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Abstract
Model-informed drug development involves developing and applying exposure-based, biological, and statistical models 
derived from preclinical and clinical data sources to inform drug development and decision-making. Discrete models are 
generated from individual experiments resulting in a single model expression that is utilized to inform a single stage-gate 
decision. Other model types provide a more holistic view of disease biology and potentially disease progression depending 
on the appropriateness of the underlying data sources for that purpose. Despite this awareness, most data integration and 
model development approaches are still reliant on internal (within company) data stores and traditional structural model types. 
An AI/ML-based MIDD approach relies on more diverse data and is informed by past successes and failures including data 
outside a host company (external data sources) that may enhance predictive value and enhance data generated by the sponsor 
to reflect more informed and timely experimentation. The AI/ML methodology also provides a complementary approach to 
more traditional modeling efforts that support MIDD and thus yields greater fidelity in decision-making. Early pilot stud-
ies support this assessment but will require broader adoption and regulatory support for more evidence and refinement of 
this paradigm. An AI/ML-based approach to MIDD has the potential to transform regulatory science and the current drug 
development paradigm, optimize information value, and increase candidate and eventually product confidence with respect 
to safety and efficacy. We highlight early experiences with this approach using the AI compute platforms as representative 
examples of how MIDD can be facilitated with an AI/ML approach.
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Introduction

Model-informed drug development (MIDD) is an approach 
that involves developing and applying exposure-based, 
biological, and statistical models derived from preclinical 

and clinical data sources to inform drug development and 
decision-making. MIDD was formally recognized in Pre-
scription Drug User Fee Act (PDUFA) VI. There have been 
many regulatory applications of MIDD to address a variety 
of drug development and regulatory questions. Likewise, 
pharmaceutical sponsors have been investing in the approach 
to ensure that MIDD capabilities meet regulatory expec-
tations and fulfill the needs of the various project teams 
that rely on the approach to de-risk stage-gate decision and 
maintain documentation and transparency for regulatory 
authorities. As pharmaceutical sponsors have invested in 
MIDD for 20 or more years in some cases, there is better 
quantitative data on the impact of the approach, its efficiency 
in decision-making, and its impact on drug development in 
general. Most of these factors lead to a very positive conclu-
sion regarding the approach. But still, the question remains, 
can we do it better and more efficiently?
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The scope of this review is to describe the current MIDD 
approach in the context of the data, model types, and deci-
sion value across the drug development continuum in com-
parison to the evolving use of AI/ML to inform various 
aspects of drug development. The primary objective is to 
consider an AI/ML-based approach which is either comple-
mentary to or entirely self-sufficient to inform stage-gate 
decision-making in a manner comparative to the current 
MIDD paradigm with some discussion regarding how ROI 
(return on investment) can be further enhanced with some 
discussion about future requirements to enhance regulatory 
acceptance and more dedicated investment for this purpose 
by pharmaceutical sponsors. It is also important and relevant 
that non-AI stakeholders are able to assess the value of the 
approach and are integrated into the ecosystem that inter-
prets and endorses the approach from both an MIDD and a 
decision-making perspective.

Traditional MIDD Data Flow and Parallel Model 
Development

Model-informed drug development (MIDD) is an approach 
that involves developing and applying exposure-based, biologi-
cal, and statistical models derived from preclinical and clinical 
data sources to inform drug development and decision-making 
[1, 2]. Most discrete models are generated from individual 
experiments or preclinical/clinical trials resulting in a model 
expression that is utilized to inform an individual stage-gate 
decision (see Fig. 1). In the preclinical arena, most of the 
effort is focused on two main themes. Primarily, the emphasis 
is based on creating a rationale for target candidates to ful-
fill requirements to treat an unmet medical need as defined in 
the target product profile (TPP). In addition to experiments 
that generate data designed to assess a candidate molecule’s 
druggability and desired ADME properties, some notion of a 
preclinical proof-of-concept (POC) is conducted. Secondary 
to the preclinical POC, a battery of safety pharmacology and 
toxicology studies that determine if a candidate molecule is 
adequately safe to pursue clinical phase testing in humans is 

conducted. Single- (acute) and multiple-dose (chronic) toxicol-
ogy and toxicokinetic studies are conducted in multiple species 
as part of this effort. Complementary to the pharmacology and 
toxicology studies that help to project the human therapeutic 
window and justify the FIH dosing strategy and early clinical 
development plan are experiments that support the develop-
ment of early formulations. Table I summarizes the data (types 
and dimensions), model types, and decisions to inform across 
the drug development continuum with a traditional MIDD 
approach implemented.

Each of these experiments is often informed by models 
that help define the experimental design, sampling scheme, 
and sample size at a minimum. Most of the inputs (data) 
for these models are generated by the sponsor themselves 
either from the active drug substance’s chemical attributes or 
early in vitro or in vivo experiments. There exists a sequen-
tial nature to the design and conduct of these experiments 
such that early experiments often are used to refine these 
models and help design the next phase of testing. For small 
molecules and most therapeutic proteins, there is an implicit 
relationship that defines the dose ➔ exposure ➔ response 
sequence that is unique to the drug substance being devel-
oped. It is the implicit goal of the sponsor to quantify this 
relationship in as rapid a manner as possible and accelerate 
favorable candidates to the next phase of testing or aban-
don those with unfavorable characteristics in the so-called 
“quick kill” approach. Efficiency in this effort is facilitated 
by adopting the MIDD approach. Evidence to the benefit of 
the MIDD approach for this purpose has been previously 
published by both pharmaceutical sponsors themselves [3–5] 
and regulatory authorities [6–9].

Likewise, clinical phase testing encourages the continua-
tion of this approach with more emphasis on human patient 
level PK/PD evaluation with additional knowledge of the 
formulation properties of what hopefully will be the final 
market image (route, dosage form, and strengths to be sub-
mitted/approved). Linkage between parameters that define 
the PD response and endpoints that will represent the basis 
for approval if warranted is also sought. The same sequential 

Fig. 1   MIDD deliverables 
linked to development phase 
and stage-gate decisions 
informed by the various model 
constructs, illustrating the trend 
of integrating discrete model 
types
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flow is still in place and expected (one or more trials inform-
ing models that inform the next phase of testing) but there is 
also the occasion to introduce other data types potentially as 
a compound moves into later phases of clinical evaluation 
(phases 2 and 3). Such sources may also have been generated 
outside of the host company (natural history data, claims 
data, and other RWD sources that help define the standard 
of care of the patient population). The rationale for their 
inclusion in various MIDD modeling assets is based on the 
information value they at least theoretically bring to refining 
the expected clinical performance in the target population.

Other model types provide a more holistic view of dis-
ease biology and potentially disease progression depending 
on the appropriateness of the underlying data sources for 
that purpose. More recently, there is a growing awareness 
of the benefit of integrating various discrete model types 
both from the standpoint of shared and integrated data as 
well as the development of structural models and diverse 
but complementary model types that support a broader set of 
stage-gate decisions. These model types are developed with 
less frequency as they often reflect more multidisciplinary 
investment and buy-in and occasionally require input (data 
and intellectual contributions) from external subject matter 
experts as well. This level of engagement may require con-
tractual relationships including confidentiality obligations 
which can extend timelines and potentially incur delays that 
impact their effectiveness at informing stage-gate decisions.

An important baseline for the current MIDD approach 
applied to the traditional drug development paradigm is that 
MIDD is applied based on regulatory timelines dictated by 
the IND and NDA process that has not changed much over 

the last 30 years with respect to the content expectations. 
These content requirements necessitate that the sponsors 
plan and conduct the requisite experiments and clinical tri-
als in a certain order based on an implicit evaluation of the 
probability of technical success (PTOS). The evaluation of 
PTOS across the traditional phases of development suggests 
that PTOS is neither consistent across the phases nor linear 
over time [10]. Simply put, some phases are more risky than 
others. It is appreciated by many that MIDD has improved 
PTOS in all phases, but the current approach has not altered 
the content of the submissions, or the timelines dictated by 
the IND and NDA process in any systematic manner.

To manage the computational aspects of an MIDD 
approach, sponsors either have to invest in internal compute 
infrastructure or purchase computing services. Historically 
and mainly motivated by IP, confidentiality, and security 
considerations, most organizations initially preferred to pur-
chase the required hardware and software maintaining their 
own governance over their compute environments and, at 
least in theory, facilitating the transfer of the required data 
into these systems. Many constructed home-grown solutions 
envisioned by their modeling community and governed by 
their IT staff. Most of these have had a short lifetime, espe-
cially with many internal IT services being contracted out 
over the same window of time. With the evolution of secure 
and flexible cloud-based computing services, hybrid or 
entirely cloud-based computing services have become more 
prevalent. Figure 2 highlights the current compute environ-
ment to support traditional MIDD paradigms and exposing 
the general compute infrastructure components that support 
the environment. An important emphasis for this evolving 

Table I   Data, Model, and Stage-Gate Decision Connectivity in a Traditional MIDD Drug Development Paradigm

Stage-gate decision Typical data to inform decision Complementary model (s) Stakeholders

Target validation Drug discovery data: in vitro screen-
ing data; chemical libraries; in 
silico modeling results; etc.

QSAR, QSP models Pharmacology, medicinal chemistry

Target indication(s) Commercial data on medical need, 
prevalence, etc. (e.g., claims data; 
epidemiologic data)

HECON; pharmacoeconomic 
models

R&D therapeutic areas, franchise 
commercial groups

Candidate selection
FIH dose
Biomarker strategy
POC trial design
Endpoint selection
Patient enrollment criteria

Preclinical (animal in vivo) PK/
PD experiments, toxicology (TK /
outcomes) trials, in vitro biomarker 
data, IVIVC data, human PK/PD, 
patient RWD

PK, PK/PD, Pop-PK/PD, PBPK, 
biopharmaceutic models, QSP 
models

Pharmacology, formulations, toxicol-
ogy/safety assessment, epidemiol-
ogy, clinical pharmacology, R&D 
therapeutic areas

Phase 3 trials Patient PK/PD trials Healthy volunteer and patient PK, 
PK/PD, Pop-PK/PD, outcome 
models

R&D therapeutic areas, franchise 
commercial groups

Effectiveness trials Phase 3 data, patient RWD Medical affairs, franchise commercial 
groups

Special population trials Patient PK/PD, special population 
(demographic etc.) data

PK, PK/PD, Pop-PK/PD Clinical pharmacology, R&D thera-
peutic areas, franchise commercial 
groups
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environment is how to cope with complex data types (e.g., 
digital data and various real-world data (RWD) sources) and 
how to integrate disparate data types into analysis datasets. 
The extent to which these various newer data types inform 
an MIDD approach is currently unknown but will certainly 
be a part of the future evaluation of the approach.

An AI/ML‑Based Paradigm Focused on Information 
Value and Regulatory Milestones

Artificial intelligence approaches to inform drug develop-
ment are most focused at early and late stages of develop-
ment mostly based on the nature and type of data generated 
in these stages. At early stages of development, the chemical 
space is generally viewed as comprising >1060 molecules 
[11]. The virtual chemical space is vast and suggests a 
geographical map of molecules by illustrating the distribu-
tions of molecules and their properties. The idea behind the 

illustration of chemical space is to collect positional infor-
mation about molecules within the space to search for bioac-
tive compounds, and thus, virtual screening helps to select 
appropriate molecules for further testing. Several chemical 
spaces are open access, including PubChem, ChemBank, 
DrugBank, and ChemDB.

AI is well-suited for these tasks because it can han-
dle large volumes of data with enhanced automation. AI 
involves several method domains, such as reasoning, knowl-
edge representation, solution search, and, among them, a 
fundamental paradigm of machine learning (ML). ML uses 
algorithms that can recognize patterns within a set of data 
that has been further classified. A subfield of the ML is deep 
learning (DL), which engages artificial neural networks 
(ANNs). While discovery groups are eager to leverage AL/
ML to acquire meaningful insights from the enormous data 
they hold or acquire, the accuracy of the AI/ML models 
depends on the volume and quality of the data used as an 

Fig. 2   Environment to support traditional MIDD paradigms (a) and general compute infrastructure components to support AI/ML-enabled MIDD (b)
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input for training them. Inaccurate input data results in mis-
leading outcomes delivered by the AI/ML models. While 
automation systems can cleanse data based on explicit pro-
gramming rules, it is almost impossible for them to fill in 
missing data gaps without manual intervention or plugging 
in additional data source feeds. However, machine learning 
can make calculated assessments on missing data based on 
its reading of the situation.

The cost of bringing new drugs from bench to bedside 
has become excessively steep. In identifying these trends, 
AI/ML-driven in silico platforms are alluring to the phar-
maceutical and healthcare industry due to their multidimen-
sional, predictive capabilities, and the associated increased 
efficiency. Traditional MIDD approaches have been used in 
drug discovery and development over the last two decades 
with the recent increase in complexity from the usage of AI/
ML-driven in silico platforms. Application opportunities for 
AI/ML can be associated with all stages of drug discovery 
and development, for example, drug-target validation and 
engagement, identification of prognostic biomarkers and 
evaluation of digitized clinical pathology data in clinical 
trials, and finally high-accuracy predictions of the pharma-
cokinetic, pharmacodynamic, and efficacy parameters from a 
limited pool of physiological and pharmacological preclini-
cal and clinical datasets. Recently, in the drug development 
pipeline, AI/ML has had a marked impact in clinical trial 
design, conduct, and analysis. In addition, the COVID-19 
pandemic may increase the pace of the usage of AI/ML in 
clinical trials due to an increased trust in digital technologies 
in clinical trial design and conduct. There have been sig-
nificant advances in AI/ML-driven MIDD in the context of 
the drug discovery and development pipelines recently [12, 
13], and many companies are at various stages of develop-
ment in the use of AI/ML and even attached to data services 
and platforms supporting various pharmaceutical industry 
supports. Table II provides an initial landscape assessment 
of companies focused on AI-based technologies to support 
drug development. There is much diversity of companies 
and business models with several companies utilizing AI to 
identify key drug candidates internally. For this evaluation, 
we will focus on a few platforms including VeriSIM Life 
(VSL) and some case studies from literature to illustrate the 
essentials of the approach and make comparisons with more 
traditional MIDD approaches.

Many of the companies listed in Table II contain compute 
platforms through which AI/ML approaches are enabled 
with connectivity to relevant data sources. VSL has devel-
oped BIOiSIMTM, an AI-enabled computational platform 
that integrates MIDD-based mechanistic systems biology 
modeling with AI/ML algorithms to enable an effective 
data-driven decision-making engine. The platform is con-
stantly validated by available public databases and publi-
cations, generating data with partnerships with CROs and 

data partnerships with national academic labs and FDA-
associated institutions that provide informed decision-based 
models to the regulatory institutions. Classical MIDD in the 
context of PK modeling typically faces several challenges: 
non-adaptive simulation, insufficient data to reach accuracy, 
time consumption, where the existing software is built out 
one model at a time, and scalability. BIOiSIMTM addresses 
many of these challenges by integrating data across diverse 
compounds from public and private sources, running vali-
dation reports across these extensive datasets frequently, 
scaling the software to AWS cloud, making the GUI user-
friendly for diverse researcher backgrounds, and utilizing 
AI/ML algorithms to predict cases by imputation and adap-
tive simulations, where parameter values are unknown or 
require extensive data collection. Other platforms have dif-
ferent approaches to data and model integration in the con-
text of decision-making but many are only focused on early 
stage drug development (see Table II).

Static vs Dynamic Framework

Given the high attrition rate, rising costs, and time to bring 
new therapeutic agents to market, newer approaches and 
technologies are being incorporated into drug development 
to bring in much needed efficiencies. Moreover, the trans-
lational gap increases the chances of drug failures as the 
cross-functional decision-making process is highly compli-
cated and not well-informed. Currently employed methods 
are static and non-adaptive and geared towards statistical 
inference only for a specific outcome (e.g., ADMET, Pop-
PK) than the comprehensive data-driven predictions to 
make accurate, informed decisions that will help reduce 
animal trials and more personalized human trials. Further-
more, the deployed models are not often scalable as they 
are not validated thoroughly and are often biased to fit the 
single-case/use scenario. Recently, the use of artificial intel-
ligence, owing to its capability to analyze large volumes of 
data and generate meaningful insights, has been increasing 
in various sectors, particularly the pharmaceutical industry. 
The potential of AI in the drug development pipeline from 
the bench to the bedside can be imagined since it can aid 
rational drug design; assist in decision-making; determine 
the right therapy for a patient, including personalized medi-
cines; and manage the preclinical and clinical datasets for 
potential drug development of new chemical entities and 
associated downstream predictions. One concern for AI to 
be used effectively is the need for vast amount of data for 
training and testing the algorithms which is a limitation in 
pharma/biotech industry either due to reluctance in sharing 
data or non-availability or highly variable data. A hybrid 
AI approach can transform the static system to a dynamic 
adaptive one where sophisticated AI/ML algorithms can be 
integrated to mechanistic/semi-mechanistic systems biology 
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Table II   Current Landscape of Companies Providing AI-Based 
Technologies Providing Support for Drug Development in a Fee-for-
Service Manner (Though Other Agreements Are Not Precluded); 

Several of These Companies Are Utilizing AI to Identify Key Drug 
Candidates Internally. This Table Does Not Reflect PhRMA Sponsors 
Using AI/ML Approaches Internally

Company Technologies/approach Phases of development targeted

NVIDIA
https://​www.​nvidia.​com/

• AI-powered protein structure prediction
• HPC to Hyperscale compound screening
• AI chemistry methods
• Molecular dynamics and simulation

Focus on research as opposed to development 
(discovery ➔ preclinical)

Schrödinger
https://​www.​schro​dinger.​com/

• Physics-based computational platform that integrates differ-
entiated solutions for predictive modeling, data analytics, and 
collaboration

Early research and development (discovery 
➔ preclinical)

Insitro
https://​insit​ro.​com/

• Population scale data
• Cell-based disease models
• Machine learning models to differentiate between cell states 

and predict disease-relevant clinical traits

Early research and development (discovery 
➔ preclinical)

AbCellera
https://​www.​abcel​lera.​com/

• AI-powered antibody discovery platform
• Search, decode, and analyze natural immune systems to find 

antibodies

Partner with drug developers

Relay Therapeutics
https://​relay​tx.​com/

Physics-based simulations
• Understanding protein motion
• Predicting binding affinity
• Screening virtually at ultra-large scale
• Identifying binding pockets computationally
• Differential dynamics

Early research and development (discovery 
➔ preclinical)

Atomwise
https://​www.​atomw​ise.​com/

• Machine learning-based discovery engine that combines con-
volutional neural networks with chemical libraries

Early research and development (discovery 
➔ preclinical)

Recursion Pharmaceuticals
https://​www.​recur​sion.​com/

• Recursion operating system and closed-loop system combining 
proprietary in-house data generation and advanced computa-
tional tools

Early research and development (discovery 
➔ preclinical)

XtalPi
https://​www.​xtalpi.​com/​en/

• Workflow empowered by AI computation, wet lab experimen-
tation and research experience in medicinal chemistry

• Includes molecule generation, evaluation on drug-like proper-
ties and optimization, ADMET properties prediction, chemical 
synthesis, and biological functional studies

Early research and development (discovery 
➔ preclinical)

Cellarity
https://​cella​rity.​com/

• Approaches in computation and machine learning with 
advances in high-resolution cell data to create medicines from 
a cell-centric vantage point

• Model cell behaviors and predict interventions

Early research and development (discovery 
➔ preclinical➔ early clinical)

Valo Health
https://​www.​valoh​ealth.​com/

• Integrated platform that assesses genotype-phenotype-causality 
linkages discovered through advanced machine learning 
techniques

Early research and development (discovery 
➔ preclinical➔ early clinical)

Exscientia
https://​www.​exsci​entia.​ai/

• Combines high-precision information from viable patient 
tissue, screened in laboratories, with carefully engineered AI 
systems

Early research and development (discovery 
➔ preclinical)

Pumas-AI
https://​pumas.​ai/

• Integrated modeling and simulation platform
• Clinical decision support system that leverages patient history 

and targeted medical data for personalized healthcare

All stages of development
(discovery ➔ preclinical➔early 

clinical➔post-marketing)
VeriSIM Life
https://​www.​veris​imlife.​com/

• Models built on data from thousands of compounds across 7 
species

• Hybrid mixed-model approach with focus on human outcomes
• Platform translatability engine transforms insights across species

Early research and development (discovery 
➔ preclinical➔ early clinical)

https://www.nvidia.com/
https://www.schrodinger.com/
https://insitro.com/
https://www.abcellera.com/
https://relaytx.com/
https://www.atomwise.com/
https://www.recursion.com/
https://www.xtalpi.com/en/
https://cellarity.com/
https://www.valohealth.com/
https://www.exscientia.ai/
https://pumas.ai/
https://www.verisimlife.com/
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models to boost physiological relevance. A platform which 
learns massively from the historical datasets, utilizes AI/ML 
approaches to fill in missing data, validates the outcomes 
from thousands of datasets, and continuously optimizes 
parameters as complexities are introduced is highly desir-
able and is consistent with the VSL offering. Because of this 
highly differentiated infrastructure, it allows the system to 
continuously self-tune-and-adapt to provide the scalability 
and accuracy to predictions, consequently shortening the 
translational gap.

Preclinical to Clinical Translation‑Submission Opportunities

Drug developers seek to advance drug candidates in their 
pipeline from discovery to first in human trials in the context 
of safety and efficacy. To determine a safe, well-tolerated, 
and efficacious dose in humans, researchers first need to run 
a gamut of experiments on animals. The animal experiments 
attempt to predict human PK profiles, interpret toxicity out-
comes, and anticipate drug-drug interactions to minimize the 
risks and safety issues presented to treating human patients. 
These experiments provide the drug developers with enough 
data to support a successful IND application, granting the 
developer permission to administer the drug product to 
humans. A strong IND application includes pivotal 14- or 
28-day toxicity studies in 2 different species, one of which 
is typically a larger-sized species such as a dog or mon-
key. These experiments are extremely costly and can last 
over 4 months each when all procedural aspects of dosing, 
recovery, reporting, and auditing are included. Because these 
experiments are so costly and time-consuming, researchers 
base their trial design on data obtained from Drug Metabo-
lism and Pharmacokinetic (DMPK) experiments performed 
on small rodents, such as mice or rats. DMPK data provides 
critical guidance for choosing the correct species and dos-
age for the pivotal longer-term toxicity studies. Each animal 
model has strengths and weaknesses, and their importance 
can vary depending on the indication and the drug’s mecha-
nism of action.

An AI-enabled platform has the potential to interject at 
any stage of drug development starting from early proof-
of-concept studies to clinical trials. Insights generated from 
the platform from these stages can be used in the “front-
loading” late-stage drug development datasets in parallel to 
discovery-stage outcomes. The following insights resulting 
from the platform include, but are not limited to: prediction 
of drug disposition across different routes of administration; 
modeling drug disposition as a function of drug-specific 
parameters; prediction of compound safety and efficacy by 
modeling signaling pathways associated with drug targets 
and validating with associated biomarkers; optimizing dos-
ing strategies based on desired PK/PD outcomes; predic-
tion of multi-species PK from a chemically diverse set of 

compounds within 3-fold of the industry standards; and 
finally, translating outcomes from in vivo preclinical sub-
jects to humans using parameterization to drug-specific and 
species-specific parameters.

Cloud services are typically, but not always, required for 
the various AI platforms. Companies such as Exscentia, 
Valo Health, Recursion Pharmaceutics, and VSL take advan-
tage of the cloud and cloud services. The VSL computing 
environment is entirely hosted and facilitated by Amazon 
Web Services (AWS). VSL uses a variety of AWS services 
including virtual server hosting, storage, database hosting, 
and networking. VSL virtual servers are organized by use 
case and by computing demand within the AWS platform, 
separated into multiple clouds. These servers are the driv-
ers behind the technologies underlying BIOiSIMTM, such 
as whole-body simulations, machine learning modeling, 
and web portals. The virtual servers used within AWS are 
fully scalable, as are the VSL software systems designed 
to run on them. This allows for the execution of millions 
of simulations, when necessary, run on on-demand virtual 
machines. Networking systems used by VSL are protected 
by the firewalls standard throughout the AWS product, as 
well as access settings specified in infrastructure that only 
allow as much access as is necessary for the operation of 
VSL’s systems. Internal AWS systems are also protected by 
VSL-maintained Virtual Private Networks, providing access 
to only those explicitly allowed into each cloud network 
defined by VSL. Access to VSL systems is provided on a 
least-privileged basis, only providing as much access as is 
necessary to perform job functions. This process is defined 
by documented policy, and access and revocation requests 
are requested by a standard form and recorded for review.

Pumas-AI (https://​pumas.​ai/) introduced the Pumas soft-
ware which brings all tasks required to perform modeling 
and simulation projects into one integrated tool. Scientists 
can wrangle data, explore data, calculate non-compartmental 
parameters, build non-linear mixed-effects (NLME) models, 
perform diagnostics including graphing, simulate clinical 
trials, and conduct statistical analyses. Recently, Pumas-AI 
has made advances in NLME by integrating it with deep 
learning to form neural-embedded non-linear mixed-effects 
(NENLME) models (https://​arxiv.​org/​abs/​2012.​07244​v2) 
and created a tool called DeepPumasTM (https://​pumas.​ai/​
compa​ny/​scien​tist-​machi​ne-​learn​ing/). These models are 
configured to embed neural networks into existing NLME 
structures, allowing for domain knowledge to serve as a prior 
to drastically reduce the amount of data required to train 
the neural networks compared to typical methods of direct 
usage of machine learning to replace the NLME models. The 
applications of DeepPumasTM range from drug discovery, 
optimizing manufacturing controls, identifying non-respond-
ers, detecting influential genomic markers, pharmacoeco-
nomics, and safety surveillance.

https://pumas.ai/
https://arxiv.org/abs/2012.07244v2
https://pumas.ai/company/scientist-machine-learning/
https://pumas.ai/company/scientist-machine-learning/
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AI‑Enabled Use Cases

The probability of technical success (PTOS) of preclinical 
and clinical investigations and trials is critical for research-
ers both in the biopharma and the healthcare industry for 
the evaluation of a go or no-go decision on a drug, funda-
mental scientific insights, and the best treatment option for 
the patients. Without real-time estimates of the PTOS, most 
pharmaceutical companies end up investing immense time 
and resources in generating valuable preclinical translatable 
endpoints. Furthermore, the development of new drugs fol-
lows a discrete development pipeline: a series of defined 
steps that must be cleared prior to reaching clinical trials. 
Needless to say, this linear drug development approach is 
error prone. Compound failure rates as high as 96% have 
been observed using this classical approach spanning dif-
ferent therapeutic areas [10]. The key lies in shortening the 
translatability gap. To that end, the VSL hybrid AI-driven 
computational platform incorporates physiological phenom-
ena of animals and humans combined with AI that enables 
users to accelerate research in drug development and per-
sonalized health by parallelizing and streamlining the pro-
cess. One of the biggest challenges in estimating the success 
rate of clinical trials is access to accurate information on 
trial characteristics and outcomes. Gathering such data is 
expensive, time-consuming, and susceptible to error. VSL 
has done exhaustive research and generated insightful out-
comes for addressing the translational challenges that arise 
from the deployment of the classical paradigm in different 
stages of the drug development pipeline [14–19].

Many AI-enable companies including VSL offer solu-
tions that span from late-stage drug discovery to phase II 
clinical trials. These platforms allow seamless integration in 
the several stages of drug development to provide a focused 
road map and accurate enablement for drug asset maturation 
within their programs. The following are some use cases of 
AI/ML in MIDD from literature and BIOiSIMTM:

Predicting Drug‑Drug Interactions (DDI) with AI/ML‑Driven 
Platform, BIOiSIMTM: PK Modeling and Simulation 
of Enzyme Engagement and Target Interaction: a Promising 
Approach

Concomitant administration of drugs can lead to drug-drug 
interactions (DDI) if one of them has the potential to inhibit 
or induce an enzyme that is critical to the distribution and 
elimination of another. DDIs can affect the pharmacokinet-
ics of drugs in patients receiving polytherapy, which can 
increase the risk of reduced safety or efficacy as victim 
drug concentrations exceed the maximum acceptable levels 
or fall below the therapeutic range. AI-driven platform is 
capable of predicting DDI via simulation of drug engage-
ment with critical enzymes responsible for drug absorption 

(p-glycoprotein) and metabolism (Cytochrome P450). A 
PBPK model that is meant for evaluating DDI risk simulta-
neously solves the differential equations of both drugs gen-
erating the outcoming changes of the PK profiles. Clearance 
of a victim drug is predicted as reduced or increased due to 
loss or gain of active enzyme arising from reversible inhibi-
tion, time-dependent inhibition, or induction. BIOiSIMTM 
platform can predict the intrinsic clearance of the victim 
drug in various situations, including the absence or pres-
ence of inhibitors or inducers, changes in the abundance of 
an enzyme isoform due to mechanism-based inhibition, and 
the presence of an inducer. Additionally, predicting drug-
drug interactions (DDIs) resulting from target engagement 
can be accomplished by comparing the association (Ka) 
and dissociation (Kd) contents of multiple drugs, which can 
determine potential perpetrator and victim compounds and 
suggest potential changes in their efficacy, a critical factor 
in the drug development stages in given therapeutic area

Effects of Magnesium, Calcium, and Aluminum Chelation 
on Fluoroquinolone Absorption Rate and Bioavailability: 
a QSPR‑Based Computational Study; BIOiSIMTM: Use Case

Reduction of drug efficacy after co-administration of oral 
drugs is one of the frequent challenges faced during for-
mulation development leading to a substantial decrease in 
therapeutic efficiency. Due to the interaction of antimicrobial 
agents belonging to the class fluoroquinolones with biva-
lent metal ions present in some therapeutics, their bioavail-
ability and absorption rate may be lowered by up to 90%. 
Therefore, elaboration of the appropriate beneficial drug 
formulation requires significant resources and time, hence 
resulting in substantially prolonged path to the final drug 
product. Computational approaches can provide detailed 
structural and mechanistic insight into quinolones and their 
metal complexes. BIOiSIMTM has been utilized to simulate 
the effects of fluoroquinolone and metal complexation on 
absorption rate through a combined molecular and pharma-
cokinetic modeling study. Quantum mechanical calculations 
elucidated binding energies between fluoroquinolones and 
cations, which were leveraged to predict the magnitude of 
reduced bioavailability via a quantitative structure–property 
relationship (QSPR). The fundamental challenge was to 
examine what benefits computational approaches can bring 
for simulation and prediction of the drug pharmacokinetic 
profile, thus helping reduce the time and cost of drug formu-
lation development studies and avoid the loss of potentially 
helpful medicines.

Quantum mechanical computations were implemented 
for molecular modeling of interactions between fluoroqui-
nolone structures and bivalent and trivalent metal ions [15]. 
The necessary geometry optimization was performed using 
the Perdew–Burke–Ernzerhof (PBE) method (a generalized 
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gradient approximation), the 6–31G(d) basis set, and the D3 
dispersion correction with Becke–Johnson dampening. Those 
QSPR modeling procedures require the presence of values for 
a series of specific physicochemical and pharmacokinetic 
parameters for the development of quantum descriptors. AI/
ML model training across a vast dataset of experimental data 
was deployed to predict those features for 13 fluoroquinolone 
drugs and their combination with salts of aluminum, calcium, 
and magnesium. Therefore, joint efforts of QSPR modeling 
and AI/ML predictions helped inform clinical pharmaceuti-
cal formulation design, allowing de-risking of possible dietary 
effects and anticipating possible drug-drug interactions earlier 
stages of the drug development pipeline.

AI‑Powered Prediction of Species‑Specific PK Profiles 
and BBB Permeability for Drug Candidates; BIOiSIMTM Use 
Case

The prediction of the PK profile of experimental drug candi-
dates is a routine process that entails utilizing an AI module 
integrated with a PBPK model and a drug database. Since 
the PK predictions of small molecule drugs are independ-
ent of their therapeutic area and mechanism of action, we 
deployed BIOiSIM which was utilized in multiple projects 
to forecast PK profiles for humans and various animal spe-
cies, including mice, rats, dogs, and non-human primates. 
The accuracy of typical drug compounds meeting the basic 
requirement of the Lipinski rule of 5 usually falls into 
3-fold discrepancies with experimental observables. Some 
approaches can aid in improving the simulation accuracy 
results via potential improvements to the mechanistic model, 
which can give further insight into compound success and 
failure. PK simulation for highly lipophilic compounds is 
usually hindered due to peculiarities of the distribution, and 
implementation of BIOiSIM’s capacity helped to predict 
PK behavior of a set of NOX4 inhibitors, characterized by 
extremely high LogP value. BIOiSIM generated and ranked 
in silico PK predictions from structural data of the NOX4 
compounds based on their concentration in plasma and tar-
get tissues such as the lung, kidney, heart, liver, and skin. PK 
predictions were based on area under the curve (AUC) and 
total clearance (CL) values that were indicative of the poten-
tial benefits and/or liabilities of the compound PK profiles 
[20]. Cross-species scaling made it possible to extrapolate 
drug PK profiles in mice into human species indicating the 
translatability potential of the test drugs.

AI/ML‑Driven Simulations of Drug PD Properties: Model 
Training, Predictions, and Translatability for Novel Drug 
Candidates; BIOiSIMTM Use Case

In contrast to PK predictions, the AI-based simulations of 
drug PD properties, such as potency and efficacy under in 

vitro and in vivo conditions, necessitate particular model 
training for each pathway or target. All machine learning-
driven PD studies follow a comparable workflow that 
begins with descriptor development and analysis, followed 
by model development using different algorithms like sup-
port vector machines, decision trees, LightGradientBoost, 
CatBoost, and XGBoost, among others [21]. The success-
ful implementation of BIOiSIM enabled the prediction of 
IC50 and ED50 for novel drug class candidates inhibiting 
NOX4 enzymes for both intravenous and inhalation routes of 
administration. The results demonstrated a ranking of drug 
efficacy that revealed the most powerful compounds interact-
ing with the targets in the skin and lung tissue, respectively. 
The modeling and simulation of PK/PD assisted in translat-
ing efficacy predictions from preclinical to potential clini-
cal results. For the execution of the project devoted to the 
prediction of the antitumor drug activity, ML models were 
trained against small datasets comprising 50 in vitro data 
entries and less than 20 in vivo results. By employing back-
imputation to the training dataset, VSL created an algorithm 
that could predict the ED50 of compounds, which showed 
efficacy, with more confidence than the less effective com-
pounds. Out of the few hundred predicted efficacy results, 
64% of them aligned with the observed value within a 3-fold 
range, 24% had predictions that were outside of a 3-fold 
range but within a 10-fold range, and 12% had predicted 
values that went beyond a 10-fold range. The BIOiSIM plat-
form was successfully used to predict drug efficacy, even 
skipping in vitro potency components, which was demon-
strated in the simulation of the analgesic activity exerted by 
NAV1.7 antagonists. Despite the ML model being trained 
with disproportionate in vivo data that had 80% experimen-
tal responses above the limit of quantitation, the predicted 
ED50 values showed an agreement with observed values 
within 3-fold for 88% of the compounds, which instilled con-
fidence in the predicted PD profile for over 500 compounds. 
Drug candidates were grouped into 3 tiers based on potency 
(tier 1, ED50 < 3 mg/kg; tier 2, 3 ≤ ED50 10 ≤ mg/kg; and 
tier 3, ED50 > 10 mg/kg).

Assessing CD8 Cell Penetration in Advanced Solid 
Tumors

Immunotherapy is a recent advancement in cancer therapy 
where the immune system is trained to remove cancerous 
cells using T-lymphocytes. Response to immunotherapy is 
heterogeneous across patients, and therefore, identifying 
patient subpopulations who might or might not respond 
to therapy is a challenge [22]. It is hypothesized that there 
are signatures in the images of tumors that might predict 
the treatment response. Radiomics is a new and emerging 
image analysis technique that automatically extracts several 
texture and shape features from medical images that are not 
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usually visible to the human eye [23]. A combination of 
some or all these features can be evaluated as a potential 
biomarker using ML to be correlated to clinical outcomes, 
such as treatment response. This example sought to examine 
if ML could be used to in advanced uncurable solid tumors 
to identify biomarkers in medical images that can predict 
treatment response for individualized therapy. A prospec-
tive clinical trial was conducted to assess if high-throughput 
genomic analysis in patients with advanced solid tumors can 
improve clinical outcomes [24]. Computed tomography (CT) 
image data and RNA-sequencing genomic data were retro-
spectively collected from the said trial for the purpose of this 
analysis [22]. Using 78 radiomic features extracted from the 
CT image and 5 binary variables for tumor location, an ML 
algorithm, namely elastic net regression, was fitted to iden-
tify a biomarker signature that best predicted tumor infiltra-
tion. ML pinned down 5 radiomic features and 3 tumor loca-
tion variables that best predicted infiltration of CD8 cells. 
This identified radiomic signature was validated on external 
data and provided adequate prediction performance on dif-
ferent types of clinical outcomes, such as tumor infiltration, 
progression free survival, and CD8 gene expression.

Cohort Search Using Prospective Inclusion‑Exclusion 
Criteria

Recruitment of patients in clinical trials is very expensive 
and time-consuming [25]. With the rising availability of 
electronic health record (EHR) data, cohorts can be pro-
spectively defined, and their feasibility can be explored. 
These cohort definitions can then be translated to inclusion-
exclusion criteria written in protocols to be subsequently 
implemented in clinical trials. However, creating cohort 
queries based on traditional methods is subjective, requires 
subject matter expertise, and is technically infeasible making 
cohort search extremely challenging for clinicians. Natural 
language processing (NLP) methods can be used to convert 
plain unstructured text into structured data representations 
depending on the question intended to solve, which can then 
be used for any number of tasks such as text classification 
and labeling content. The emphasis of this example was to 
develop a natural language interface (NLI) that can automat-
ically identify subjects eligible for a clinical trial based on 
prospective inclusion-exclusion criteria. Criteria2Query is 
an open-source NLI (https://​github.​com/​OHDSI/​Crite​ria2Q​
uery) that takes as input the prospective inclusion-exclusion 
criteria in plain text format and outputs cohort queries. Que-
ries can be used to search EHR for identifying subjects who 
might be eligible for a clinical trial. The tool first converts 
the plain text inclusion-exclusion criteria into structured data 
representations by labeling them as one of the several top-
ics including but not limited to words, phrases, or sentences 
being a measurement (serum creatinine), condition (for e.g., 

chronic heart failure), value (for e.g., 18 to 70 years of age), 
drug name or class (for e.g., cephalosporins), or temporal 
relationship (for e.g., current depressive episode greater than 
6 months), called as information extraction. The information 
is then processed to formulate a structured query language 
(SQL) query than can be used to search EHR and understand 
if there are patients that meet the criteria being planned.

Binge Eating Disorder (BED) Trial Enrichment

Approximately 50% of BED trials have failed to show a 
separation between treatment and placebo. One of the main 
reasons for negative trial outcomes is because of placebo 
response—a clinically significant reduction in the BED 
symptomology in patients receiving placebo. Excluding 
placebo responders at the beginning of the trial can help 
with increased PTOS. This example was centered around 
the question of whether BED trials could be enriched by 
identifying placebo responders at baseline. Data from 12 
prospective trials that evaluated different treatments for BED 
was collected retrospectively for this meta-analysis [26]. For 
identifying moderators of placebo response, the kinds of 
information such as baseline disease severity, diagnosis of 
co-morbid psychiatric conditions, and patient demographics 
were used as inputs, and ML models were fitted. The final 
model identified baseline disease severity and a co-morbid 
diagnosis of general anxiety disorder to be the most impor-
tant predictors of placebo response. Using model interpreta-
tion approaches, such as Shapley analysis, cut-off for base-
line disease severity that best separates placebo responders 
and non-responders was identified. This model can poten-
tially be used for enriching BED trials to increase the PTOS 
of such trials by excluding placebo responders.

Modeling Natural Disease Progression 
in Huntington’s Disease (HD)

Huntington’s disease (HD) is a neurodegenerative disorder 
that lasts several decades until death [27]. HD is complex 
because it is protracted over multiple years with gradually 
changing symptomology depending on the disease state. 
Multistate models can be built on longitudinal natural his-
tory data collected from observational studies to characterize 
the disease progression. Once described, the signatures (or 
latent variables) provided by the model can be correlated to 
any number of clinical outcomes and can potentially be use-
ful in the design and analysis of clinical trials [28, 29]. This 
example focused on the development of a disease progres-
sion model of HD using a large patient database for patient 
selection to in HD trials. Motor, cognitive, and functional 
measure data totaling up to 44 assessments collected lon-
gitudinally in four large observational studies was consoli-
dated resulting in more than 25,000 patients. A multistate 

https://github.com/OHDSI/Criteria2Query
https://github.com/OHDSI/Criteria2Query
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model called a continuous time hidden Markov model that 
can handle longitudinal data collected at irregular timepoints 
was built on the 9 latent variables extracted from the 44 
assessments. The model described the disease as consisting 
of 9 disease states. The ML method was able to discern pat-
terns that might not be apparent to clinical observation. For 
example, the model identified that occupation score started 
worsening as early as stage 2 and that it is an early indicator 
of functional impairment. This model is a signal extraction 
method, in that signals extracted from the model can be cor-
related with any number of clinical outcomes and can also 
be potentially used for enriching HD trials by identifying 
patient subpopulations [27].

Improving Pharmacometric Models by Integrating 
Machine Learning into Modeling Workflows

Tumor growth dynamics (TGD) and overall survival (OS) 
are frequently modeled in cancer therapies using non-linear 
mixed effect modeling approaches and parametric/semi-par-
ametric survival models respectively. Prognostic scenarios 
can then be simulated using these models to identify an opti-
mal course of action. For example, TGD and OS model for 
nivolumab was used to simulate different dosing regimens, 
and a new regimen that could reduce healthcare burden (by 
increasing the dosing interval) was identified without com-
promising on safety and efficacy [30]. In TGD models, for 
each parameter that is estimated, there might be tens or hun-
dreds of covariates that can help explain the between-subject 
variability, and in the OS models, there might be a large 
number of covariates that are required to be evaluated to 
predict time to mortality. Using traditional stepwise covari-
ate methods for identifying covariates becomes prohibitively 
cumbersome when there are tens or hundreds of covariates. 
ML models can help with covariate selection with ease and 
can scale up to hundreds of thousands of covariates. This 
example focused on identifying the prognostic and predic-
tive factors associated with OS and parameters of the TGD 
model. The data for this analysis was part of the JAVELIN 

Gastric 100 trial [31]. Two separate ML analyses were con-
ducted: one for OS and one for TGD31. For OS, 89 time-
dependent and time-independent covariates were evaluated 
using the Boruta method on the random forest (RF) algo-
rithm [31]. The covariates identified as important using the 
ML models and physiological plausibility were used to build 
the parametric time to event model. For TGD, 52 covariates 
were evaluated to be a potential predictor for each empiri-
cal Bayes estimate (EBE) of each model parameter. Using 
the relative importance obtained from Shapley analysis, 
covariates were selected to be included in the final TGD 
model. The ML analysis for both TGD and OS models did 
not identify the treatment effect as an important covariate; 
therefore, patient subpopulation that might benefit from the 
treatment was not identified that was consistent with the lit-
erature [32]. The covariate selection method for both models 
was performed in one step each making the ML method time 
efficient.

Potential ROI Comparison and Collaboration

Return on investment (ROI) can be generally defined as 
a performance metric used to evaluate the outcome of an 
investment or compare the outcomes of several investments. 
A high ROI means the investment’s gains compare favorably 
to its cost. In the context of evaluating MIDD approaches 
and paradigms, ROI can provide a quantitative compari-
son of both resource savings (e.g., time and cost savings 
in trials and regulatory submissions) and operational costs 
(FTE, outsourcing, hardware/software, etc.) (see Table III 
for representative resource partition for a traditional MIDD 
approach). ROI from an industry perspective is very clear 
and growing as MIDD has the great potential to reduce R&D 
cost by allowing go/no-go decisions to be made earlier, 
obviating the need for certain clinical trials and enabling 
comparisons to be made between new drug candidates and 
potential competitors, so accurate market share assessments 
can be produced. The comparison between traditional and 
AI-led approaches is difficult because there have not been 

Table III   Components of MIDD Costs (With Estimates)+ Incurred by Sponsors to Support the Approach Assuming a Medium Size Company

*Examples: Nonmem/R/Julia/Stan would have significantly less spend, while Phoenix, SimCYP, Gastro+, Pumas, MatLab, etc. would have a 
larger average spend
+ Unpublished findings, based on interviews with industry MIDD leaders

Cost category Estimated annual cost Comments/assumptions

Hardware 20 K Assuming personal computer, IT, and grid usage
Software* 30 K Assumes commercial licenses for all software
FTEs/personnel 5–10 at 275 K/year Assumes fully loaded (salary, bonus, stock, health, personnel support)
Outsourcing 0–2 MM/year Depends on FTE commitment and whether the group engages with 

pilot projects or supports commercial activities where post-marketing 
efforts are required (outside R&D leadership typically)

Other IT/computational costs 5–50 k/year Grid/cloud usage
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adequate deployments of an end-to-end, AI-based MIDD 
approach. Individual narrow efforts look very promising, 
however. For instance, rank ordering compounds using AI-
driven MIDD require less than a month effort that could 
potentially save millions of dollars in performing several 
experiments and years of time. It can be used as an effective 
screen in order to reduce the number of wasted cycles, hav-
ing only computationally validated compounds go through 
live animal testing before being sent to clinical trials. This 
should speed up time and drive down cost savings tremen-
dously. Furthermore, new programs can leverage the mas-
sive information collected over the past few decades to not 
only add differentiation but also potentially gain millions of 
dollars in commercial value. It will take more investment 
and integration of AI/ML into the drug development efforts 
of a few early adopters to judge whether this aspiration ROI 
matches reality, but the premise seems reasonable.

One step in the process of early adoption is the co-invest-
ment in collaborations. Pharmaceutical sponsors small and 
large have recognized the necessity to co-invest in AI/ML 
technologies and, while the level of investment varies across 
companies most recognize that some level of in-house sup-
port is necessary along with collaboration with academic 
experts as well as others in the field for which discussions in 
the precompetitive space can be held. The Machine Learn-
ing for Pharmaceutical Discovery and Synthesis Consortium 
(MLPDS; https://​mlpds.​mit.​edu/) brings together computer 
scientists, chemical engineers, and chemists from MIT with 
scientists from member companies to create new data sci-
ence and artificial intelligence algorithms along with tools 
to facilitate the discovery and synthesis of new therapeutics. 
MLPDS educates scientists and engineers to work effec-
tively at the data science/chemistry interface and provides 
opportunities for member companies and MIT to collectively 
create, discuss, and evaluate new advances in data science 
for chemical and pharmaceutical discovery, development, 
and manufacturing.

Specific research topics within the consortium include 
synthesis planning; prediction of reaction outcomes, con-
ditions, and impurities; prediction of molecular properties; 
molecular representation, generation, and optimization (de 
novo design); and extraction and organization of chemical 
information. The algorithms are developed and validated on 
public data and then transferred to member companies for 
application to proprietary data. All members share intellec-
tual property and royalty free access to all developments.

Discussion

The MIDD approach is well entrenched in the current drug 
development paradigm both from innovators seeking to 
develop new drugs and new drug targets and regulators who 

must judge the suitability of evidentiary proof that proposed 
new treatments are both safe and efficacious. The current 
approach is highly dependent on quantitative scientists 
with expertise in various forms of modeling and simula-
tion methodologies, a suite of software solutions that per-
mit the development, codification, and validation of discrete 
models that de-risk decision-making and a modern compute 
environment to house the software and model libraries so 
that such resources can be maintained in a secure, Part 11 
compliant manner and share among its practitioners. Most 
importantly, the current MIDD approach relies on buy-in 
from senior leaders within the organization and favorable 
interactions with regulatory authorities. Likewise, as the 
approach evolves and certainly if considerations for an AI-
enabled approach are put forward, these interactions will 
require revisiting with additional education and performance 
confirmation.

The field is constantly evolving requiring additional 
skillsets and expertise as well as diverse software solutions, 
customized and secure compute platforms, and new meth-
odologies and approaches. Sponsors likewise appreciate that 
investment in MIDD is similarly evolving and growing. As 
the industry constantly seeks more efficient and cost-effec-
tive solutions, MIDD is not immune to this scrutiny. Much 
of the recent effort to improve the efficiency of MIDD is 
based on improved access to integrated data sources, cre-
ating libraries of model elements that can be shared and 
combined as needed and improving the compute platform to 
ensure that relevant tools and software solutions can coexist 
on the same platform. Little has been done to alter the data 
or model types that inform the commonly held critical deci-
sions as outlined in Fig. 1 and Table I.

Artificial intelligence has received much interest of late 
as a complementary tool to answer specific drug develop-
ment questions, and pharmaceutical sponsors have been both 
dedicating internal resources and investing in external part-
nerships to enhance their knowledge and expertise in this 
discipline [33]. An outgrowth of this interest has been the 
submission of some of these efforts to regulatory authorities. 
As recent work suggests [34], the number of these submis-
sions has increased dramatically recently allowing authori-
ties to gain an understanding of the diversity of applications 
that might support drug development and judge the useful-
ness of the approach for regulatory decision-making. Some 
positive outcomes from this early experience include the 
generation of early thoughts on guiding principles and the 
development of consortiums and shared resources[35, 36]. 
While these are early days in the process of getting comfort-
able with the approach and gaining confidence in the appli-
cation, it is also an opportunity to assess future regulatory 
requirements for submission of such AI/ML implementa-
tions considering how transformative the approach could 
be in a more coordinated manner. Early regulatory guidance 

https://mlpds.mit.edu/
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[37, 38] suggests that regulatory authorities are also antici-
pating broader utilization.

A future, but hopefully near-term effort should include 
the consideration of AI/ML application as either a comple-
mentary or entirely self-sufficient approach to support an 
MIDD paradigm. Early adopters of the approach tend to 
compartmentalize the effort into certain drug development 
sectors [12, 39] but few have considered this as an end-to-
end solution. Moreover, the approach is still being compared 
to traditional MIDD efforts, specifically around the com-
parison of AI/ML prediction against specific model types 
(PBPK, PK/PD, CTS, etc.) and not around the data types 
and dimensions that would inform the various approaches or 
whether a revamped approach considering the optimal infor-
mation value (driven by data and models) needed to guide 
regulatory milestones. Clearly, the path forward involves 
collaboration and open mind with respect to optimized 
and informative data generation coupled with tools that 
can be utilized with high fidelity based on mutually agreed 
and objective performance criteria. Remaining challenges 
will continue to include education and confidence building 
among non-AI quantitative scientists and decision-makers 
as well as the continued generation of compelling use cases.
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