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Abstract. The exponential increase in our ability to harness multi-dimensional biological
and clinical data from experimental to real-world settings has transformed pharmaceutical
research and development in recent years, with increasing applications of artificial
intelligence (AI) and machine learning (ML). Patient-centered iterative forward and reverse
translation is at the heart of precision medicine discovery and development across the
continuum from target validation to optimization of pharmacotherapy. Integration of
advanced analytics into the practice of Translational Medicine is now a fundamental enabler
to fully exploit information contained in diverse sources of big data sets such as “omics” data,
as illustrated by deep characterizations of the genome, transcriptome, proteome, metabo-
lome, microbiome, and exposome. In this commentary, we provide an overview of ML
applications in drug discovery and development, aligned with the three strategic pillars of
Translational Medicine (target, patient, dose) and offer perspectives on their potential to
transform the science and practice of the discipline. Opportunities for integrating ML
approaches into the discipline of Pharmacometrics are discussed and will revolutionize the
practice of model-informed drug discovery and development. Finally, we posit that joint
efforts of Clinical Pharmacology, Bioinformatics, and Biomarker Technology experts are vital
in cross-functional team settings to realize the promise of AI/ML-enabled Translational and
Precision Medicine.
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INTRODUCTION

Big data and technological innovation have revolution-
ized medicine and healthcare over the last decade (1). Today,
advanced technological solutions are able to generate health
and medical data at the individual level in real time and in a
real-world environment. They are at the core of such digital
disruption that holds promise for improving the practice of
medicine towards a more targeted and personalized para-
digm, enabled by data-driven decisions based on real-world
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evidence, patient-participatory drug development, and
healthcare democratization. In recent years, pharmaceutical
Research and Development (R&D) has transformed to a
highly dynamic process enabled by patient-centered iterative
forward and reverse translation. Traversing the path from
idea to medicine has become increasingly multi-disciplinary
and inter-connected, as exemplified by the Drug Discovery,
Development, and Deployment Map, illustrating a network
view of the process and associated cross-sector ecosystem,
challenging the typical chevron (linear, sequential, left to
right) view of pharmaceutical R&D pipeline (2). A Bayesian
learning mindset that exploits the totality of evidence is
particularly important in timely delivery of innovative
healthcare solutions to address unmet medical needs with
the right sense of urgency (3-5).

Whereas advances in biology, biomedical engineering,
and computational sciences have resulted in an explosive
increase in our ability to generate and store multi-
dimensional data from diverse sources (e.g., laboratory,
clinical trial, real-world, literature), consistent real-time
integration of these data for principled and timely decision
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making in pharmaceutical R&D and healthcare remains
aspirational (6). Recognizing this critical importance of
optimal knowledge management, the pharmaceutical indus-
try has started building digital capabilities and embracing
innovations in Data Science into their Research and
Development (R&D) organizations (7). Machine learning
(ML), deep learning (DL) and more generally artificial
intelligence (AI) techniques are central components of this
innovation. While AI refers to the output of a computer
generated by mimicking a human behavior and it does not
say how the problem has been solved, ML is a subset of Al
consisting of a set of algorithms that parse data, learn from
them, and then apply learnings to make intelligent deci-
sions. A simple and widely used classification of ML
algorithms is into supervised, unsupervised, DL and then
reinforcement learning. Supervised learning is task driven
and it is used for classification and prediction tasks on new
data by starting on datasets with known labels or outcomes.
Differently, unsupervised learning methods are data driven
and focus on finding structures and patterns inside the data
itself. Examples include finding groups and clusters (clus-
tering), understanding relationships between items (associ-
ation rule mining), and finding a more compact
representation of the data (dimension reduction). Rein-
forcement learning uses algorithms interactively learning to
react to an environment from mistakes by focusing on
decision and policy making. Lastly, inspired by the biolog-
ical neural network (NN) of the human brain, DL uses NNs
with many layers (more than one hidden layer to be
considered deep) to solve the hardest (for computers)
problems. Such process of learning is far more capable than
that of standard ML models. Indeed, while both ML and
DL fall under the broad category of Al, DL is what powers
the most human-like artificial intelligence.

Owing to their ability to learn hidden and predictive
patterns in large amounts of heterogenous and high-
dimensional datasets, Al techniques have been increasingly
adopted across the drug discovery and development value
chain (8). Initially, AI methods were mostly used in drug
discovery to analyze large sets of chemical structure data,
gene expression and genetic data, and high throughput
in vitro data (9). Optimization of drug candidates towards
better drug properties has been an area of sustained focus of
AI/ML frameworks in drug discovery, enabling efficient
iterative approaches to multi-dimensional optimization based
on virtual screening and prediction of physicochemical
properties and biological activity and toxicity (9). More
recently, a wide range of ML applications have emerged as
promising approaches to generate new knowledge in transla-
tional and clinical drug development (10). Together with the
automation of process pipelines and operational design, the
integration and analysis of large, multi-dimensional, and
heterogenous data sets, such as -omics data, information
from wearable devices, images, and electronic health records,
offers an unprecedented opportunity for AI/ML applications
in drug development. The associated contexts of use range
broadly from advancing understanding of the disease and its
underlying physiological and biological underpinnings, eluci-
dation of drug mechanism of action (MoA) and identification
of promising combinations, characterization of sources of
population variability in patients’ response, and enhancement

The AAPS Journal (2021) 23: 74

of trial design and operational efficiency, diagnosis, individu-
alized treatment, and precision dosing solutions (11-13).

The integration and use of AI/ML methods across the
translational through clinical drug development continuum have
already demonstrated a clear impact on our ability to successfully
maximize the value of data. Furthermore, these methods have
enhanced knowledge management both with respect to the
studied drug and the disease/patient population, thereby enabling
optimization of R&D across the three key inter-dependent
strategic pillars that constitute the practice of Translational
Medicine: target, patient, and dose (14). These pillars represent
the fundamental pivots for hypothesis generation and ultimately
for data-driven knowledge generation from preclinical, clinical,
and regulatory evaluations designed to build a body of scientific
evidence to achieve clinical proof of concept of innovative
investigational therapies. Robust and efficient data-driven opti-
mization alongside these three pillars is crucial to maximize
probability of success in clinical development and ultimately to
successfully impact product registration, labeling, and guidance
for therapeutic use at the right dosage and in the context of
applicable personalized medicine strategies in concert with
companion diagnostics where relevant, to maximize benefit/risk
across populations and clinical contexts of use. A quantitative
mindset that collaboratively synergizes the disciplines of bio-
marker sciences, pharmacometrics, systems pharmacology, and
bioinformatics is vitally important to the successful practice of
Translational Medicine (15). Accordingly, advanced analytics
represents a key enabler for Translational Medicine to innova-
tively support forward and reverse translation (Fig. 1).

In this commentary, we provide an overview of ML
applications in drug discovery and development, aligned with
the three strategic pillars of Translational Medicine (target,
patient, dose) and offer perspectives on their potential to
transform the science and practice of the discipline.

TARGET

The objective of the “target” strategic pillar is to identify
the right biological target for a selected disease. Confidence in
the biological target and therapeutic hypothesis must be built
to initiate the discovery of drugs modulating this target and
consequently the disease. This process, also known as target
selection and validation, is data driven. It uses a wide range of
experiments and multi-dimensional datasets that can inform
the identification and selection of novel targets and provide
evidence of their association with a disease. Various ML
applications using computational druggability prediction
methods have emerged for prioritizing target selection by
reducing the potential space of druggable targets, and for
elucidating the target-disease causality (8). These include the
prediction of druggable genes at the genome-wide scale by
constructing, for example, a decision tree-based meta-classi-
fier and training it on data including network topological
features, tissue expression profile, and subcellular localization
(16). Use cases accommodate predictions for specific cancer
types based on a variety of genomic and systemic datasets fed
into a support vector machine (SVM) classifier and then
target validation through inhibition with antibodies, synthetic
peptides, and small molecules (17). Supervised ML classifiers
predicting whether a small-molecule drug can be generated
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Fig. 1. Advanced analytics as a strategic enabler of Translational Medicine. With multiple data sources at its center,
Translational Medicine relies on quantitative integration powered by multiple advanced analytical solutions to innovatively
support forward and reverse translation with a strategic focus on building confidence in target, patient, and dose

for any given target have also been generated by integrating
rich data including physicochemical, structural, and geometric
attributes (18). Emerging and novel therapeutic modalities
(e.g., effectors of protein-protein interactions, nucleic acid
therapeutics) will demand unique considerations (19). Of
relevance for improved patient stratification, Iorio et al
identified oncogenic alterations in tumors and found associ-
ations with drug sensitivity/resistance, thus highlighting the
importance of tissue lineage in mediating drug response (20).
Significant work has been done for designing and screening
effective drug combinations which are commonly used to
treat patients with complex diseases that respond poorly to
single-agent therapies. For example, a novel network
propagation-based method with Random Forest (RF) models
predicting anticancer drug synergy to the accuracy of
experimental replicates has been established by integrating
the cross-cell and cross-drug information from a large drug
combination screening dataset and assembling the informa-
tion in monotherapy and simulated molecular data (21).
Recent advances in natural language processing (NLP) have
further unlocked information and knowledge on targets and
target-disease association present in literature data by en-
abling effective and efficient access to available and unstruc-
tured sources (22). These methods can additionally be
deployed for elucidating the molecular basis of drug-related
toxicities resulting from off-target interactions, thereby
informing hypothesis generation for next-generation (“best-
in-class”) drug design aimed at maximizing therapeutic index
(23).

A key component in target validation is building of
confidence in the therapeutic hypothesis using quantitative
systems pharmacology (QSP) models. Such mechanistic
models integrate information on drug pharmacokinetics
(PK), target binding, and biological processes of interest and
mechanisms of action, resulting from prior knowledge and
available preclinical and clinical data, to quantitatively predict
efficacy and safety responses over time and translate

molecular data to clinical outcomes (24). QSP provides an
ideal quantitative framework for integration of diverse big
data sources, including omics (i.e., genomics, transcriptomics,
proteomics, and metabolomics) and imaging, the dimension-
ality of which can be reduced by using ML methods. By
allowing the identification of relevant association and data
representations, the development of QSP platforms with
higher granularity and enhanced predictive power can be
further enhanced (25). For example, Ramm er al. used
systems biology approaches combined with multi-
dimensional datasets and ML to identify biomarkers
predicting nephrotoxic compounds and better characterize
their mechanism of toxicity in vitro (26). Specifically, an RF
algorithm was used for the systematic identification of
imaging features and genes best distinguishing between
kidney toxic and nontoxic compounds, and hierarchical
clustering allowed to identify compounds with similar mech-
anism of action. Given the complex, typically nonlinear and
computationally intensive nature of these models, the use of
ML methods has also been envisaged for improving the
efficiency of parameter sensitivity and model identifiability
analyses (27).

After correctly identifying the target of interest, the next
step in drug discovery and development is to design active
compound(s) that can produce the intended effect(s) on the
targeted gene or protein. Examples of drug screening
approaches exploiting ML features propose the use of DL
to enable ligand-based virtual screening (28) or to design
compounds with almost optimal values for solubility, PK
properties, bioactivity, and other parameters through rein-
forcement learning (29, 30). Deep NNs (DNNs) have been
also employed for understanding molecular structure (31)
through structure-based protein analysis (32) and prediction
of drug-drug interactions (33). Recently, there has been an
increasing trend to apply methods similar to quantitative
structure-activity relationship (QSAR) in protein design and
engineering for biologics therapeutics development (34).

The identification of favorable drug repositioning oppor-
tunities offers a rich data ground for the application of state-
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of-the-art ML methods, including DNNs, SVMs, elastic net
regression, RF, and gradient boosted trees, leveraging variety
of data sources like gene expression data, molecular path-
ways, drug binding affinities, and clinical trials data, to
identify existing approved drugs having adequacy for the
treatment of a never-considered therapeutic indication. Some
efforts in this direction focused on applications for
repurposing drugs for schizophrenia as well depression and
anxiety disorders (35). In this context, the potential value of
Al-based deep learning models integrated into proprietary
and big data platforms has also been recently discussed to
predict drug structures active against SARS-CoV-2 to treat
COVID-19 (36).

PATIENT

The “patient” pillar underscores the importance of
selecting the right patient population for the investigational
drug and identifying the potential use of a companion
diagnostic test. The goal is to identify the right patient group
in the selected disease. Although selection of the right patient
population for many successful precision therapeutics has
been informed by alterations in specific genes (e.g., mutations
in the epidermal growth factor receptor in non-small cell lung
cancer dictating selection of an appropriate molecularly
targeted kinase inhibitor), current problems in precision
medicine are far more complex where the impact of large-
scale pharmacogenomic variation on drug response is inter-
rogated, made possible through advances in next-generation
sequencing and bioinformatics methodologies. Furthermore,
deep molecular and clinical characterization of patients
results in a multi-dimensional vector of patient characteristics
(e.g., genome, epigenome, transcriptome, proteome, metabo-
lome, radiome, and exposome), necessitating ML-based
analytical strategies to identify clinically significant signatures
of drug effects.

ML-based models have been employed to better under-
stand the MoA of a drug as well as optimizing the definition
of patient subgroups. In this context, the identification of
biomarkers best predicting efficacy and adverse events of
investigational drugs boasts a number of successful use cases
ranging from the assessment of translational predictive
biomarkers (37) to multi-omics biomarker signatures (38,
39) through methods spanning from partial least-squares
regression to RF classifiers. The identification and character-
ization of patient subgroups with different benefit-risk profiles
(e.g., super responders, long-term survivors, non-responders
with earlier disease reactivation) is a field that can extensively
benefit from the integration of ML applications. For example,
the complex determinants of PK and efficacy of cancer
immunotherapy have been described extensively for check-
point inhibitors where increased baseline clearance of protein
therapeutics, likely explained by patient-specific disease
status factors (e.g., cancer-related cachexia), has been associ-
ated with poor clinical outcomes (40). A recent ML-based
analysis using RF was able to identify a cytokine signature
that was predictive of high baseline clearance of nivolumab
and offered generalizable translatability as a predictor of
overall survival, representing an example of reverse transla-
tion that was able to discover molecular determinants of
important associations between baseline (patho)physiology
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and disease trajectory that have confounded exposure-
response understanding for this class of biotherapeutics (41).
Importantly, in addition to enabling such associations be-
tween patients’ response, or late clinical endpoint, and
patients’ baseline factors (including demographics, clinical,
genetic, laboratory, and imaging data) or early biomarkers,
such algorithms offer the opportunity to integrate and assess
the predictive power of large sets of longitudinal factors on
the considered outcome. Results from such analyses can then
be used to enhance model-informed drug discovery and
development (MID3) approaches (42) and advanced disease
modeling. For example, radiomics extracts and mines large
numbers of medical imaging features quantifying tumor
phenotypic characteristics (43) and robust ML methods
(e.g., adopting RF) are built to identify reliable quantitative
radiomics biomarkers predictive of response (44) and
treatment-induced changes in radiomics features. Such signa-
tures are often based on baseline features or early changes.
However, as technology advances and costs decrease, extrac-
tions of radiomics features from patients’ imaging assessments
will become possible beyond early on-treatment time points,
thus making available longitudinal tumor makeup features.
These can be used to inform more mechanistic
pharmacometric (PMX) models of tumor size dynamics
accounting for tumor inter- and intra-lesion heterogeneity
(45, 46) and resistance emergence (47) after being screened
with ML methods or by directly investigating their relation-
ship with model parameters. Similarly, longitudinal patient-
level data on each specific genetic alteration quantified by
liquid biopsies (LBx) (48) has great potential to be incorpo-
rated into population modeling frameworks and enhance our
knowledge of molecular disease trajectory and drug MoA as
well as determinants of drug resistance, thereby enabling
hypothesis generation for combination therapies. By provid-
ing a quicker and non-invasive alternative to tissue-based
testing, LBx data can be efficiently collected along the
patient’s timeline and used to circumvent tumor heterogene-
ity. This has already been demonstrated by considering
aggregated baseline circulating DNA data (49). Looking into
the future, we posit that the ability to characterize changes in
molecular tumor dynamics over time using LBx data and
integrate them in disease modeling can also have a big impact
on our understanding of clonal evolution and resistance
development. Secondly, it can influence the monitoring of
escape mutations to inform treatment sequencing or re-
challenge. Finally, optimal design of LBx sampling over time
can also be informed by such integrated modeling ap-
proaches. In fact, ML-based disease models can be used as
a drug development tool to improve trial designs, randomi-
zation aids, patient enrichment, and virtual control arms (50).
As one example, in the ACCORD trial, random survival
forests (RSFs) and a gradient forest analysis allowed the
identification of predictors of all-cause mortality in diabetic
patients from the analysis of a large number of variables (51,
52). ML-assisted covariate analyses in longitudinal disease
trajectory models can help increase confidence in patient
selection or stratification strategies. They can provide support-
ive evidence for predictive biomarkers and inform probability of
success for selected versus unselected trial designs through
Bayesian clinical trial simulations. Of note, recent innovations in
disease trajectory modeling have enabled structuring of these
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longitudinal models in a manner that allows analysis of
temporally fragmented population data, as has been applied to
describe disease progression in Alzheimer’s disease over a 20-
year time period (53). In this context, incorporation of ML
represents an untapped opportunity for multi-dimensional
covariate analyses on real-world datasets for elucidation of
determinants of natural history of disease progression — a key
enabler for rare disease drug development. In one application to
the anti-diabetic drug metformin, Goswami et al. combined a
semi-mechanistic disease progression model describing the long-
term dynamics of HbAlc following metformin initiation with
computational genetic methodologies for elucidation of the
clinical and genomic sources of variability in time course of
glycemic control (54). By using the hyperLASSO ML technique,
the top 9 variants (from 12,000 variants in a selected set of 267
genes) were identified and entered stage 2 of the covariate
analysis that employed a pharmacostatistical approach to define
the top 3 genetic variants whose contributions to disease
progression trajectory were evaluated using clinical trial simu-
lations. Innovations of this nature at the intersection of
mechanism-based pharmacodynamic modeling, PMX disease
progression modeling, and ML truly represent exemplars for
continued progress in our journey toward maximizing knowl-
edge of sources of variability in drug response across global
patient populations to optimize pharmacotherapy for all pa-
tients through selection of the right drug/combination(s) at the
right dose and dosing regimen, which may be different for
patients with different genetic backgrounds depending on the
mechanism of action of the drug.

Furthermore, as has been discussed in the setting of
cancer immunotherapy, personalized disease trajectory
models have the potential to bridge to therapeutics as they
can enable response-adaptive treatment decisions for individ-
ual patients through iterative development and validation of
patient-specific models using baseline and on-treatment
biomarker and response data collected longitudinally during
treatment (55). Given the multi-dimensional nature of such
biomarker measurements in oncology as well as other
diseases, convergence and synergy across methodologies
ranging from mechanism-based (e.g., QSP) models to biolog-
ically agnostic (e.g., ML) models will be necessary (56).

Technological advances in image processing and the
increased volume of person-generated health data (PGHD)
generated by sensors and smart health-tracking devices are
playing a key role in improving diagnosis and treatment, and
then precision medicine. As an example, Chen et al. have
shown how longitudinal monitoring of symptoms with several
smart devices can be mined for physiological and behavioral
signatures of cognitive impairment (CI) by using Extreme
Gradient Boosting explained by SHapley Additive exPlana-
tions (SHAP). Particularly, they can provide new avenues for
detecting CI in a timely and cost-effective manner and
accelerating the development and testing of new therapies
(57). The use of DL has greatly influenced modern computer
vision. This has led to significant advances in image classifi-
cations and object detection in medical imaging specialties
such as dermatology, radiology, ophthalmology, and pathol-
ogy (1). The use of convolutional NNs for the automated
detection and quantification of disease biomarkers (58),
cancer subtype or gene mutations (59, 60), and distinctive
facial syndrome-related phenotypes (61), with accuracy
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comparable to physicians, holds promise to assist physicians
in the generation of more consistent diagnoses. Decision-
support applications have the potential to improve reproduc-
ibility and treatment decision making. Currently, the most
compelling opportunities for Al in precision medicine are
offered by big digital pathology data where DL methods have
shown superiority in detecting cells and tissues, and image
features that may not be visually discernible by a pathologist
(62). Combining such data with -omics measures can signif-
icantly support better quantitative modeling of disease
appearance and evolution, and prediction of patient outcome.

DOSE

The “dose” pillar of Translational Medicine focuses on
selection of the optimal dose and dosing regimen for a drug
via an appropriate route of administration and/or drug
delivery system across patient populations and clinical
contexts of use. It aims identifying the right molecule that
delivers the right exposure at the target site of action and
elicits the desired target modulation over the stated time
period, without compromising patient safety. This translates
into building confidence in the therapeutic window based on
quantitative characterization of relationships between sys-
temic exposure and the efficacy and safety profile of the
studied drug, not only for the typical patient but also across
clinical contexts of use in subpopulations. While the discipline
of clinical pharmacology has pivoted to this primary purpose
of dose optimization across clinical contexts of use in relation
to intrinsic and extrinsic sources of variability in drug
exposure and response, with increasing complexity in biolog-
ical mechanisms of action of drugs as well as multi-
dimensional sources of biological variability in drug response
as discussed earlier, a major opportunity exists for ML-based
enhancement of dose optimization strategies. ML-based
approaches can help seamlessly bridge knowledge across the
biologically rich domain of quantitative systems pharmacol-
ogy and the pharmaco-statistically oriented domain of
pharmacometrics by offering advanced analytical frameworks
for iterative forward and reverse translational analysis. The
ultimate question for such integrative models is to define the
optimal dose, dosing schedule, combination partner, and
sequence of administration conditioned on patient-specific
factors including biological signatures of (patho)physiology.

There is substantial interest in combining preclinical and
clinical data for a better prediction of a compound toxicity.
For example, several studies have reported relevant progress
in ML-based models for the prediction of drug-induced liver
injury (DILI). These studies cover aspects that range from
the use of the pattern recognition algorithm decision forest
based on structural and molecular data of a large set of FDA-
approved drugs (63) to Bayesian ML frameworks mechanis-
tically integrating relevant hepatic safety assays and physico-
chemical and exposure variables from a chemically diverse
compound set (64). By enabling confidential and non-
confidential proprietary data exchange across the pharma-
ceutical industry and institutions, the European Union’s
Innovative Medicines Initiative 2 Joint Undertaking (IMI 2)
“Enhancing TRANslational SAFEty Assessment through
Integrative Knowledge Management (¢eTRANSAFE)” pro-
ject (Grant agreement 777365) is aiming at developing an



74 Page 6 of 10

The AAPS Journal (2021) 23: 74

Clinical trials

Population modeling and simulation

Structural and statistical model

IV dose SC dose

l

)
Q

Vi

[ ]

e
(@]
—
A;Z
S
+|3
o

Covariate model

Response

Wild type |

\

Automated PMX
model selection

ML-based model
prediction of outomes

Fast screening of
high-dimensional
and diverse data

Identification of
prognostic and
predictive factors
and signatures

Fig. 2. Examples of machine learning applications in the Pharmacometrics model building pipeline.
Applications of machine learning are emerging in the Pharmacometrics field. Examples support key model
building steps by ranging from the automation and optimization of model selection to the fast and efficient
optimization of prognostic and predictive factors from large high-dimensional and diverse datasets.
However, there are still several unexplored opportunities present to date to capitalize the full potential of
these methods towards next-generation Pharmacometrics

integrative data infrastructure and flexible ML framework
allowing for the optimal exploitation of chemical and
biological information and translational measures to infer
the toxicity of new compounds.

To appropriately inform the therapeutic window,
exposure-response relationships for both efficacy and safety
must be established. MID3 approaches play a key role in
advancing such understanding. These approaches use popu-
lation PK-pharmacodynamics (PK-PD) models for PD bio-
markers, target engagement and drug toxicity, and
longitudinal models of disease endpoints (e.g., tumor size

dynamics, disease status scales) as well as time to event
models of clinical endpoints. One of the key outcomes of such
analyses is the assessment of the variability of patient
response to the candidate drug and then identification of
prognostic and predictive factors. This step has been always
limited to predefined and limited sets of variables to reduce
model complexity and computational costs. However, ML
approaches including RF, NN, and SVM now offer a powerful
framework for quickly and efficiently screening large sets of
covariates and identifying those relevant to be further
explored in a more mechanistic and biologically sound
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population modeling framework (65). By using the multivar-
iate adaptive regression splines ML method, Hall et al. were
able to identify the influence of weight and/or age on the PK
of dapsone, not identifiable with standard population PK
approaches as occurring only between certain ranges of
patients’ covariates, delimited by multiple regions of discon-
tinuity (66). In another example, a reverse translational
analysis using supervised-feature selection identified a circu-
lating 7-miRNA signature as a predictor of population
variability in CYP2B6 activity based on screening of expres-
sion of 2510 miRNAs in a multi-dimensional covariate
analysis of efavirenz PK (67). The incorporation of big data
and ML into the PMX pipeline to enhance the structural,
population, and covariate modeling processes (Fig. 2) has also
been recently proposed. For example, by leveraging RF
regression and Bayesian network to identify the covariate
model and harness information in external database, such a
modeling paradigm can enable the obtention of an aug-
mented population via simulations and the potential identifi-
cation of informative and parsimonious QSP models (68). The
value of automatizing and optimizing variables and model
selections with ML has been reported in various studies (69,
70). For example, a simulation case study highlights the potential
of ML-based techniques like NN and RSF to provide more
accurate and robust time-to-event analysis in clinical studies over
conventional approaches. Particularly, this is true when handling
high-dimensional data and when the predictor variables assume
nonlinear relationships in the hazard function (71). Other
successful examples of ML applications outperforming traditional
survival models include the integration of electronic health
records from a large cohort of patients for improved predictions
of patients’ mortality with RF and elastic net regression (72). The
learning of data-driven associations between the longitudinal
data available in primary care records and various associated
risks by using a DL approach enabled the identification of
covariates that are influential for different competing risks (73).
Interest in combining ML with causal inference tools (e.g.,
inverse-probability weighting and marginal structural model)
has also been reported (74).

The estimation of the optimal dose and dosing regimens
recommended for a given subpopulation, planned for use in
subsequent studies, and ultimately in prescribing guidance/
labeling is informed by population PK modeling. This analysis
is a well-established, quantitative method that can quantify
and explain the variability in drug concentrations among
individuals by mechanistically describing the drug PK prop-
erties (42). Some investigations were performed to compare
the performance of conventional population PK modeling
with NN, SVM, and tree-based ML algorithms in predicting
blood concentrations at various time points (75) as well as
relevant exposure metrics (76). However, given the need of
interpretable models and thorough understanding of
biological-physiological assumptions behind traditional popu-
lation PK model formulations, the value of employing ML
methods in this context is expected to be limited to
situations when traditional modeling approaches are not
suited. For instance, ML methods can be helpful when the
drug exhibits nonlinear PK properties that cannot be
easily represented by differential equations, or outcomes
can inform improved trial designs and dosing regimens.
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An example for the latter is represented by the use of a
genetic algorithm based on mechanism-based model for
bacterial killing and population PK models to define
optimal dosing strategies for meropenem and polymyxin
B antibiotic combination therapy (77).

ML models can provide valuable insights into the
importance of dosage in the real-world use of drugs in the
context of a multitude of demographic and clinical factors.
For example, the critical importance of attaining target
metformin dosage for optimal glycemic control could be
demonstrated in a large reverse translational ML analysis
of administrative claims data for 12,147 commercially
insured adults and Medicare Advantage beneficiaries with
prediabetes or diabetes in the context of 58 demographic,
laboratory, and co-morbidity-related patient-specific fac-
tors (78). This analysis used an ensemble model incorpo-
rating diverse methods (e.g., RF, gradient boosting,
regression splines, discriminant analysis) to allow patient-
specific prediction of 1-year glycemic control for adult
patients with either diabetes or prediabetes who are newly
prescribed metformin. Most analyses of this nature have
tended to be cross-sectional in nature or have considered
outcomes averaged over time, indicating a largely un-
tapped opportunity for integration of ML into disease
trajectory/progression models to augment quantitative
estimation of predictors of optimal dosage in real-world
settings. Clearly, an important enabler for longitudinal
analyses to interrogate the impact of dosage on outcomes
is the availability of adequately annotated clinico-
pathological datasets that include sufficient temporal
resolution of dosing.

As our understanding of the determinants of drug
metabolism and transport processes and their regulation
across patient populations become increasingly multi-dimen-
sional, enabled by integration of endogenous biomarkers and
plasma-derived nanovesicles for LBx in drug development
(79) and growing knowledge of the contribution of the
microbiome (80) to variability in drug disposition, ML
approaches will become an indispensable part of our emerg-
ing toolkit in characterizing sources of variability in drug
exposure and response.

PERSPECTIVE

The application of Al and ML in drug discovery and
development is growing. The pharmaceutical industry has
already embarked on a journey of digital transformation by
bridging data silos and implementing technological solutions for
a more efficient use of data generated across R&D pipelines.
Given its data- and question-driven strategic foundation,
Translational Medicine must be ready to embrace and integrate
such tools to augment conventional approaches and nurture
new cross-functional collaborations that can maximize the value
of data. As such, in cross-functional pharmaceutical R&D team
settings, joint efforts of Clinical Pharmacology, Bioinformatics,
and Biomarker Technology experts is vital to realize the promise
of AI/ML-enabled Translational and Precision Medicine. The
successful adoption of these methods requires (i) a clear
definition of the context of use and (ii) data needs including
quantity and quality requirements; and (iii) a fit-for-purpose
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approach thus ensuring that the application of ML is guided by
sound rationale and aimed at addressing questions justifying the
additional benefit of adopting these new approaches over
conventional ones. Furthermore, interoperability considerations
and validation, generalizability, and interpretability of models
are crucial for scalability and confidence in results for the
intended applications. For the latter, special attention should be
made to ensure that models are interpretable and reproducible,
enabling biological insights to be extracted directly or by
integrating interpretable output into more mechanism-based
analytical methods that are more conventionally used. In fact,
ML and especially DL approaches have often been criticized for
their dependency on large amounts of training data and the lack
of intuition associated with the generated features. However,
methods are being developed to improve the interpretability
and visualization of results, thus overcoming the black box
nature of some algorithms. Among these, the adoption of SHAP
has greatly increased the understanding of feature importance
from its local to global contribution to the ML model’s
prediction. Another key aspect to consider is the generalization
of the ML model to new, unseen data, still representative of the
wider considered population. In this respect, as for other data-
driven predictive models, online retraining of a ML model
should be based on the most recent data sources. Furthermore,
it is important to avoid sampling bias by ensuring a diverse
training dataset leading to results that can be generalized to the
entire studied population. It is also important to be aware of co-
segregation among covariates, including “hidden” non-
observed causal factors, that can impact interpretation of
identified predictors and their relative importance. On the other
hand, ML methods have shown to offer competitive advantages
over conventional methods, especially when the integration and
analysis of large, multi-dimensional, and heterogenous data sets
is in scope. Without the need to explicitly make assumptions on
the underlying data and systems relationships, such methods can
provide relevant insights that can be used for hypothesis
generation and be complemented by subsequent assessments
in more mechanistic MID3 frameworks. A highly inter-
dependent and iterative interplay across the disciplines of
Quantitative Systems Pharmacology and Pharmacometrics is
envisioned. Big data and advanced technologies, including but
not limited to Al and ML, hold substantial promise to enable
effective forward and reverse translational discovery of sources
of variation in benefit-risk profiles to ultimately bring the right
therapeutic solution to all patients and make precision medicine
a reality.

Section for Authors. Nadia Terranova associates her scien-
tific curiosity and cross-disciplinary expertise to both her
academic and professional career and to the several enriching
collaborations she had the pleasure be involved in with female
and male thought leaders in the Clinical Pharmacology and
Pharmacometrics community such as L.J.B. and K.V. The
natural energy and team spirit that she has been demonstrating
throughout her scientific career also stem from her past
experiences as a professional volleyball player. Karthik
Venkatakrishnan is grateful for many fulfilling experiences from
engagement with several mentors, collaborators, and mentees,
including female scientists and leaders over the course of his

The AAPS Journal (2021) 23: 74

career. He cherishes this special opportunity to collaborate with
an energetic early career scientist who constantly pushes the
boundaries of innovation (N.T.) and a deeply respected and
distinguished leader and mentor in clinical pharmacology and
translational medicine (L.J.B). Lisa Benincosa attributes the
open and inclusive leadership she received during both graduate
school and her professional experience. She was fortunate to
have good role models including successful female models for
inspiration.

DECLARATIONS

Conflict of Interest N.T. is an employee of Merck Serono S.A.,
Lausanne, Switzerland, an affiliate of Merck KGaA, Darmstadt,
Germany. K.V. and L.J.B. are employees of EMD Serono,
Billerica, MA, USA, a business of Merck KGaA, Darmstadt,
Germany.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which per-
mits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article
are included in the article's Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article's Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

REFERENCES

1. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo
M, Chou K, et al. A guide to deep learning in healthcare. Nat
Med. 2019;25(1):24-9.

2. Wagner J, Dahlem AM, Hudson LD, Terry SF, Altman RB,
Gilliland CT, et al. A dynamic map for learning, communicating,
navigating and improving therapeutic development. Nat Rev
Drug Discov. 2018;17(2):150-0.

3. Venkatakrishnan K, Cook J. Driving access to medicines with a
totality of evidence mindset: an opportunity for Clinical
Pharmacology. Clin Pharmacol Ther. 2018;103(3):373-5.
https://doi.org/10.1002/cpt.926 Epub 2017 Nov 28.

4. Venkatakrishnan K, Yalkinoglu O, Dong JQ, Benincosa LlJ.
Challenges in Drug Development Posed by the COVID-19
Pandemic: an opportunity for Clinical Pharmacology. Clin
Pharmacol Ther. 2020;108(4):699-702. https://doi.org/10.1002/
cpt.1879 Epub 2020 May 28.

5. MacKenzie R, Honig P, Sewards J, Goodwin R, Hellio MP.
COVID-19 must catalyse changes to clinical development. Nat
Rev Drug Discov. 2020;19(10):653—4. https://doi.org/10.1038/
d41573-020-00149-2.


http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1002/cpt.926
http://dx.doi.org/10.1002/cpt.1879
http://dx.doi.org/10.1002/cpt.1879
http://dx.doi.org/10.1038/d41573-020-00149-2
http://dx.doi.org/10.1038/d41573-020-00149-2

The AAPS Journal (2021) 23: 74

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Wang F, Preininger A. Al in health: state of the art, challenges,
and future directions. Yearb Med Inform. 2019;28(1):16-26.
https://doi.org/10.1055/s-0039-1677908 Epub 2019 Aug 16.

Hird N, Ghosh S, Kitano H. Digital health revolution: perfect
storm or perfect opportunity for pharmaceutical R&D? Drug
Discov Today. 2016;21(6):900-11.

Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E,
Lee G, et al. Applications of machine learning in drug discovery
and development. Nat Rev Drug Discov. 2019;18(6):463-77.
Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing
drug discovery via artificial intelligence. Trends Pharmacol Sci.
2019:;40(8):592-604. https://doi.org/10.1016/j.tips.2019.06.004
Epub 2019 Jul 15. Erratum in: Trends Pharmacol Sci. 2019
Oct;40(10):801.

Shah P, Kendall F, Khozin S, Goosen R, Hu J, Laramie J, et al.
Artificial intelligence and machine learning in clinical develop-
ment: a translational perspective. NPJ Digit Med. 2019;2(1):1-5.
Finelli LA, Narasimhan V. Leading a digital transformation in
the pharmaceutical industry: reimagining the way we work in
global drug development. Clin Pharmacol Ther.
2020;108(4):756-61. https://doi.org/10.1002/cpt.1850 Epub 2020
May 30.

Inan OT, Tenaerts P, Prindiville SA, Reynolds HR, Dizon DS,
Cooper-Arnold K, et al. Digitizing clinical trials. NPJ Digit Med.
2020;31(3):101. https://doi.org/10.1038/s41746-020-0302-y.

Bica I, Alaa AM, Lambert C, van der Schaar M. From real-
world patient data to individualized treatment effects using
machine learning: current and future methods to address
underlying challenges. Clin Pharmacol Ther. 2020 May 24.
https://doi.org/10.1002/cpt.1907 Epub ahead of print.

Dolgos H, Trusheim M, Gross D, Halle JP, Ogden J,
Osterwalder B, et al. Translational medicine guide transforms
drug development processes: the recent Merck experience.
Drug Discov Today. 2016;21(3):517-26.

Venkatakrishnan K, Zheng S, Musante CJ, Jin JY, Riggs MM,
Krishnaswami S, et al. Toward progress in quantitative transla-
tional medicine: a call to action. Clin Pharmacol Ther.
2020;107(1):85-8. https://doi.org/10.1002/cpt.1687 Epub 2019
Nov 21.

Costa PR, Acencio ML, Lemke N. A machine learning
approach for genome-wide prediction of morbid and druggable
human genes based on systems-level data. BMC Genomics.
2010;11:S9-9.

Jeon J, Nim S, Teyra J, Datti A, Wrana JL, Sidhu SS, et al. A
systematic approach to identify novel cancer drug targets using
machine learning, inhibitor design and high-throughput screen-
ing. Genome Med. 2014;6:57.

Bakheet TM, Doig AJ. Properties and identification of human
protein drug targets. Bioinformatics. 2009;25(4):451-7.

Yang W, Gadgil P, Krishnamurthy VR, Landis M, Mallick P,
Patel D, et al. The evolving druggability and developability
space: chemically modified new modalities and emerging small
molecules. AAPS J. 2020;22(2):21. https://doi.org/10.1208/
$12248-019-0402-2.

Torio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP,
Schubert M, et al. A landscape of pharmacogenomic interac-
tions in cancer. Cell. 2016;166:740-54.

Li H, Li T, Quang D, Guan Y. Network propagation predicts
drug synergy in cancers. Cancer Res. 2018;78(18):5446-57.

Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, et al. BioBERT: a
pre-trained biomedical language representation model for
biomedical text mining. Bioinformatics. 2020;36(4):1234-40.
Zheng Y, Meng X, Zweigenbaum P, Chen L, Xia J. Hybrid
phenotype mining method for investigating off-target protein
and underlying side effects of anti-tumor immunotherapy. BMC
Med Inform Decis Making. 2020;20(3):1-11.

Chelliah V, Lazarou G, Bhatnagar S, Gibbs JP, Nijsen M, Ray
A, .. & Yamada A. Quantitative Systems Pharmacology
approaches for Immuno-oncology: adding virtual patients to
the development paradigm. Clin Pharmacol Ther.
2021;109(3):605-618.

Lazarou G, Chelliah V, Small BG, Walker M, van der Graaf PH,
Kierzek AM. Integration of omics data sources to inform
mechanistic modeling of immune-oncology therapies: a tutorial

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Page 9 of 10 74

for clinical pharmacologists. Clin Pharmacol Ther.
2020;107(4):858-70.

Ramm S, Todorov P, Chandrasekaran V, Dohlman A, Monteiro
MB, Pavkovic M, et al. A systems toxicology approach for the
prediction of kidney toxicity and its mechanisms in vitro.
Toxicol Sci. 2019;169(1):54-69.

Hutchinson L, Steiert B, Soubret A, Wagg J, Phipps A, Peck R,
et al. Models and machines: how deep learning will take clinical
pharmacology to the next level. CPT Pharmacometrics Syst
Pharmacol. 2019;8(3):131-4.

Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V. Deep neural
nets as a method for quantitative structure-activity relation-
ships. J Chem Inf Model. 2015;55:263-74.

Olivecrona M, Blaschke T, Engkvist O, Chen H. Molecular de-
novo design through deep reinforcement learning. J
Cheminformatics. 2017;9:48.

Kadurin A, Nikolenko S, Khrabrov K, Aliper A, Zhavoronkov
A. druGAN: an advanced generative adversarial autoencoder
model for de novo generation of new molecules with desired
molecular properties in silico. Mol Pharm. 2017;14:3098-104.
Haghighatlari M, Hachmann J. Advances of machine learning in
molecular modeling and simulation. Curr Opin Chem Eng.
2019;23:51-7.

Torng W, Altman RB. 3D deep convolutional neural networks
for amino acid environment similarity analysis. BMC
Bioinforma. 2017;18(1):302.

Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side
effects with graph convolutional networks. Bioinformatics.
2018;34(13):1457-66.

Jia L, Yarlagadda R, Reed CC. Structure based thermostability
prediction models for protein single point mutations with
machine learning tools. PLoS One. 2015;10(9):e0138022.

Zhao K, So HC. Drug repositioning for schizophrenia and
depression/anxiety disorders: a machine learning approach
leveraging expression data. IEEE J Biomed Health Inform.
2018;23(3):1304-15.

Mohanty S, Rashid MHA, Mridul M, Mohanty C, &
Swayamsiddha S. Application of artificial intelligence in
COVID-19 drug repurposing. Diabetes Metab Syndr Clin Res
Rev. 2020;14(5):1027-1031. ISSN 1871-4021.

Li B, Shin H, Gulbekyan G, Pustovalova O, Nikolsky Y, Hope
A, et al. Development of a drug-response modeling framework
to identify cell line derived translational biomarkers that can
predict treatment outcome to erlotinib or sorafenib. PLoS One.
2015;10:e0130700.

Tasaki S, Suzuki K, Kassai Y, Takeshita M, Murota A, Kondo Y,
et al. Multi-omics monitoring of drug response in rheumatoid
arthritis in pursuit of molecular remission. Nat Commun.
2018:9:2755.

Reif DM, Motsinger-Reif AA, McKinney BA, Rock MT, Crowe
JE, Moore JH. Integrated analysis of genetic and proteomic
data identifies biomarkers associated with adverse events
following smallpox vaccination. Genes Immun. 2009;10(2):112—
9.

Dai HI, Vugmeyster Y, Mangal N. characterizing exposure—
response relationship for therapeutic monoclonal antibodies in
immuno-oncology and beyond: challenges, perspectives, and
prospects. Clin Pharmacol Ther. 2020;108:1156-70.

Wang R, Shao X, Zheng J, Saci A, Qian X, Pak I, et al. A
machine-learning approach to identify a prognostic cytokine
signature that is associated with nivolumab clearance in patients
with advanced melanoma. Clin Pharmacol Ther.
2020;107(4):978-817.

Marshall SF, Burghaus R, Cosson V, Cheung SYA, Chenel M,
DellaPasqua O, et al. Good practices in model-informed drug
discovery and development: practice, application, and docu-
mentation. CPT Pharmacometrics Syst Pharmacol.
2016;5(3):93-122.

Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more
than pictures, they are data. Radiology. 2016;278(2):563-77.
Dercle L, Lu L, Schwartz LH, Qian M, Tejpar S, Eggleton P, ...
& Piessevaux H. Radiomics response signature for identification
of metastatic colorectal cancer sensitive to therapies targeting
EGFR pathway. JNCI J Natl Cancer Inst. 2020;112(9):902-912.


http://dx.doi.org/10.1055/s-0039-1677908
http://dx.doi.org/10.1016/j.tips.2019.06.004
http://dx.doi.org/10.1002/cpt.1850
http://dx.doi.org/10.1038/s41746-020-0302-y
http://dx.doi.org/10.1002/cpt.1907
http://dx.doi.org/10.1002/cpt.1687
http://dx.doi.org/10.1208/s12248-019-0402-2
http://dx.doi.org/10.1208/s12248-019-0402-2

74

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

S8.

59.

60.

61.

62.

Page 10 of 10

Terranova N, Girard P, Ioannou K, Klinkhardt U, Munafo A.
Assessing similarity among individual tumor size lesion dynam-
ics: the CICIL methodology. CPT Pharmacometrics Syst
Pharmacol. 2018;7(4):228-36.

Vera-Yunca D, Girard P, Parra-Guillen ZP, Munafo A, Troconiz
IF, Terranova N. Machine learning analysis of individual tumor
lesions in four metastatic colorectal cancer clinical studies:
linking tumor heterogeneity to overall survival. AAPS J.
2020;22(3):1-12.

Terranova N, Girard P, Klinkhardt U, Munafo A. Resistance
development: a major piece in the jigsaw puzzle of tumor size
modeling. CPT Pharmacometrics Syst Pharmacol.
2015;4(6):320-3.

Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating
tumor DNA. J Clin Oncol. 2014;32(6):579-86.

Netterberg I, Karlsson MO, Terstappen LW, Koopman M, Punt
CJ, Friberg LE. Comparing circulating tumor cell counts with
dynamic tumor size changes as predictor of overall survival-a
quantitative modeling framework. Clin Cancer Res.
2020;26:4892-900.

Liu Q, Zhu H, Liu C, Jean D, Huang SM, ElZarrad MK, et al.
Application of machine learning in drug development and
regulation: current status and future potential. Clin Pharmacol
Ther. 2020;107(4):726-9.

Shamsuzzaman M, Patel T, Navarro Almario E, Wu C, Tesfaldet B,
Fleg J, et al. Identifying predictors for all-cause mortality in
diabetic patients in the ACCORD Trial using random survival
forests. Circulation. 2017;136(suppl_1):A18043-3.

Basu S, Raghavan S, Wexler DJ, Berkowitz SA. Characteristics
associated with decreased or increased mortality risk from
glycemic therapy among patients with type 2 diabetes and high
cardiovascular risk: machine learning analysis of the ACCORD
trial. Diabetes Care. 2018;41(3):604-12.

Ishida T, Tokuda K, Hisaka A, Honma M, Kijima S, Takatoku
H, et al. A novel method to estimate long-term chronological
changes from fragmented observations in disease progression.
Clin Pharmacol Ther. 2019;105(2):436-47.

Goswami S, Yee SW, Xu F, Sridhar SB, Mosley JD, Takahashi
A, et al. A longitudinal HbAlc model elucidates genes linked to
disease progression on metformin. Clin Pharmacol Ther.
2016;100(5):537-47.

Agur Z, Elishmereni M, Fory$ U, Kogan Y. Accelerating the
development of personalized cancer immunotherapy by inte-
grating molecular patients’ profiles with dynamic mathematical
models. Clin Pharmacol Ther.

Benzekry S. Artificial intelligence and mechanistic modeling for
clinical decision making in oncology. Clin Pharmacol Ther.
2020;108(3):471-86.

Chen R, Jankovic F, Marinsek N, Foschini L, Kourtis L,
Signorini A, ... & Sunga M. (2019). Developing measures of
cognitive impairment in the real world from consumer-grade
multimodal sensor streams. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining (pp. 2145-2155).

De Zanet S, Mosinska A, Bergin C, Polito MS, Guidotti J,
Apostolopoulos S, et al. Automated detection and quantifica-
tion of pathological fluid in neovascular age-related macular
degeneration using a deep learning approach. Investig
Ophthalmol Vis Sci. 2020;61(7):1655-5.

Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T,
Blum A, et al. Man against machine: diagnostic performance of
a deep learning convolutional neural network for dermoscopic
melanoma recognition in comparison to 58 dermatologists. Ann
Oncol. 2018;29(8):1836-42.

Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl
M, Fenyo D, et al. Classification and mutation prediction from
non-small cell lung cancer histopathology images using deep
learning. Nat Med. 2018;24(10):1559-67.

Mishima H, Suzuki H, Doi M, Miyazaki M, Watanabe S,
Matsumoto T, et al. Evaluation of Face2Gene using facial
images of patients with congenital dysmorphic syndromes
recruited in Japan. J Hum Genet. 2019;64(8):789-94.
Madabhushi A, & Lee G. Image analysis and machine learning
in digital pathology: challenges and opportunities. Medical
image analysis 2016;33, 170-175.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

The AAPS Journal (2021) 23: 74

Hong H, Thakkar S, Chen M, Tong W. Development of decision
forest models for prediction of drug-induced liver injury in
humans using a large set of FDA-approved drugs. Sci Rep.
2017;7(1):1-15.

Williams DP, Lazic SE, Foster AJ, Semenova E, Morgan P.
Predicting drug-induced liver injury with bayesian machine
learning. Chem Res Toxicol. 2019;33(1):239-48.

Sibieude E, Khandelwal A, Hesthaven JS, Girard P, &
Terranova N n.d. Fast screening of covariates in population
models empowered by machine learning. J Pharmacokinet
Pharmacodyn (In Press).

Hall RG, Pasipanodya JG, Swancutt MA, Meek C, Leff R,
Gumbo T. Supervised machine-learning reveals that old and
obese people achieve low dapsone concentrations. CPT
Pharmacometrics Syst Pharmacol. 2017;6(8):552-9.

Ipe J, Li R, Metzger IF, Bo Li Lu J, Gufford BT, Desta Z, ... &
Skaar TC. Circulating miRNAs as biomarkers for CYP2B6
enzyme activity. Clin Pharmacol Ther 2021;109(2), 485-493.
McComb M, Ramanathan M. Generalized pharmacometric
modeling, a novel paradigm for integrating machine learning
algorithms: a case study of metabolomic biomarkers. Clin
Pharmacol Ther. 2020;107(6):1343-51.

Sanchez-Pinto LN, Venable LR, Fahrenbach J, Churpek MM.
Comparison of variable selection methods for clinical predictive
modeling. Int J Med Inform. 2018;116:10-7.

Sale M, Sherer EA. A genetic algorithm based global search
strategy for population pharmacokinetic/pharmacodynamic
model selection. Br J Clin Pharmacol. 2015;79(1):28-39.

Gong X, Hu M, Zhao L. Big data toolsets to pharmacometrics:
application of machine learning for time-to-event analysis. Clin
Transl Sci. 2018;11(3):305-11.

Steele AJ, Denaxas SC, Shah AD, Hemingway H, Luscombe
NM. Machine learning models in electronic health records can
outperform conventional survival models for predicting patient
mortality in coronary artery disease. PLoS One.
2018;13(8):¢0202344.

Lee C, Yoon J, Van Der Schaar M. Dynamic-deephit: A deep
learning approach for dynamic survival analysis with competing
risks based on longitudinal data. IEEE Trans Biomed Eng.
2019:67(1):122-33.

Chaturvedula A, Calad-Thomson S, Liu C, Sale M, Gattu N,
Goyal N. Artificial intelligence and pharmacometrics: time to
embrace, capitalize, and advance? CPT Pharmacometrics Syst
Pharmacol. 2019;8(7):440-3.

Poynton MR, Choi BM, Kim YM, Park IS, Noh GJ, Hong SO,
et al. Machine learning methods applied to pharmacokinetic
modelling of remifentanil in healthy volunteers: a multi-method
comparison. J Int Med Res. 2009;37(6):1680-91.

Hu P, Cheng TH, & Wei CP (2005). Pharmacokinetic data
mining for managing clinical use of vancomycin. PACIS 2005
Proceedings, 77.

Smith NM, Lenhard JR, Boissonneault KR, Landersdorfer CB,
Bulitta JB, Holden PN, et al. Using machine learning to
optimise antibiotic combinations: dosing strategies for
meropenem and polymyxin B against carbapenem-resistant
Acinetobacter baumannii. Clin Microbiol Infect. 2020;26:1207—
13.

Murphree DH, Arabmakki E, Ngufor C, Storlie CB, McCoy
RG. Stacked classifiers for individualized prediction of glycemic
control following initiation of metformin therapy in type 2
diabetes. Comput Biol Med. 2018;103:109-15.

Rodrigues D, Rowland A. From endogenous compounds as
biomarkers to plasma-derived nanovesicles as liquid biopsy; has
the golden age of translational pharmacokinetics-absorption,
distribution, metabolism, excretion-drug-drug interaction sci-
ence finally arrived? Clin Pharmacol Ther. 2019;105(6):1407-20.
Javdan B, Lopez JG, Chankhamjon P, Lee YCJ, Hull R, Wu Q,
et al. Personalized mapping of drug metabolism by the human
gut microbiome. Cell. 2020;181:1661-1679.e22.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.



	Application of Machine Learning in Translational Medicine: Current Status and Future Opportunities
	Abstract
	INTRODUCTION
	TARGET
	PATIENT
	DOSE
	PERSPECTIVE
	References



