2
Attribute B 2
Attribute D 2
Attribute E 2

Fig. 2. A simplified illustration of the worksheet data structure and how parameters are
selected for individual VP-intervention simulations from a worksheet. For the purpose of
clarity, it is assumed attributes A-E define a VP and different VPs have different attribute
values. VP 1 is defined by Attribute A 1-Attribute E 1, while VP 2 is defined by different
values of these attributes denoted as Attribute A 2-Attribute E 2. When the cell culture
“intervention” is simulated, the attributes that characterize VPs for this intervention are
identified, which would be A and B in this case. Then we perform simulations, updating
with the appropriate attribute values. Similarly, if we are simulating the cell xenograft
“intervention,” define simulations appropriate attributes. For example, a VP attribute such
as vascular volume fraction would impact the xenograft simulation but not the cell culture
simulation. Note that this simplified illustration captures critical aspects of the effective
implementation of simulation parameterization. In the computational workflow, it is a
multi-step process of taking the model’s base parameterization, overwriting with VP-
specific parameters from the variant types (if included), overwriting with VP-specific
parameters from the mechanistic axes (if included), overwriting with parameters specified
by variant types in the intervention definition (if included), and finally identifying specified
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doses for the simulation

third party files used by functions in the toolbox, and
“plotting” includes various scripts to visualize the cohort of
the VPs and VPops. Scripts in the “worksheet” folder build
and manipulate the worksheet, scripts in the “cohort” folder
help to establish a cohort of unweighted VPs and perform
sensitivity analyses via sets of VPs, and scripts in the
“population” are critical for developing virtual populations.
Some key scripts are presented in Fig. 3. The “bakery” folder
contains provisional scripts that are useful but are not
systematically integrated yet with other functions.

Several experimental datasets using consistent in vitro
cell culture and animal models (for example, N87 cell lines
and N87 xenografts in mice) were generously provided by
colleagues. They are included in the “examples” folder. These
data were also used to guide model and toolbox development
on a project as presented in the results in the “docs” folder
(32,33). These data and results have been recently updated,
and many are demonstrated computationally here. Animal
experiments were conducted in full compliance with local,
national, ethical, and regulatory principles and local licensing
regulations, per the spirit of Association for Assessment and
Accreditation of Laboratory Animal Care (AAALAC)
International’s expectations for animal care and use/ethics
committees.

ANTIBODY DRUG CONJUGATE (ADC) PLATFORM

In the following sections, we will demonstrate the utility
of the QSP Toolbox through examples where the QSP
Toolbox is applied to a mechanistic ODE model of Antibody

Drug Conjugate (ADC) efficacy. Before demonstrating the
utility of the toolbox with this model, a brief description of
ADC:s and the structure of the model is required.

ADCs are a therapeutic modality that combines the
affinity and specificity of antibodies with a cytotoxic drug,
often referred to as payload. Unlike conventional chemother-
apies that damage healthy tissues and cause severe side
effects, ADCs have the potential to deliver cytotoxic agents
to the tumor via cancer specific, over-expressed cell surface
antigens (34,35). Exposure to the cytotoxic agent is thus
potentially low in the normal tissues which have low
expression of these cell surface antigens.

Structurally, there exist three components in an ADC
(see Fig. 4a for illustration): (i) a targeting moiety, which
could be antibody or other modality that confers affinity that
permits tumor-specific localization of the ADC; (ii) linker,
which is chemically optimized for preferentially releasing the
payload inside the cancer cell; and (iii) payload, a cytotoxic
molecule with high potency (36). The mechanism of the
ADC’s tumor-specific action starts with the affinity compo-
nent of an ADC selectively binding a cell surface tumor
antigen following transport into the tumor microenvironment.
The ADC-antigen complex is internalized through receptor-
mediated endocytosis. The ADC-antigen complex then
traffics to lysosomal compartments and is degraded, releasing
the cytotoxic payload inside the cell leading to cell death,
often by binding microtubules or causing DNA damage (37).
These processes are illustrated in Fig. 4b. Each component of
an ADC must be optimized to fully realize the goal of a
targeted therapy with improved efficacy and tolerability.
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Fig. 3. Key scripts for VP cohort development. The worksheet data structure plays a central role during virtual patient
cohort development, which begins from processing user-provided files and continues to store refinements though the
iterations of cohort development. The annotations on the arrows represent the function names that relate the worksheet
data structures and different processes. The green ovals represent how the user-provided files are read into the worksheet
data structure. For example, readQSPmodel.m reads the SimBiology model from a sbproj file, readVPTable.m reads VP
definitions from file and so on. The gray rectangles represent some important integration and preparation steps for cohort
generation. compileModel.m updates a list of model parameters, initial conditions, and compartment values, collectively
referred to as elements in the commenting, and also accelerates the model to prepare for high-throughput simulation.
addAxisDef.m adds mechanistic axes and the corresponding bounds to define the parameter space to explore. The blue
rectangles represent two key functions for sampling and rejection/acceptance. addVariedVPs.m provides different sampling
strategies for the mechanistic axes. addResponseTypeElement.m and evaluateResponseType.m specify the experimental
data used to calibrate the model and evaluate the performance of the sampled VPs. The top red rectangle provides functions
to cluster and select representative VPs and the bottom red rectangle represent various optimization tools built in the toolbox

There are several processes complicating the investiga- heterogeneous mixtures of ADCs that often can include 0-8
tion of ADC efficacy and tolerability. First, random conjuga- payload species per molecule (37). With antibodies as a
tion of the cytotoxic payload to the targeting molecule yields targeting modality, this results in transport of ADCs with
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Fig. 4. ADC structure and function. a Structure of an ADC. b Delivery of cytotoxic
payload to cancer cells by an ADC
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different drug-to-antibody ratios (DARs) among different
compartments. Second, selective tumor targeting could be a
complicated process requiring consideration of both sys-
temic clearance and tumor-specific factors that impact
delivery into the microenvironment, such as vascularization
and capillary permeability (38). Third, many tumor-specific
surface antigens are actively shed from cancer cells and
shedding could potentially influence not only the tissue
distribution of ADCs, with not only implications for safety (39-41),
but also potentially the ability to permeate from tumor
vessels by nature of the impact of the size of the complex
(38). Shed antigen might also impact the ability of ADCs
to bind their cellular targets in tumors (42,43). A QSP
model can be used to integrate many of these complex,
nonlinear, and unintuitive processes involved in the cellular
and physiological disposition of ADCs and their components.
The model thus becomes a tool for investigation of the
key determinants of ADC pharmacodynamics, can be used
to optimize the chemical/physical properties of the ADC
to maximize efficacy and tolerability, can be used to
develop clinical dose projections based on preclinical data
(44), and furthermore can be used to explore the clinical
implications of mechanistic variability.

Several models have been proposed to mechanistically
model ADC efficacy (43-52), many of which have been
previously reviewed (41). Mechanistic models have often
been applied to investigate antibodies as a modality, although
modeling studies focused on immunotoxins have also been
reported (43,52). It has also been suggested that ADCs are a
special case of “affinity” drug conjugates that can include
alternate modalities to confer specificity (32,33), such as
adnectins (53). Mechanistic models of ADC efficacy often
include three important components: PK of the ADC in the
plasma, transport into the tumor microenvironment, and
disposition of the ADC in a target cell.

We have developed a QSP model of ADC tumor
delivery and efficacy, and a diagram view of the ADC
platform is shown in Fig. 5. The ODE model is similar in
many aspects to the approach taken by Shah et al. (44), but
there are differences that impact the potential platform
applications in the species that are represented, how the
platform is initialized, and different sections of the model that
can be activated. The platform includes a compartmental
tumor model (38,54), and also a basic framework for the
simulation of individual DAR (50), shedding, and bivalency
(55). In support of extending the model to other modalities
conferring specificity, valency for antigen (bivalency vs.
monovalency) is controlled via a parameter that behaves as
a switch. In addition, the lesion capillary permeability for
each soluble species is calculated based on vessel properties
and molecular weight (38).

Note that for the purposes of illustrating a QSP
workflow, we have focused primarily on mechanistic tumor
rather than pharmacokinetic variability. We have also not
provided an analysis of cellular payload disposition in the
examples, which would require additional data. We have
developed the model providing equations with consistent
clearance rates and DAR-proportional deconjugation and
metabolism rates, and these equation forms may be refined
with additional data to better support parameterizing DAR-
dependent rates (56-58).
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Examples

We demonstrate various aspects of the QSP Toolbox,
primarily by applying the toolbox to the ADC QSP model with
several datasets from cell culture and interventions with a naked
antibody without attached payload. Seven examples are used to
cover different features of the toolbox, including cross
referencing VPs and interventions, generation of cohorts of
VPs, and calibration of VPops. We give summaries of the
examples, and one can find detailed comments in the example
scripts included in the toolbox. Since N87 cell line and N87
xenograft data were used, we refer to the VPs as virtual
xenografts (VXs). Examples 1-3 walk through toolbox functions
with the ADC platform using a smaller set of parameters to
explore and endpoints for calibration. Examples 4—6 illustrate
iterative cohort refinement and VPops with a slightly expanded
set of parameters and endpoints for calibration. Example 7 gives
an example of a global sensitivity analysis.

It is generally recommended to run the examples by
opening them and following the extensive comments, executing
their steps either by copying and pasting commands at the
prompt or by using the “Evaluate Selection” feature in the
debugger. Note that in order to use the toolbox, the command
“initQSPToolbox” must be run from the MATLAB® command
line, and the root path to the toolbox should be added to the path
manually. Subdirectories will be added at initialization. The fol-
lowing examples were run with MATLAB® Release 2016a.

Example 1: Load, Simulate, and Plot Results from a Worksheet
by Cross-Referencing VX and Interventions

In this example, a SimBiology® model, VX definitions (the
columns of a worksheet), and intervention definitions (the rows
of a worksheet) are imported and integrated together into a
worksheet. Parameter values from the model variants are used
to define one VX. Four different interventions are applied: an
N87 cell culture simulation, an N87 xenograft with buffer
injection, an N87 xenograft with naked antibody injection, and
an N87 xenograft with an %Zr-labeled antibody injected. The
simulated time courses of the observed biomarkers are plotted.

Example 2: Vary Mechanistic Parameters with the Toolbox

In example 2, mechanistic axes are specified to illustrate how
to create alternate VXs. Five parameters are added, each with their
own mechanistic axis with predefined bounds. These parameters
are antigen shedding rate, ADC internalization rate, large vessel
porosity, shed antigen clearance rate, and positron emission
tomography (PET) label export rate. Additional parameterizations
are sampled from the five dimensional hypercube defined by the
bounds, the resulting 101 VXs are simulated each with the same
four interventions as in example 1, and the simulated time courses
of observed biomarkers are plotted and compared to experimental
data for net internalization in culture, xenograft shed antigen
concentration, and xenograft ®Zr PET label accumulation. The
randomly generated VXs are compared to the experimental data.
Results for these randomly generated VXs are shown in Fig. 6 a, b,
¢, d. Most VXs do not match the experimental internalization, shed
antigen, or label accumulation data very well. Fig. 6e illustrates axis
coefficients in the VXs. We also save the worksheet in example 2 to
serve as a starting point for example 3.
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By establishing an objective function, one can also
quantitatively evaluate the agreement of VXs with data and
keep the best. The objective function evaluation implemented
here is detailed in one of the posters included in the documents
folder (33). Individual response type elements map simulated
model outcomes to experimental data and specify an objective
function form (see Table I). The response type elements are
each evaluated with their individual objective functions. The
individual objective function evaluations are all summed
together with equal weight in the evaluation of the response
type. Fig. 6 f, g, i show simulations of the selected 10 best VX out
of 300 randomly generated VXs.

Example 3: Optimization of VXs

In example 2, the randomly sampled VXs usually do not
match the experimental measurements, although we can find
VXs that match better by sampling larger numbers of VX. In
example 3, the worksheet created in example 2 is loaded and
2 VXs from the 101 VXs are included as initial points for an

optimization to best match experimental data. There are per-
VX approaches where we run optimization once for each VX
(That means we aim to identify two valid VXs). Alternatively,
there are “cohort” approaches where we run optimization
informed with all existing VXs in the initial pool, and the size
of the returned cohort is also specified. We use a particle
swarm and genetic algorithm in each approach, respectively.
Simulation results of the optimized VXs are presented in
Fig. 7 a, b, c, d and e, f, g, h, respectively. The optimization
algorithms, either per-VX approach or cohort approach, can
effectively create VXs in better agreement with the data.
Available local optimization methods may be particularly
attractive for certain applications with the per-VX approach.

Example 4: An Iterative Workflow for Finding Additional
Cohort VXs Given an Initial Set of Plausible VXs

One can get an initial set of plausible VXs through
sampling the hypervolume defined by the mechanistic axes
bounds and accepting/rejecting VXs based on their response
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evaluations of VX agreement with data

type elements (that is, individual simulation outcomes
mapped to data) or an overall response type (combined
evaluation) objective function value. If missing phenotypes
are identified, an iterative and potentially time-consuming
process is needed to refine the initial cohort. In this example,
a process of generating additional plausible cohort VXs given
an initial set of plausible VXs is illustrated. The initial cohort
size is 1000 and we want to target a new cohort size of 1000.
In order to generate new VXs, initial VXs are selected by
using a partition around medoids clustering strategy to select
300 VXs. In iterative simulations, 7 new VXs are added for
each existing VX, resulting 2100 additional VXs in total in the
first iteration. These new VXs are generated by adding
Gaussian noise to the axes. Note that other sampling
distributions for worksheet VPs are available (type “help
varyAxesOptions”). To enable more rapid exploration of the
allowed solution space with each iteration, one mechanistic
axis is selected for each VX and a new coefficient is also
sampled from a uniform distribution. In practice, we may also
set up a biased sampling to try to more efficiently generate
specific phenotypes. From these 2100 VXs, we pick out the
plausible VXs that satisfy our constraints on the objective

function. If the number of accepted VXs exceeds the target,
VXs are again selected based on clustering to bring the
worksheet back down to target size before backing up
progress by writing to file. In this example, 13 out of 2100
new VXs were selected as plausible VXs in the first iteration,
and 5 new VXs were selected in the second. Note the rate of
successful plausible VX generation, as well as generation of
diversity and desired phenotypes, will vary substantially with
the sampling strategy, applied response types and objective
functions, and plausibility criteria.

Example 5: Sample VPop Object

Rather than first illustrating the VPop development
workflow, example 6 presents a worksheet, virtual xenograft
cohort, and VPop object from such an analysis. Note that the
included virtual xenograft cohort also meets plausibility
constraint cutoffs imposed on the response type elements, as
described in the included poster (33). Also, when saving this
worksheet, the simulated results were set as empty (type
“[myWorksheet].results = {}”). The results may consume
substantial disk space and MATLAB® file IO can be slow
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a factor of 2 of the best are chosen. The optimization is set to terminate after 30 iterations

with files greater than about 2 GB. One can always
regenerate results by simulating the worksheet.

The VPop and its prediction intervals are illustrated in
Fig. 8. Note that here we include 6 measured outcomes on 4
interventions in the response type and variability in 13
mechanistic axes. The rationale for the included axes is
available in the included poster (33). In the VPop object,
there are simulation results from 1000 plausible VXs and each
VX is assigned an optimized prevalence weight. The results
suggest that valid VXs cover many of the parameter ranges,
with a few exceptions (most notably shedding rate, see
Fig. 8m). This suggests differences in the study cell line from
bounds derived from the literature.

endpoints that may be problematic, as well as the distribution
of prevalence weights in the VPop.

Example 7: Sobol Global Sensitivity Analysis

Sobol sensitivity analysis has been used to characterize
systems pharmacology models (59,60). Sensitivity analysis has
also been presented as an important method to support QSP
workflows (8), and here we illustrate how to run a Sobol
global sensitivity analysis using a test function that can be
solved quickly, the six-parameter Sobol g-function (61). The
general form of k parameter Sobol g-function is given by:

k
Example 6: Workflow for Creating VPops Using MAPEL glx, 02, k) = [1ica8i(%i) (1)
We demonstrated a previously developed VPop in .
example 5. Example 6 illustrates a workflow for creating With
VPops from a cohort of unweighted VXs using MAPEL (26),
subject to an alteration of MAPEL’s objective function as g(x) = |[4xi—2| + a; 2)
described in one of the included posters (33). Summary °° 1+a;

statistics for the VPop to match are calculated from experi-
mental data. In the published MAPEL version, the goal is to
match mean, standard deviation, and bin frequencies. It
should also be noted that QSP models often may be
calibrated with time-series data with various experimental
and clinical assays, and one can often identify several
time/experimental data points that would be difficult to match
due to issues in the data. In some cases, one may be
comfortable allowing some transient model behaviors to
quantitatively deviate from observed data. Data for select
time points may be omitted during optimization with the
provided MAPEL implementation by setting their weight to
zero. A diagnostic plotting function is provided to help assess
how VXs in the worksheet span the data. Additional
diagnostic plotting functions are available to help identify

In this example, the Sobol g-function is implemented as a
SimBiology model and all six parameters are mechanistic
axes with bounds between 0 and 1. Sampling for the first-
order sensitivity and total-order sensitivity indices are deter-
mined using an efficient model evaluation strategy (61,62),
and computational formulas for the evaluation of the indices
were selected based on previous proposals (61-63). The first-
order sensitivity indices and total-order sensitivity indices are
compared to the respective analytical solutions in Fig. 9. Note
that with sufficient time and a suitable computing environ-
ment with sufficient computing cores and memory, larger
sampling runs may be applied to QSP models to calculate the
sensitivity indices.
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Advanced Concepts

The examples included in the tutorial walk through setting
up a worksheet, developing and evaluating alternate VPs,
establishing a cohort of VPs, and calibrating a VPop. QSP
modelers will not necessarily want to replicate these steps exactly
for their projects, but will be interested in applying variations on
these steps with their own models and datasets. This will likely
entail variations or expansion on the basic steps presented here.

Capabilities to support both variations on these steps and
additional workflows are provided. As one example, time-series
data were available here, and response type elements based on
datapoints (type “help responseTypeElementPoints” at the
command line for additional information) were implemented to
assess the agreement of simulated virtual xenograft outcomes
with the experimental data. Additional response type element
objects were also developed for the QSP Toolbox, and agreement
with bounds over defined intervals can be assessed with other
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included classes (type “help responseTypeElementBounds” at
the command line). This approach will be essential to generate
VPs when it is desired to check that simulated outcomes fall
within ranges that can be established from available literature. A
response type element class is also available to help create VPs
biased toward mechanistic parameter values (type “help
responseTypeElementAxis”). An example demonstrating an
analysis of correlation in a weighted virtual population is not
provided. However, it is possible to use the examples as a starting
point, and functions are provided to support the analysis
(type “help evaluateCorrelations™ (64). Functions to support a
basic control coefficient analysis of sensitivity, similar to that
applied to a model of immunogenicity (65), are provided (type
“help runControlCoefficientsSimulations” and “help calculate-
ControlCoefficients”). We also do not demonstrate implementa-
tion of pharmacokinetic (PK) variability according to a defined
population model here, but for other projects we have imple-
mented such variability by including the PK parameters as
mechanistic axes and performing multivariate sampling for their
coefficients from an established population PK model to set the
axis coefficients. While the interventions generally implement a
fixed dose, a provisional framework for simulating VP-
customized dosing is provided in the “bakery” folder (type “help
simulateWorksheetIndDoses”). Other workflows of interest to
QSP modelers include the creation of alternate virtual popula-
tions. For example, it may be necessary to characterize how an
enrollment criteria impacts a trial outcome or how much variation
there might be in observed biomarkers for a given efficacy signal.
If alternate enrollment criteria are based on a different class of
patients with a separate set of published clinical trials, as needed
the cohort VPs can be selected based on additional restrictions,
and the new set of trial statistics can be used to guide the
development of new sets of prevalence weights for the cohort.
Similarly, multiple alternate virtual populations with acceptable
composite goodness-of-fit scores can be developed to explore
population variability in biomarkers.

In developing VPops that statistically match observations,
we have taken the approach described previously of developing
virtual cohorts of feasible virtual patients and then optimizing
prevalence weights (26-29). Note that a related strategy of
optimizing prevalence and then sampling VPs to define the VPop
has also been implemented (25). Example 4 illustrates how to use
existing plausible VPs as a basis to look for additional plausible
VPs, and similar methods may be used to create VPs with missing
phenotypes. One exciting area for future development that has

also been suggested by Allen et al. is the development of methods
to better direct the VP sampling step to more efficiently create
VPs and missing or poorly represented phenotypes (25).

Virtual patient generation involves sampling a high-
dimensional space and extensive model evaluations, which
could be computationally expensive. Note that these calcula-
tions can be easily parallelized since the essence is evaluation
and scoring of alternative parameterizations of a QSP model.
The QSP Toolbox has built in a simple parallelization feature
employing the parallel simulation of the VP-intervention
combinations in MATLAB®. As there is a demand to
simulate more virtual patients or run models that require
longer wall clock simulation times, there are options to
increase resources for QSP Toolbox deployment. Options
for larger worker pools may be available with the
MATLAB® Distributed Computing Server, and Amazon
currently offers X1 instances with 64 physical cores and
2 TB of memory. Emakov et al previously presented a
framework that could utilize submission of compiled QSP
model executables directly to a distributed cloud environment
(66). We are currently in the process of developing a cloud
deployment for the QSP Toolbox that writes directly to
database tables to store simulated worksheet results.

The QSP Toolbox is dependent on interfacing with
MATLAB® and SimBiology®. Advantages to this strategy
include the capability to import models developed elsewhere
that are available in Systems Biology Markup Language
(SBML), good support with multiple solvers for ODE models,
a library of relevant functions and optimization algorithms from
which to draw, demonstrated capability to run models with more
than hundreds of state variables, and parallel computing
capabilities. Additional benefits from SimBiology® include
support of additional considerations in QSP modeling such as
drug doses and discontinuities, the graphical user interface for
organizing large models, the availability of variants to help
organize parameters, and general interest from the developer in
continuing to improve SimBiology® as a tool for the QSP
community. Although the QSP Toolbox is freely available, other
associated software costs or preference for another scripting
language may be disadvantages for some users. It is also worth
noting that with a sufficient development community and
dedicated effort, the QSP Toolbox or package to offer similar
or additional QSP efficiencies could also be developed with a
free and open source solution, as has been done with other tools
in systems biology (for example, see (17, 67)).
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CONCLUDING REMARKS

QSP models provide valuable mechanistic insights about
a biological system and the effect of drug treatment on system
behavior. Workflows to develop reasonable parameteriza-
tions, comprehensively integrate different experimental data,
and investigate parameter uncertainties/variabilities are very
important for QSP model deployment. In this paper, we
introduced an implementation of a computational workflow,
the QSP Toolbox, to systematically deploy multi-scale mech-
anistic models and demonstrated its capabilities in data
integration, model calibration, and variability exploration
using an ADC QSP model. It is anticipated that the QSP
Toolbox will accelerate model application. Although the
tutorial uses an ADC model as an example, the QSP Toolbox
was developed to process and analyze ODE models deployed
in MATLAB® SimBiology® regardless of therapeutic agent,
disease area, or indication. Furthermore, as with computa-
tional tools in other fields, we anticipate releasing the QSP
Toolbox will help to strengthen the efficiency of the QSP
community (20). Here, we directly communicate and demon-
strate many methods and provide a framework for others to
contribute improved algorithms directly to. With more QSP
modelers using and potentially contributing to the toolbox,
we can help standardize and enhance the computational
implementation of QSP workflow, which is essential to better
compare modeling practice, communicate QSP models with a
matrix team, and promote QSP modeling. Furthermore, the
provided detailed examples and code base may also be useful
for others to adapt and expand on workflows detailed here.
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