Skip to main content

Advertisement

Log in

Vaccine Adjuvant Incorporation Strategy Dictates Peptide Amphiphile Micelle Immunostimulatory Capacity

  • Research Article
  • Theme: Pioneering Pharmaceutical Science by Emerging Investigators
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Current vaccine research has shifted from traditional vaccines (i.e., whole-killed or live-attenuated) to subunit vaccines (i.e., protein, peptide, or DNA) as the latter is much safer due to delivering only the bioactive components necessary to produce a desirable immune response. Unfortunately, subunit vaccines are very weak immunogens requiring delivery vehicles and the addition of immunostimulatory molecules termed adjuvants to convey protective immunity. An interesting type of delivery vehicle is peptide amphiphile micelles (PAMs), unique biomaterials where the vaccine is part of the nanomaterial itself. Due to the modularity of PAMs, they can be readily modified to deliver both vaccine antigens and adjuvants within a singular construct. Through the co-delivery of a model antigenic epitope (Ovalbumin319–340—OVABT) and a known molecular adjuvant (e.g., 2,3-dipalmitoyl-S-glyceryl cysteine—Pam2C), greater insight into the mechanisms by which PAMs can exert immunostimulatory effects was gained. It was found that specific combinations of antigen and adjuvant can significantly alter vaccine immunogenicity both in vitro and in vivo. These results inform fundamental design rules that can be leveraged to fabricate optimal PAM-based vaccine formulations for future disease-specific applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID, Organization WH. Smallpox and its eradication. 1988.

  2. Fine PE, Carneiro IA. Transmissibility and persistence of oral polio vaccine viruses: implications for the global poliomyelitis eradication initiative. Am J Epidemiol. 1999;150(10):1001–21.

    Article  PubMed  CAS  Google Scholar 

  3. Mast E, Mahoney F, Kane M, Margolis H. Hepatitis B vaccine. Vaccines, 4th ed Philadelphia: WB Saunders Company 2004:299–338.

  4. Babiuk LA. Broadening the approaches to developing more effective vaccines. Vaccine. 1999;17(13):1587–95.

    Article  PubMed  CAS  Google Scholar 

  5. Brown F. Peptide vaccines: fantasy or reality? World J Microbiol Biotechnol. 1992;8:52–3.

    Article  PubMed  Google Scholar 

  6. Levine MM, Sztein MB. Vaccine development strategies for improving immunization: the role of modern immunology. Nat Immunol. 2004;5(5):460–4.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang R, Ulery BD. Synthetic vaccine characterization and design. J Bionanosci. 2018;12(1):1–11.

    Article  CAS  Google Scholar 

  8. Chang TZ, Stadmiller SS, Staskevicius E, Champion JA. Effects of ovalbumin protein nanoparticle vaccine size and coating on dendritic cell processing. Biomater Sci. 2017;5(2):223–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Deng L, Mohan T, Chang TZ, Gonzalez GX, Wang Y, Kwon Y-M, et al. Double-layered protein nanoparticles induce broad protection against divergent influenza a viruses. Nat Commun. 2018;9(1):359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Acharya AP, Clare-Salzler MJ, Keselowsky BG. A high-throughput microparticle microarray platform for dendritic cell-targeting vaccines. Biomaterials. 2009;30(25):4168–77.

    Article  PubMed  CAS  Google Scholar 

  11. Wang L, Chang TZ, He Y, Kim JR, Wang S, Mohan T, et al. Coated protein nanoclusters from influenza H7N9 HA are highly immunogenic and induce robust protective immunity. Nanomedicine. 2017;13(1):253–62.

    Article  PubMed  CAS  Google Scholar 

  12. Ross K, Adams J, Loyd H, Ahmed S, Sambol A, Broderick S, et al. Combination nanovaccine demonstrates synergistic enhancement in efficacy against influenza. ACS Biomater Sci Eng. 2016;2(3):368–74.

    Article  CAS  Google Scholar 

  13. Ross KA, Loyd H, Wu W, Huntimer L, Ahmed S, Sambol A, et al. Polyanhydride-based H5 hemagglutinin influenza nanovaccines elicit protective virus neutralizing titers and cell-mediated immunity. Synthetic nanoparticle-based vaccines against respiratory pathogens 2013:149.

  14. An M, Liu H. Dissolving microneedle arrays for transdermal delivery of amphiphilic vaccines. Small. 2017;13(26)

  15. Hanson MC, Abraham W, Crespo MP, Chen SH, Liu H, Szeto GL, et al. Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membrane-proximal external region peptides. Vaccine. 2015;33(7):861–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ulery BD, Kumar D, Ramer-Tait AE, Metzger DW, Wannemuehler MJ, Narasimhan B. Design of a protective single-dose intranasal nanoparticle-based vaccine platform for respiratory infectious diseases. PLoS One. 2011;6(3):e17642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Moon JJ, Suh H, Bershteyn A, Stephan MT, Liu H, Huang B, et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat Mater. 2011;10(3):243–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhang P, Chiu Y-C, Tostanoski LH, Jewell CM. Polyelectrolyte multilayers assembled entirely from immune signals on gold nanoparticle templates promote antigen-specific T cell response. ACS Nano. 2015;9(6):6465–77.

    Article  PubMed  CAS  Google Scholar 

  19. Tsoras AN, Champion JA. Cross-linked peptide nanoclusters for delivery of oncofetal antigen as a cancer vaccine. Bioconjug Chem. 2018;29:776–85.

    Article  PubMed  CAS  Google Scholar 

  20. Barrett JC, Ulery BD, Trent A, Liang S, David NA, Tirrell MV. Modular peptide Amphiphile micelles improving an antibody-mediated immune response to group A Streptococcus. ACS Biomater Sci Eng. 2016;

  21. Trent A, Ulery BD, Black MJ, Barrett JC, Liang S, Kostenko Y, et al. Peptide amphiphile micelles self-adjuvant group A streptococcal vaccination. AAPS J. 2015;17(2):380–8.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang R, Smith JD, Kramer Jake S, Allen BN, Martin S, Ulery BD. Peptide amphiphile micelle vaccine size and charge influences immunogenicity. ACS Biomater Sci Eng 2018;Submitted.

  23. Zhang R, Morton LD, Smith JD, Gallazzi F, White TA, Ulery BD. Instructive design of tri-block peptide amphiphiles for structurally complex micelle formation. ACS Biomater Sci Eng 2018;Accepted.

  24. Barrett JC, Ulery BD, Trent A, Liang S, David NA, Tirrell M. Modular peptide amphiphile micelles improve an antibody-mediated immune response to group A Streptococcus. ACS Biomater Sci Eng. 2016;3(2):144–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sun T, Han H, Hudalla GA, Wen Y, Pompano RR, Collier JH. Thermal stability of self-assembled peptide vaccine materials. Acta Biomater. 2016;30:62–71.

    Article  PubMed  CAS  Google Scholar 

  26. Chen J, Pompano RR, Santiago FW, Maillat L, Sciammas R, Sun T, et al. The use of self-adjuvanting nanofiber vaccines to elicit high-affinity B cell responses to peptide antigens without inflammation. Biomaterials. 2013;34(34):8776–85.

    Article  PubMed  CAS  Google Scholar 

  27. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11(4):443–51.

    Article  PubMed  CAS  Google Scholar 

  28. Takeuchi O, Takeda K, Hoshino K, Adachi O, Ogawa T, Akira S. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int Immunol. 2000;12(1):113–7.

    Article  PubMed  CAS  Google Scholar 

  29. Basto AP, Leitão A. Targeting TLR2 for vaccine development. J Immunol Res. 2014;2014:1–22.

    Article  CAS  Google Scholar 

  30. Chiu Y-C, Gammon JM, Andorko JI, Tostanoski LH, Jewell CM. Modular vaccine design using carrier-free capsules assembled from polyionic immune signals. ACS Biomater Sci Eng. 2015;1(12):1200–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater. 2016;

  32. de Jong S, Chikh G, Sekirov L, Raney S, Semple S, Klimuk S, et al. Encapsulation in liposomal nanoparticles enhances the immunostimulatory, adjuvant and anti-tumor activity of subcutaneously administered CpG ODN. Cancer Immunol Immunother. 2007;56(8):1251–64.

    Article  PubMed  CAS  Google Scholar 

  33. Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine delivery systems: size matters. AAPS J. 2013;15(1):85–94.

    Article  PubMed  CAS  Google Scholar 

  34. Keselowsky BG, Xia CQ, Clare-Salzler M. Multifunctional dendritic cell-targeting polymeric microparticles: engineering new vaccines for type 1 diabetes. Human Vaccines. 2011;7(1):37–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sevimli S, Knight FC, Gilchuk P, Joyce S, Wilson JT. Fatty acid-mimetic micelles for dual delivery of antigens and Imidazoquinoline adjuvants. ACS Biomater Sci Eng. 2016;3(2):179–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Hudalla GA, Modica JA, Tian YF, Rudra JS, Chong AS, Sun T, et al. A self-adjuvanting supramolecular vaccine carrying a folded protein antigen. Adv Healthc Mater. 2013;2(8):1114–9.

    Article  PubMed  CAS  Google Scholar 

  37. An M, Li M, Xi J, Liu H. Silica nanoparticle as a lymph node targeting platform for vaccine delivery. ACS Appl Mater Interfaces. 2017;9(28):23466–75.

    Article  PubMed  CAS  Google Scholar 

  38. Zom GG, Khan S, Britten CM, Sommandas V, Camps MG, Loof NM, et al. Efficient induction of antitumor immunity by synthetic toll-like receptor ligand–peptide conjugates. Cancer Immunol Res. 2014;2(8):756–64.

    Article  PubMed  CAS  Google Scholar 

  39. Denton AE, Wesselingh R, Gras S, Guillonneau C, Olson MR, Mintern JD, et al. Affinity thresholds for naive CD8+ CTL activation by peptides and engineered influenza A viruses. J Immunol. 2011;187(11):5733–44.

    Article  PubMed  CAS  Google Scholar 

  40. Moyle PM, Dai W, Zhang Y, Batzloff MR, Good MF, Toth I. Site-specific incorporation of three toll-like receptor 2 targeting adjuvants into semisynthetic, molecularly defined nanoparticles: application to group a streptococcal vaccines. Bioconjug Chem. 2014;25(5):965–78.

    Article  PubMed  CAS  Google Scholar 

  41. Shime H, Maruyama A, Yoshida S, Takeda Y, Matsumoto M, Seya T. Toll-like receptor 2 ligand and interferon-γ suppress anti-tumor T cell responses by enhancing the immunosuppressive activity of monocytic myeloid-derived suppressor cells. Oncoimmunology. 2018;7(1):e1373231.

    Article  Google Scholar 

  42. Dietrich N, Lienenklaus S, Weiss S, Gekara NO. Murine toll-like receptor 2 activation induces type I interferon responses from endolysosomal compartments. PLoS One. 2010;5(4):e10250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Dowling JK, Dellacasagrande J. Toll-like receptors: ligands, cell-based models, and readouts for receptor action. Toll-Like Receptors: Springer. 2016:3–27.

  44. Kulsantiwong P, Pudla M, Srisaowakarn C, Boondit J, Utaisincharoen P. Pam2CSK4 and Pam3CSK4 induce iNOS expression via TBK1 and MyD88 molecules in mouse macrophage cell line RAW264. 7. Inflamm Res. 2017;66(10):843–53.

    Article  PubMed  CAS  Google Scholar 

  45. Natarajan M, Lin K-M, Hsueh RC, Sternweis PC, Ranganathan R. A global analysis of cross-talk in a mammalian cellular signalling network. Nat Cell Biol. 2006;8(6):571–80.

    Article  PubMed  CAS  Google Scholar 

  46. Black M, Trent A, Kostenko Y, Lee JS, Olive C, Tirrell M. Self-assembled peptide amphiphile micelles containing a cytotoxic T-cell epitope promote a protective immune response in vivo. Adv Mater. 2012;24(28):3845–9.

    Article  PubMed  CAS  Google Scholar 

  47. Fagan V, Hussein WM, Su M, Giddam AK, Batzloff MR, Good MF, et al. Synthesis, characterization and immunological evaluation of self-adjuvanting group A Streptococcal vaccine candidates bearing various lipidic adjuvanting moieties. Chembiochem. 2017;18(6):545–53.

    Article  PubMed  CAS  Google Scholar 

  48. Kang JY, Nan X, Jin MS, Youn S-J, Ryu YH, Mah S, et al. Recognition of lipopeptide patterns by toll-like receptor 2-toll-like receptor 6 heterodimer. Immunity. 2009;31(6):873–84.

    Article  PubMed  CAS  Google Scholar 

  49. Agnihotri G, Crall BM, Lewis TC, Day TP, Balakrishna R, Warshakoon HJ, et al. Structure–activity relationships in toll-like receptor 2-agonists leading to simplified monoacyl lipopeptides. J Med Chem. 2011;54(23):8148–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wu W, Li R, Malladi SS, Warshakoon HJ, Kimbrell MR, Amolins MW, et al. Structure− activity relationships in toll-like receptor-2 agonistic diacylthioglycerol lipopeptides. J Med Chem. 2010;53(8):3198–213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Azuma M, Sawahata R, Akao Y, Ebihara T, Yamazaki S, Matsumoto M, et al. The peptide sequence of diacyl lipopeptides determines dendritic cell TLR2-mediated NK activation. PLoS One. 2010;5(9):e12550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Fujimoto Y, Hashimoto M, Furuyashiki M, Katsumoto M, Seya T, Suda Y, et al. Lipopeptides from Staphylococcus aureus as Tlr2 ligands: prediction with mrna expression, chemical synthesis, and immunostimulatory activities. Chembiochem. 2009;10(14):2311–5.

    Article  PubMed  CAS  Google Scholar 

  53. Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI, et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature. 2011;470(7335):543–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Mohsen MO, Gomes AC, Cabral-Miranda G, Krueger CC, Leoratti FM, Stein JV, et al. Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination. J Control Release. 2017;251:92–100.

    Article  PubMed  CAS  Google Scholar 

  55. Nomura F, Akashi S, Sakao Y, Sato S, Kawai T, Matsumoto M, et al. Cutting edge: endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol. 2000;164(7):3476–9.

    Article  PubMed  CAS  Google Scholar 

  56. Akashi S, Saitoh S-i, Wakabayashi Y, Kikuchi T, Takamura N, Nagai Y, et al. Lipopolysaccharide interaction with cell surface toll-like receptor 4-MD-2. J Exp Med. 2003;198(7):1035–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Triantafilou M, Gamper FG, Haston RM, Mouratis MA, Morath S, Hartung T, et al. Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem. 2006;281(41):31002–11.

    Article  PubMed  CAS  Google Scholar 

  58. Kužnik A, Benčina M, Švajger U, Jeras M, Rozman B, Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol. 2011;186(8):4794–804.

    Article  PubMed  CAS  Google Scholar 

  59. Takeshita F, Gursel I, Ishii KJ, Suzuki K, Gursel M, Klinman DM, editors. Signal transduction pathways mediated by the interaction of CpG DNA with toll-like receptor 9. Semin Immunol; 2004: Elsevier.

  60. Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected toll-like receptor agonist combinations synergistically trigger a T helper type 1–polarizing program in dendritic cells. Nat Immunol. 2005;6(8):769–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11(12):823–36.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Professor Thomas Phillips, Professor Jeffrey Adamovicz, Alexis Dadelahi, and Dr. Curtis Pritzl for their useful input on this work. We also thank Biolegend technical support team for their assistance on flow cytometry and cytokine multiplex assays.

Funding

This work is supported by the University of Missouri start-up funding, the University of Missouri research council board, and the PhRMA Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bret D. Ulery.

Additional information

Theme Editor: Ho-Leung Fung

Electronic supplementary material

ESM 1

(DOCX 681 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Kramer, J.S., Smith, J.D. et al. Vaccine Adjuvant Incorporation Strategy Dictates Peptide Amphiphile Micelle Immunostimulatory Capacity. AAPS J 20, 73 (2018). https://doi.org/10.1208/s12248-018-0233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-018-0233-6

KEY WORDS

Navigation