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Abstract. Recent years have witnessed a growing interest in a field of vaccinology that we have named
vaccinomics. The overall idea behind vaccinomics is to identify genetic and other mechanisms and
pathways that determine immune responses, and thereby provide new candidate vaccine approaches.
Considerable data show that host genetic polymorphisms act as important determinants of innate and
adaptive immunity to vaccines. This review highlights examples of the role of immunogenetics and
immunogenomics in understanding immune responses to vaccination, which are highly variable across
the population. The influence of HLA genes, non-HLA, and innate genes in inter-individual variations in
immune responses to viral vaccines are examined using population-based gene/SNP association studies.
The ability to understand relationships between immune response gene variants and vaccine-specific
immunity may assist in designing new vaccines. At the same time, application of state-of-the-art next-
generation sequencing technology (and bioinformatics) is desired to provide new genetic information and
its relationship to the immune response.
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INTRODUCTION

While readers of this journal are already familiar with
the impact of pharmacogenetics and pharmacogenomics of
drug therapy, such concepts have just recently begun to be
applied to the development and delivery of vaccines. The
application of the field of immunogenetics and immunoge-
nomics to rational vaccine design has recently been labeled
vaccinomics (1, 2). Accordingly, vaccinomics encompasses the
field of predictive or individualized vaccinology as applied to
a comprehensive understanding of the genetic and immuno-
logic systems responsible for heterogeneity in vaccine-
induced immune responses (3). Both environmental and host
factors determine the adaptive immune responses to vacci-
nation (4). These immune responses are highly variable
across the population, suggesting a genetic basis. Further
evidence comes from studies comparing vaccine-induced
immune responses in monozygotic and dizygotic twins, which
provides an estimate of the contribution of genetic factors by

estimating the heritability of total variance that is due to
genetics rather than environmental factors (5). Supporting the
value of understanding the immunogenetic drivers of vaccine
response, we demonstrated in a study of monozygotic and
dizygotic twin pairs that the heritability of IgG levels (the
proportion of genetic variance to overall variance) for
measles, mumps, and rubella (MMR) vaccines was 88.5%,
38.8%, and 45.7%, respectively (6). In other twin studies,
high heritability for antibody response was observed for
hepatitis B (77%), oral polio (60%), tetanus toxoid (44%),
and diphtheria (49%) vaccines (7). These data support the
notion that genes play a defining function in the inter-
individual variation of antibody responses following vaccina-
tion. By understanding these critical genetic determinants of
immune response, we may develop the basis for an individ-
ualized approach to vaccination. In turn, understanding these
genetic drivers could be used to enhance immune response,
for example, in vaccine non-responders, and to inform new
vaccine development (3,8,9).

The most frequently used method to investigate relation-
ships between genetic polymorphisms and variations in
immune responses to vaccination has been candidate gene
and genome-wide association studies (GWAS). Such studies
are important in providing the data necessary to support and
pursue the novel and translational approach of directed
vaccinology (1–3,9). Epidemiological and family vaccine
studies have shown familial aggregation. Subsequently, many
association studies have identified both HLA and non-HLA
candidate gene markers, including genes in close linkage
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disequilibrium (LD) with the putative causative marker (3,9).
These HLA and single-nucleotide polymorphism (SNP)
findings emphasize the importance of identifying and repli-
cating initial findings of genetic associations with vaccine-
induced immune responses, as well as understanding the
functional consequences of each gene/SNP association.

IMPORTANCE OF HLA GENES IN ACQUIRED
VACCINE IMMUNITY

Our immunogenetic studies involving well-characterized
cohorts of healthy subjects from various populations have
resulted in a better understanding of the role of host HLA
genetic determinants in response to vaccines. Among the
different genetic determinants that are recognized to affect
adaptive immune response to viral vaccines, the HLA class I
and class II genes represent one of the main focal points
because of their biologic role of presenting pathogen-derived
peptide epitopes to T cells and the extraordinary polymorphism
in these genes. In our population-based studies, live attenuated
measles, mumps, and rubella virus vaccines that stimulate both
CD8+ and CD4+ T-cell responses were used. Peripheral blood
mononuclear cells that contain dendritic cells, macrophages,
and B cells were utilized as antigen-presenting cells, which can
present exogenous viral antigens via cross-presentation by both
class I and class II HLA molecules.

Clearly, immune responses after MMR, influenza, hep-
atitis B, and vaccinia vaccines are influenced by variation at
the HLA loci and other immune regulatory genes (10–13).
We have in part previously discussed some of these examples
in other publications (1–3,9). Several alleles of the HLA loci
have been linked with “responder” and “non-responder”
phenotypes after MMR vaccination. For example, HLA class I,
in particular the B*8 (p=0.001), B*13 (p=0.004), and B*44
(p=0.03) alleles are associated with IgG seronegativity after a
single dose of measles vaccine (14). We demonstrated that the
A*29-C*16-B*44 haplotype is associated with low levels of IgG
antibody to measles virus (p=0.08) after two doses of measles
vaccine (Table I) (15). Furthermore, the A*26-C*12-B*38
haplotype is associated with high lymphoproliferative responses
to measles vaccine (p=0.02).

In regard to rubella vaccine response, low-rubella IgG
antibody levels are associated with B*2705 (p=0.028),
whereas B*4501 alleles are associated with high antibody
levels after two doses of rubella vaccine (16). Importantly, we
demonstrated that B*2705 alleles are associated with low
rubella-induced antibody levels in two independent cohorts of
subjects (16). In regard to cellular immunity, B*3503 (p=
0.031) and C*1502 (p=0.035) alleles are associated with high
levels of lymphocyte proliferation to rubella virus, and
B*1302 (p=0.02), B*3701 (p=0.01), and B*3801 (p=0.007)
alleles are associated with high levels of lymphoproliferation
to mumps virus following two doses of MMR vaccine (17,18).
Important associations of class I alleles with cytokine
responses to rubella vaccine were also discovered. Differ-
ences in rubella-specific immune response among common
HLA alleles were assessed simultaneously via a global test to
collectively determine whether at least one HLA allele in
each gene locus was associated with a modified immune
response to rubella vaccine. The relationships between alleles
of the HLA-B (*3901, *4001, *4102, *4403) (global p value=

0.03) and HLA-C (*0303, *1601, *1703) (global p value=
0.02) loci, and rubella-specific TNF-α production point to the
potential significance of HLA class I molecules in the
inflammatory immune response (19).

The role of HLA class II genes in immunity to vaccines is
also crucial. In a cohort of 346 healthy children, DQB1*0201
(p=0.04), DQB1*0402 (p=0.02), DQA1*0401 (p=0.003),
DRB1*0301 (p=0.02), DRB1*0801 (p=0.02), DRB1*1201
(p=0.04), and DRB1*1302 (p=0.01) alleles were significantly
associated with low lymphoproliferative responses to mumps
vaccine (18). Interestingly, subjects who carried the
DRB1*03-DQB1*02-DPB1*04 haplotype had high lympho-
proliferative responses to both measles (p=0.01) and mumps
viruses (p=0.006) (15). A strong association was found
between many alleles of the HLA-DQA1 (*0103, *0301,
*0303) (global p value=0.02) and HLA-DQB1 (*0202, *0302,
*0603) (global p value=0.007) loci and inter-individual
variations in rubella virus-induced IL-2 secretion (19). Con-
sistent associations were found with rubella-induced antibody
levels that confirmed our earlier reported HLA associations
in replication studies we performed (16). Specifically,
DPA1*0201 alleles are consistently associated with low levels
of rubella-induced antibodies, whereas DPB1*0401 alleles are
associated with high-antibody levels in two separate study
cohorts (Table I) (16). Furthermore, the relationship of
DRB1*04-DQB1*03-DPB1*03 and DRB1*15/16-DQB1*06-
DPB1*03 haplotypes with low levels of rubella virus-specific
antibodies were found in these two separate studies (16).
Future studies designed to perform definitive mechanistic
experiments that might allow attribution of direct “cause and
effect” of HLA genotype on phenotype are currently in
progress.

Immune responses after rubella vaccine are also
modulated by genes in the class III region in extended
haplotypes. Using a method that accounts for linkage-
phase ambiguity by an expectation maximization algorithm
(20), we found an association involving haplotypes expand-
ing across the HLA class I region, ten SNP haplotypes
(LTA-TNF-LST1), and the HLA class II region and
rubella-specific antibodies (global p value=0.03). An exam-
ple of a specific haplotype associated with high levels of
humoral immune response to rubella is the A*02-C*03-
B*15-AAAACGGGGC-DRB1*04-DQA1*03-DQB1*03-
DPA1*01-DPB1*04 haplotype (p=0.002) (21). Such pop-
ulation-based gene association studies, and the insights
they provide, are critical to identifying and solving the
problem of low and/or waning immunity and in advancing
the science by pursuing the immunogenetic basis for
variation among vaccinated individuals (22,23).

NON-HLA GENETIC POLYMORPHISMS
AND VACCINE RESPONSE

A significant observation that comes from many of the
HLA association studies linked to vaccines suggests that non-
HLA genes also contribute to the heterogeneity of vaccine-
induced immunity. Hohler et al. found that approximately
40% of the genetic contribution to the hepatitis B (HBsAg)
vaccine antibody response is related to HLA genes (24).
Interestingly, the heritability of the HBsAg vaccine response
attributed to the HLA-DRB1 locus was projected to be 25%,
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leaving the remaining heritability of 36% to other genetic
loci. Our recent study has shown that inter-individual
variation in the HLA genes accounts for ~20% of the overall
genetic variation in rubella vaccine-induced antibodies (16).
Guided by this understanding, we conducted a genotyping
study in 738 children to determine associations between
candidate SNPs and haplotypes and immune measures
following two doses of rubella vaccine (25,29,32,36). Our
data suggest that the variability of both rubella vaccine-
induced humoral and cytokine responses is significantly
modulated by cytokine and cytokine receptor genetic var-
iants. For example, an increased representation of minor
alleles for two promoter SNPs (rs2844482, p=0.0002 and
rs2857708, p=0.001) of the TNFA gene were associated with
two-fold increases in rubella-specific IgG levels (25). Fur-
thermore, IL-6 production was associated (p≤0.01) with
intronic SNPs (rs5745993, rs17882988, rs472093, rs5746059,
and rs590977) in the TNFRSF1B gene, while several pro-
moter and intronic SNPs in the IL12B gene were significantly
associated (p<0.001) with higher IL-6 production after
rubella vaccination. Individual SNPs and haplotypes in the
IL12B and TNFA/TNFRSF1B genes were associated with
immunity to rubella vaccine. Specifically, the TNFA haplo-
type AAACGGGGC and IL12B promoter haplotype TAG
were associated with high rubella-specific IgG (p<0.001) and
IL-6 secretion (p=0.008), respectively. A common haplotype
in the TNFRSF1B gene was associated with low (p<0.001)
IL-6 secretion (25). Thus, cytokines play an essential role in
the modulation of immune responses and cytokine produc-
tion is influenced by the rate of transcription of their cytokine
and cytokine receptor genes. As an example, SNPs in these
cytokine genes can affect mRNA splicing, stability, and
structure of RNA molecules, or protein folding (26). Under-
standing of such polymorphisms may assist in designing new
vaccines that include cytokines to “replace” those not
produced natively and reinstate an optimal Th1/Th2/T17 cell
equilibrium that would provide protective immunity after
vaccination (27,28).

INNATE GENE POLYMORPHISMS AND VACCINE
IMMUNITY

The immune system comprises a complex set of signaling
pathways that function not as discrete parts, but rather as a
network of interrelated pathways that have dynamic additive,
subtractive, synergistic, and regulatory network effects on one
another and combine to form an integrated response that we
have termed “the immune response network theory”(2) (Fig. 1).
As an example, the role of polymorphisms in the Toll-like
receptor (TLR), vitamin A and D receptors, antiviral effector,
and other innate immune response (IR) genes in vaccine-
induced immunity is of growing importance and recognition.We
studied the association of polymorphisms in these candidate
innate IR genes to rubella vaccine-induced humoral and cellular
immune responses. Overall, eight significant SNP associations
(p<0.05) were found between the vitamin A (RARB), RIG-I,
and TRIM (TRIM 5 and TRIM 22) genes and humoral
immunity after rubella vaccine (29). Our association study
determined that the non-synonymous SNP rs3740996 in the
TRIM5 gene was associated with rubella-specific antibody
response (p=0.01). This specific SNP was found to have an
important functional role (29–31). This same study also found 22
important associations (range of p values 0.002–0.05) between
genetic variants in the vitamin A receptor family (RARA,
RARB, and RARG), vitamin D receptor, RXRA genes, and
rubella-specific (IFN-γ, IL-2, IL-10, TNF-α, and GM-CSF)
cytokine responses (32). Additional studies are necessary to
replicate and validate these findings.

TLRs are pattern recognition receptors that can contrib-
ute to viral detection by sensing RNA and viral proteins,
leading to induction of cytokines and interferon response
(33). In our study, a TLR3 gene SNP (rs5743305, −8441A>T)
was found to be associated with rubella-specific GM-CSF
production (32). SNPs (rs3740996 and rs10838525) in the
innate TRIM5 gene coding regions were associated with
rubella-specific TNF-α and IL-2/GM-CSF, respectively. These
two SNPs have been previously demonstrated to have func-

Table I. Associations Between HLA Gene Polymorphisms and Humoral Immune Responses After Two Doses of MMR Vaccine

HLA Gene Genes and alleles (p value) Effect on antibody level Number of subjects References

Measles vaccine
HLA class I B*3503 (p=0.01) Increased 346 Not published
HLA class II DRB1*0701 (p=0.03), DQA1*0201 (p=0.03) Decreased 346 Not published
HLA class I haplotype A*29-C*16-B*44 (p=0.08) Decreased 346 (15)
HLA class II haplotype DRB1*15/16-DQB1*06-DPB1*04 (p=0.02) Increased 346 (15)
HLA class II haplotype DRB1*15/16-DQB1*06-DPB1*03 (p=0.09) Increased 346 (15)
Rubella vaccine
HLA class I A*2705 (p=0.001), A*5701 (p=0.03) Decreased 738 (16)
HLA class I A*4501 (p=0.02) Increased 738 (16)
HLA class II DPA1*0201 (p=0.005), DPB1*0301

(p=0.01), DPB1*1301 (p=0.04)
Decreased 738 (16)

HLA class II DPB1*0401 (p=0.001) Increased 738 (16)
HLA class I haplotype A*03-C*07-B*07 (p=0.04) Decreased 738 (16)
HLA class II haplotype DRB1*04-DQB1*03-DPB1*03 (p=0.01) Decreased 738 (16)
HLA class II haplotype DRB1*15/16-DQB1*06-DPB1*03 (p=0.005) Decreased 738 (16)
Mumps vaccine
HLA class II DQB1*0303 (p=0.04) Decreased 346 (18)
HLA class I haplotype A*26-C*12-B*38 (p=0.007) Increased 346 (15)
HLA class I haplotype A*29-C*16-B*44 (p=0.03) Decreased 346 (15)
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tional roles in regard to antiviral activity (30,31,34,35).
Furthermore, we found 23 associations (p<0.05) between
genetic variants within the 2′-5′-oligoadenylate synthetase
(OAS) gene, and rubella-induced IL-2, IL-10, IL-6 secretion
and antibody levels (36). Three OAS1 gene SNPs (rs3741981/
Ser162Gly, rs1051042/Thr361Arg, rs2660), located in an LD
or haplotype block of functional significance were associated
with an increase in rubella-specific IL-2 production (p<0.02)
(36). Thus, the immune response to rubella vaccination is
restricted by more than just HLA-specific polymorphisms,
and additional genes that influence vaccine response should

be identified and studied. These non-HLA genes (TLRs,
RIG-I, TRIM, and others) are often targets of novel and
effective adjuvants for subunit vaccines. For example, the
MPL adjuvant signals through TLR4 and has been tested in
multiple vaccines (37). Synthetic lipopeptides, polyinosinic–
polycytidylic acid [poly(I/C)] and CpG oligodeoxynucleoti-
des, that signal through TLR2, TLR3, and TLR9, respec-
tively, have also been evaluated as adjuvants to stimulate
innate immunity (38–40). In this regard, specific human
polymorphisms in innate immune sensor genes may poten-
tially limit the efficacy of such vaccine adjuvants.

Fig. 1. Infection with a viral pathogen or immunization with a viral vaccine stimulates a cascading network of integrated
immune pathways. Non-specific innate responses activated by pattern recognition receptors serve to elicit IFN responses
and to activate antigen presenting cells in order to properly initiate adaptive immunity. Type I and III IFNs initiate various
antiviral proteins and responses such as: 2OAS, MX proteins and PKR, which inhibit viral replication in infected cells and
render uninfected cells resistant to viral infection. Complement and mannose-binding lectins opsonize and neutralize viral
particles, which are cleared by phagocytic cells such as macrophages. Pro-inflammatory cytokines and chemokine secretion
attracts effector leukocytes into infected tissues. Neutrophils and eosinophils infiltrate inflamed tissues and destroy infected
cells through the release of toxic granule contents including: DNases, RNases, lytic enzymes, antimicrobial peptides, and
reactive oxygen/nitrogen species. Innate immunity responds to infection immediately and serves to halt or delay viral
replication and to initiate robust, antigen-specific adaptive responses. Activated antigen presenting cells acquire antigen,
upregulate co-stimulatory molecules and cytokine secretion and traffic to the neighboring lymph nodes, where viral antigens
are presented to T cells. T-helper cells differentiate into Th1 cells supplying IL-2, IFN-γ, and other cytokines to support CTL
activation, clonal expansion, and lytic activity, Th2 cells which supply necessary cytokines (IL-4, IL-5) and co-stimulatory
signals (CD40L) for B-cell maturation, replication, and isotype switching, and regulatory T cells, which downregulate
immune responses and allow a return to homeostasis. B cells differentiate into plasma cells and secrete antibodies, which
agglutinate, opsonize, and neutralize viral particles, fix complement, and allow for antibody dependent cell cytotoxicity
(ADCC). Activated CD8+ T cells lyse infected cells through perforin, granzymes and through death receptors such as FasL.
Cytokine secretion (IFN-γ, TNF-α) by T lymphocytes can also have direct antiviral activity. Together, these humoral and
adaptive responses halt viral replication, lyse-infected cells and remove viral particles from the host. Virus-specific
lymphocyte numbers then contract to a small, long-lived memory population capable of rapidly responding to subsequent
infection with a viral pathogen
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GENOME-WIDE ASSOCIATION STUDIES AND NEXT-
GENERATION SEQUENCING

The enhancement in SNP genotyping methodologies
and progress in the human genome sequence project (41)
have facilitated genome-wide SNP association and linkage
studies for identification of novel genetic associations
between SNPs and variation in markers of immunity to
pathogens (42). Remarkably, such studies are rare and
population-based studies identifying the genetic and func-
tional basis for many viral vaccine-induced immune response
variations have not yet been performed. This includes
validating and replicating genotype–phenotype association
data in independent cohorts, whether obtained from candi-
date, genome-wide association, or genome-wide expression
microarray studies (43,44). For example, using a system
biology approach, Querec et al. analyzed human peripheral
blood mononuclear cells following primary vaccination with
YF-17D yellow fever vaccine (45), to predict the resulting
adaptive immune response. Similar measles, mumps, rubella,
influenza, and smallpox vaccine GWA, microarray and next-
generation sequencing (NGS/mRNA-Seq) studies are under-
way in our laboratory. On the other hand, GWAS platforms
do not interrogate all common genetic variants and will not
allow detection of rare variants. Utilization of state-of-the-
art technology, such as NGS, is needed to provide new
information, such as rare polymorphisms, alternative splice
variants, copy number variants, and their relationship to
immune response (2,46). NGS can also be useful to whole
genome, fine-mapping genetic regions of importance or deep
profiling and targeted sequencing of genes of interest (2,46).
Combining immunogenetic and NGS data will lead to a new
understanding of the fundamental mechanisms that deter-
mine the immunogenetic drivers of the immune response to
vaccination. Though generating large amounts of sequence
data will create a bioinformatics challenge for the scientific
community, this new technology opens a new opportunity for
future vaccine studies and provides a foundation for NGS-
based vaccinology.

NEW VACCINE DEVELOPMENT

Novel vaccine development, including the concept of
personalized vaccines (3), is naturally a multi-step process,
and the field of vaccinomics is at the beginning of this process.
We and others have identified significant associations
between inter-individual variations in vaccine-induced
responses and genetic variants in immune response and
innate genes. Our research demonstrates that humoral and
cellular immunity to vaccines is the result of multigenic
influences, signifying that host polymorphisms play a critical
role in determining responses to vaccines (15,21,47,48).
Information on these associations may aid in designing
vaccines that avoid immunogenetic restrictions. Peptide
vaccine studies in animal models offer evidence of this theory
(49–52). As stated by Spielberg (53), “Just as pharmacoge-
netics has suggested ways of designing drugs to minimize
population variability, understanding mechanisms of immu-
nogenetic variation may lead to new vaccines designed
specifically to minimize immunogenetically based vaccine
failure.” This concept encapsulates the thrust of our immu-

nogenetics work and its relationship to the field of vaccinom-
ics and vaccine development. In a recent review,
Vandenbroek and Goris (54) point out that “cytokine gene
polymorphisms may be gateways to novel targets for immu-
notherapy.” Jin and Wang (26) state, “the lesson learned from
HLA is that polymorphism can occur preferentially in the
functional domains of a given molecule with dramatic effects
on epitope selection and presentation.” As previously men-
tioned, we synthesized these insights into the concept of the
“immune response network theory” (9,22) stating that
immunity to a vaccine is driven by the complex interactions
of individual and groups of genes and epigenetic interactions,
and therefore can be determined and, in the future, predicted
(3,55).

As a specific example of a directed vaccine development
pathway informed by vaccinomics, we developed a mass
spectrometry approach to identifying naturally processed
vaccinia and measles-derived peptides isolated from specific
HLA class I (A*0201, B*1501, and C*03) and class II
(DRB1*0301) molecules associated with smallpox vaccine-
and measles vaccine-induced immune responses, respectively
(56,57). Using mass spectrometry, we identified 13 immuno-
genic measles virus-derived DRB1*0301-bound peptides that
may be potentially used in generating a new measles vaccine
formulation, and these peptide epitopes were chosen to avoid
our previously identified HLA polymorphic restrictions (57–
59). By identifying such genetically restricted peptides, and
using information regarding peptide/HLA promiscuity,
including HLA supertypes, new multi-peptide vaccines
administered with specific adjuvants could be developed and
tested. As another example of these ideas, HLA and cytokine
gene polymorphisms were demonstrated to be associated with
responses to recombinant hepatitis B vaccine (HBV), includ-
ing antibody non-response (60). Designing a novel HBV
vaccine that consists of peptides with adjuvants (for example,
GM-CSF) could avoid these immunogenetic restrictions
(61,62). Likewise, our studies have found a non-synonymous
SNP (rs3796504) in the SLAM receptor gene associated with
a 70% decline in measles-specific IgG levels (63). Possibly,
this SNP impacts the capacity of measles virus to attach to its
cellular receptor, and hence prevents generation of a
protective immune response. Vaccine immunogenicity could
be improved by a vaccine virus genetically engineered with
binding specificities that allow attachment in the presence and
absence of such a cellular receptor genetic variant. Thus,
vaccinomics serves to identify mechanisms and pathways that
direct immune responses, and provide new vaccine
approaches. While additional studies are required to further
explore and better understand genetic determinants of
immune response to vaccines, it is clear that vaccinomics will
bring new scientific insights and approaches to the field of
vaccinology. While just at the beginning of this scientific
revolution, we believe this approach will drive a “second
golden era” of vaccine development (1).
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