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There is a major need to promote regeneration of
musculoskeletal tissues such as the bone and cartilage.
Approaches to regenerating musculoskeletal tissues include
the use of programmed stem cells, growth factors, gene
therapies, and scaffold matrix materials. These approaches
are being developed as standalone therapeutic strategies and
in combination.

With respect to gene therapy applications, it is critical
that clinically beneficial amounts of proteins are synthesized
endogenously within and around the lesion in a sustained
manner. By implanting gene-activated matrices (GAMs) in
animal models, we have shown that sustained gene expression
and continuous osteogenic protein production in situ can be
achieved in a way that stimulates osteogenesis and bone
repair within osseous defects (1,2). We have also shown that
critical parameters substantially affecting the therapeutic
efficacy of gene therapy include the choice of osteogenic
transgene(s), selection of vectors, the scaffold material, the
wound environment, and the selection of delivery strategies
(2–8). For example, we have developed a non-viral gene
delivery system for bone regeneration utilizing a collagen
scaffold to locally deliver complexes encoding for platelet-
derived growth factors (PDGF-B) (2). The in vivo regener-
ative capacity of the system was assessed in 5-mm diameter
critical-sized calvarial defects in rats. In vivo studies showed
significantly higher new bone volume/total volume in calvarial
defects treated with GAMs following 4 weeks of implantation
(14- and 44-fold higher) when compared to empty defects or
empty scaffolds, respectively (2). Together, these findings
suggest that non-viral gene-activated scaffolds are effective
for bone regeneration and are an attractive therapeutic
strategy with significant potential for clinical translation.
Furthermore, simultaneous delivery of multiple genes is
possible and customization is relatively straightforward. For

example, we have shown that co-delivering genes encoding
fibroblast growth factor (FGF-2) and bone morphogenetic
protein-2 (BMP-2) significantly enhances osteogenesis in
human adipose-derived mesenchymal stem cells (hADMSC)
over either gene alone (7). We also show that this combina-
tion of genes is effective at regenerating bone in a diaphyseal
long bone radial defect diabetic rabbit model (9). More
recently, we have been investigating the bone regenerative
capacity of chemically modified ribonucleic acid (cmRNA).
The osteogenic potential of BMSCs treated with cmRNA
encoding for BMP-2 was validated by the enhanced expres-
sion of the bone-specific genes, osteocalcin and alkaline
phosphatase as well as through the promotion of bone matrix
deposition in vitro. In addition, using a calvarial bone defect
model in rats, we have shown that cmRNA (encoding BMP-
2)-activated matrices promoted significantly enhanced bone
regeneration compared to plasmid DNA (BMP-2)-activated
matrices (1). In this theme issue, we report on the effective-
ness of cmRNA encoding for BMP-2 versus cmRNA
encoding for BMP-9 in rat calvarial defect models (10). We
also provide a comprehensive review on development and
testing of GAMs for bone regeneration (11).

This theme issue also covers recent advances in the areas
of new materials for scaffolds and controlled release of agents
that promote tissue regeneration. In the area of new materials
for scaffolds for tissue regeneration, Elisseeff and colleagues
show that a micronized porcine urinary bladder matrix can be
used to reduce osteoarthritis induced by anterior cruciate
ligament transection in mice (12). Berkland and colleagues
show that colloidal gels composed of colloidal nanoparticles
of hydroxyapatite, demineralized bone matrix, decellularized
cartilage, and hyaluronic acid combined with bone morpho-
genetic protein-2 (BMP-2) and vascular endothelial growth
factor generated significantly more bone in critical-sized rat
calvarial defects than sham controls (13). In terms of
evaluating the potential of controlled release of agents from
scaffolds that can modulate and promote tissue repair,
Livingston Arinzeh and colleagues show that controlled
release of vanadium can stimulate mesenchymal stem cell
osteochondrogenesis. This is evidenced by significant
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increases in alkaline phosphatase activity, osteocalcin produc-
tion, and collagen synthesis when cells are cultured with
vanadium-containing scaffolds versus empty scaffolds (14). In
addition, Ulery and colleagues report on the controlled
release of monobasic calcium phosphate-derived ions from
polyester/ceramic composites to enhance osteoinductivity
(15). Finally, Criswell and colleagues report on new data that
casts doubt on the potential of growth differentiation factor
11 (GDF11). GDF11 was previously considered a strong
circulating factor that could restore skeletal muscle function
in aging animals (16). Criswell and colleagues show new data
that adds to a growing body of evidence suggesting that
GDF11 has negative effects including increased tissue fibrosis
and impaired recovery of skeletal muscle function in older
rats after injury (17,18). Other recent AAPS J articles that are
related to the topics presented in this theme issue include a
report on the controlled release of simvastatin from in situ
forming hydrogels to form bone (19), results describing a
microsphere embedded wound dressing that provides con-
trolled release of chitosan and sericin (20), a report on stem
cell and minocycline-loaded hydrogels that inhibit growth of
Staphylococcus aureus (21), a report on the controlled release
of second-generation mTOR inhibitors to restrain inflamma-
tion in primary immune cells (22), and an article describing
model selection and analysis of animal models of osteoarthri-
tis (23).
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