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Introduction
Let H denote the class of normalized analytic functions f (z) having the form:

f (z) = z + a2z2 + a3z3 + ... (1)

in the unit disk U = {z ∈ C : |z| < 1}. Also, let S denote the subclass of H univalent in U.
Suppose that S∗ denote the subclass of S consisting of the functions f (z)which are starlike
in U. A function f (z) ∈ K is said to be convex in U if f (z) ∈ S satisfies the condition that
zf ′(z) ∈ S∗. If f (z) ∈ H satisfies the geometric condition:

�
(
zf ′(z)
f (z)

)
> β , z ∈ U

for some real β(0 ≤ β < 1), then we say that f (z) belongs to the class S∗(β) starlike of
order β , and if f (z) ∈ H satisfies the geometric condition:

�
(
1 + zf ′′(z)

f ′(z)

)
> β , z ∈ U

for some real β(0 ≤ β < 1), then we say that f (z) belongs to the class K(β) convex of
order β (see [1, 2]). Let the function g(z) of the form:

g(z) = z + z3 + z5 + ... z ∈ U (2)

be in the class S∗ while the function g(z) of the form:

g(z) = z + z2 + z3 + ... z ∈ U (3)
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be in the class K. With reference to (2) and (3), we can write that:

gα(z) = z
1 − zα

= z +
∞∑
k=1

z1+kα z ∈ U , (4)

where we consider the principal value of zkα for some real α (0 < α ≤ 2). See Darus and
Owa [3] for some properties of functions fα(z) of the form (4).
Here, we present a more generalized form of (4) such that:

gα,n(z) = Anz
(A + Bzα)n

= z +
∞∑
k=1

(−1)k
Bk

Ak nkz
1+kα z ∈ U (5)

for some real α (0 < α ≤ 2), −1 ≤ B < A ≤ 1, n ≥ 0 and nk is given by nk =
�k

j=1

(
n+j−1

j!

)
.

In view of (1) and (5), we introduce a class Hα,n of analytic function fα,n(z) which is a
convolution (or Hadamard product) of f (z) and gα,n (f (z) ∗ gα,n(z)) such that:

fα,n(z) = z +
∞∑
k=1

(−1)k
Bk

Ak nkak+1z1+kα z ∈ U (6)

In addition, if fα,n(z) ∈ Hα,n satisfies the following condition:

�
(zf ′

α,n(z)
fα,n(z)

)
> γ z ∈ U (7)

for some real α (0 < α ≤ 2), n > 0, and γ (0 ≤ γ < 1), then fα,n belong to the starlike
class S∗

α,n(A,B, γ ) (of order γ ). Also, if fα,n(z) ∈ Hα,n satisfies the following condition:

�
(
1 + zf ′′

α,n(z)
f ′
α,n(z)

)
> γ z ∈ U (8)

for some real α (0 < α ≤ 2), n > 0, and γ (0 ≤ γ < 1), then fα,n belong to the convex
classK∗

α,n(A,B, γ ) (of order γ ). Here, it is noted that fα,n(z) ∈ Hα,n(z) belong to the convex
class Kα,n(A,B, γ ) ⇔ zf ′

α,n(z) belong to the starlike class S∗
α,n(A,B, γ ).

For the purpose of the present investigation, we shall call to mind the following definitions
and lemmas.

Definition 1 (Subordination principle) For two functions f and g analytic in U, we say
that f is subordinate to g, and write f ≺ g in U or f (z) ≺ g(z), if there exists a Schwarz
function w(z), which is analytic in U with w(0) = 0 and |w(z)| < 1 (z ∈ U), such that
f (z) = g(w(z)). It is known that:

f (z) ≺ g(z) ⇒ f (0) = g(0) and f (U) ⊂ g(U).

Furthermore, if the function g is univalent in U:

f (z) ≺ g(z) ⇔ f (0) = g(0) and f (U) ⊂ g(U). (9)

Also, we say that g(z) is superordinate to f (z) in U (see [4–6]).

Definition 2 (Subordinating factor sequence) A sequence {bk}∞k=1 of complex numbers
is called subordinating factor sequence if for every univalent function f (z) in K, we have the
subordination given by:

∞∑
k=1

akbkzk ≺ f (z) (z ∈ U , a1 = 1) (see [4–6]). (10)
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Lemma 1 The sequence {bk}∞k=1 is a subordinating factor sequence if and only if:

�
{
1 + 2

∞∑
k=1

bkzk
}

> 0 (z ∈ U). (11)

The lemma above is due to Wilf [7]. Interested reader can also refer to [4–6].

Lemma 2 Let s(z) (s(z) = 0) be a univalent function in U. Also, let μ = 0 be a complex
number, then we have that:

�
{
1 + z

s′′(z)
s′(z)

− z
s′(z)
s(z)

}
> max

{
0,�

(μ − 1
μ

s(z)
)}

. (12)

Suppose that r (r(z) = 0) satisfies the differential equation:

(1 − μ)(r(z) − 1) + μ
zr′(z)
r(z)

≺ (1 − μ)(s(z) − 1) + μ
zs′(z)
s(z)

, z ∈ U (13)

then r ≺ s and s is the best dominant (see [8] among others).

Lemma 3 Let ω be regular in H with ω(0) = 0. Also, suppose that |ω(z)| attains its
maximum value on the circle |z| < 1 at a point z0, then:

z0ω′(z0) = σω(z0), (14)

where σ is any real number and σ ≥ 1 (see [8] among others).

Coefficient inequality
In this section, we consider the coefficient inequalities for function fα,n(z) given by (6)
belonging to both classes S∗

α,n(A,B, γ ) and Kα,n(A,B, γ ) in the unit disk U .

Theorem 1 Let the function fα,n(z) of the form (6) satisfy the inequality:
∞∑
k=1

(kα − γ + 1) nk
|B|k
Ak |ak+1| ≤ 1 − γ . (15)

Then, fα,n(z) ∈ S∗
α,n(A,B, γ ) for 0 ≤ γ < 1, 0 < α ≤ 2, −1 ≤ B < A ≤ 1, 0 < A ≤ 1 and

n > 0. The equality holds true for fα,n(z) given by:

fα,n(z) = z + (1 − γ ) eiπ(
kα − γ + 1

)
nk |B|k

Ak

z1+kα (k ≥ 1).

Proof Suppose that the function fα,n(z) given by (6) satisfies (15), then:
∣∣∣∣zf

′
α,n(z)
fα,n(z)

− 1
∣∣∣∣ =

∣∣∣∣∣∣
∑∞

k=1(−1)kkαnk Bk
Ak ak+1zkα

1 + ∑∞
k=1(−1)knk Bk

Ak ak+1zkα

∣∣∣∣∣∣

≤
∑∞

k=1 kαnk
|B|k
Ak |ak+1||z|kα

1 − ∑∞
k=1 nk

|B|k
Ak |ak+1||z|kα

| <

∑∞
k=1 kαnk

|B|k
Ak |ak+1|

1 − ∑∞
k=1 nk

|B|k
Ak |ak+1|

≤ 1 − γ .

This shows that fα,n(z) ∈ S∗
α,n(A,B, γ ), and this ends the proof.
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Corollary 1 Let the function fα,n(z) of the form (6) satisfy the inequality:
∞∑
k=1

(
kα + 1

)
nk

|B|k
Ak |ak+1| ≤ 1.

Then, fα,n(z) ∈ S∗
α,n(A,B, 0).

Theorem 2 Let the function fα,n(z) of the form (6) satisfy the inequality:
∞∑
k=1

(kα + 1) (kα − γ + 1) nk
|B|k
Ak |ak+1| ≤ 1 − γ . (16)

Then, fα,n(z) ∈ Kα,n(A,B, γ ) for 0 ≤ γ < 1 , 0 < α ≤ 2, −1 ≤ B < A ≤ 1, 0 < A ≤ 1 and
n > 0. The equality holds true for fα,n(z) given by:

fα,n(z) = z + (1 − γ ) eiπ

(kα + 1) (kα − γ + 1) nk |B|k
Ak

z1+kα (k ≥ 1).

Proof The proof is similar to that of Theorem 1.

Corollary 2 Let the function fα,n(z) of the form (6) satisfy the inequality:
∞∑
k=1

(kα + 1)2 nk
|B|k
Ak |ak+1| ≤ 1.

Then, fα,n(z) ∈ Kα,n(A,B, 0).

Remark 1 Putting A = n = 1 and B = −1 in Theorems 1 and 2, we obtain the results
obtained by Darus and Owa [[3], Theorems 3 and 4].

Next, we present some subordination results.

Some subordination results
Our prime objective here is to establish sufficient conditions for functions belonging to
the analytic class S∗

α,n(A,B, γ ).

Theorem 3 Suppose that the function fα,n(z) is as defined in (6). Let 0 < α ≤ 2, n > 0,
σ = −1 and μ be a non-zero complex number in U such that:

�
{
1 + z[ 1 − σ(1 − 2z)]

(1 − z)(1 + σ z)

}
> max

{
0,�

(
μ − 1

μ

) (
1 + σ z
1 − z

)}
.

If

(1−μ)
(
f ′
α,n(z) − 1

)+μ

(zf ′′
α,n(z)
f ′
α,n(z)

)
≺ (1−μ)

((
1 + σ z
1 − z

)
− 1

)
+μ

(
(1 + σ)z

(1 + σ z)(1 − z)

)

holds true, then fα,n(z) ∈ S∗
α,n(A,B, γ ).

Proof Suppose that we let:

r(z) = f ′
α,n(z) and s(z) = 1 + σ z

1 − z
. (17)

Then,

�
{
1 + zs′′(z)

s′(z)
− zs′(z)

s(z)

}
> max

{
0,�

(
μ − 1

μ

) (
1 + σ z
1 − z

)}
= max

{
0,�

(
μ − 1

μ
s(z)

)}
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and

(1 − μ)(r(z) − 1) + μ
zr′(z)
r(z)

= (1 − μ)
(
f ′
α,n(z) − 1

) + μ

(zf ′′
α,n(z)
f ′
α,n(z)

)

≺ (1− μ)

((
1 + σ z
1 − z

)
− 1

)
+ μ

(
(1 + σ)z

(1 + σ z)(1 − z)

)
= (1− μ)(s(z) − 1) + μ

zs′(z)
s(z)

.

(18)

Using Lemma 2 in (18), then we obtain the desired result.

Theorem 4 Let the analytic function fα,n(z) be defined as in (6). Suppose that fα,n(z)
satisfies the condition that:

�
{zf ′′

α,n(z)
f ′
α,n(z)

}
< − 1 + σ

2(1 − σ)
. (19)

Then, for 0 < α ≤ 2, n > 0 and σ > 1, fα,n(z) ∈ S∗
α,n(A,B, γ ).

Proof Setting:

f ′
α,n(z) =

(
1 + σω(z)
1 − ω(z)

)
, ω(z) = 1.

Then, ω is regular in U, and since σ = −1, then ω(0) = 0. Also, it follows that:

�
{zf ′′

α,n(z)
f ′
α,n(z)

}
= �

{
(1 + σ)zω′(z)

(1 − ω(z))(1 + σω(z))

}
<

σ + 1
2(σ − 1)

, σ = 1.

Next, we show that |ω(z)| < 1. So, let there exists a point z0 ∈ U such that for |z| ≤ |z0|:
max|ω(z)| = |ω(z)| = 1.

Then, appealing to Lemma 3 and setting ω(z0) = eiθ , z0ω′(z0) = δeiθ and for δ ≥ 1,
σ > 1, we have that:

�
{zf ′′

α,n(z)
f ′
α,n(z)

}
= �

{
(1 + σ)z0ω′(z0)

(1 − ω(z0))(1 + σω(z0))

}
= �

{
δeiθ (1 + σ)

(1 − eiθ )(1 + σ eiθ )

}

= δ(σ + 1)
2(σ − 1)

≥ (σ + 1)
2(σ − 1)

.

Therefore,

�
{zf ′′

α,n(z)
f ′
α,n(z)

}
≥ − 1 + σ

2(1 − σ)
z ∈ U

which negates the hypothesis (19).
Hence, we conclude that |ω(z)| < 1 for all z ∈ U and:

f ′
α,n(z) ≺

(
1 + σ z
1 − z

)
, σ = 1, z ∈ U

and this obviously ends the proof.

Application of a subordination theorem
Let S∗

α,n(A,B, γ ) and Kα,n(A,B, γ ) denote the classes of functions fa,n ∈ Ha,n whose
coefficients satisfy conditions (15) and (16), respectively. We note that S∗

α,n(A,B, γ ) ⊆
S∗
α,n(A,B, γ ) and Kα,n(A,B, γ ) ⊆ Kα,n(A,B, γ ). Here, we consider an application of the
subordination result given in Lemma 1 to both classes S∗

α,n(A,B, γ ) and Kα,n(A,B, γ ).
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Theorem 5 Let fα,n(z) ∈ S∗
α,n(A,B, γ ). If 0 ≤ γ < 1, 0 < α ≤ 2, −1 ≤ B < A ≤ 1,

0 < A ≤ 1 and n > 0, then:
n(α − γ + 1)|B|

2
[
nα|B| + (1 − γ )(A + n|B|)]

(
fα,n ∗ gα

)
(z) ≺ gα(z) (20)

for every function gα in Kα and:

� (
fα,n(z)

)
> − [nα|B| + (1 − γ )(A + n|B|)]

n(α − γ + 1)|B| . (21)

The constant factor:
n(α − γ + 1)|B|

2 [nα|B| + (1 − γ )(A + n|B|)]
in the subordination result (20) is sharp.

Proof Let fα,n ∈ S∗
α,n(A,B, γ ) and let gα be any function in Kα . Then:

n(α − γ + 1)|B|
2 [nα|B| + (1 − γ )(A + n|B|)]

(
fα,n ∗ gα

)
(z) ≺ gα(z)

= n(α − γ + 1)|B|
2 [nα|B| + (1 − γ )(A + n|B|)]

(
z +

∞∑
k=1

ak+1bk+1zkα+1
)
.

Thus, by Definition 2, the subordination result (20) will hold true if:{
n(α − γ + 1)|B|

2 [nα|B| + (1 − γ )(A + n|B|)]ak
}∞

k=1

is a subordinating factor sequence, with a1 = 1, appealing to Lemma 1, this is equivalent
to:

�
{
1 +

∞∑
k=1

n(α − γ + 1)|B|
[nα|B| + (1 − γ )(A + n|B|)]akz

(k−1)α+1
}

> 0 (z ∈ U). (22)

Since nk (kα − γ + 1) |B|k
Ak is an increasing function of k (k ≥ 1), we have that:

�
{
1 +

∞∑
k=1

n(α − γ + 1)|B|
[nα|B| + (1 − γ )(A + n|B|)]akz

(k−1)α+1
}

= �
{
1 + n(α − γ + 1)|B|

M
z + A

M

∞∑
k=2

n(α − γ + 1)
|B|
A

akz(k−1)α+1
}

≥ 1 − n(α − γ + 1)|B|
M

r − A
M

∞∑
k=2

nk−1
(
(k − 1)α − γ + 1

) |B|k−1

Ak−1 akr(k−1)α+1

> 1 − n(α − γ + 1)|B|
[nα|B| + (1 − γ )(A + n|B|)] r − A (1 − γ )

[nα|B| + (1 − γ )(A + n|B|)] r
α+1

> 1 − n(α − γ + 1)|B|
[nα|B| + (1 − γ )(A + n|B|)] r − A (1 − γ )

[nα|B| + (1 − γ )(A + n|B|)] r = 1 − r > 0

(23)

(|z| = r < 1) ,
whereM = [nα|B| + (1 − γ )(A + n|B|)].
Therefore, (22) holds true in U and this obviously proves the inequality (20) while (21)
follows by taking:

gα(z) = z
1 − zα

∈ Kα
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in (20). Now, suppose that we consider the function qα,n(z) of the form:

qα,n(z) = z − 1 − γ

n(α − γ + 1) |B|
A
zα+1

which belongs to the class S∗
α,n(A,B, γ ). Then, using (20), we have that:

n(α − γ + 1)|B|
2 [nα|B| + (1 − γ )(A + n|B|)] .qα,n(z) ≺ z

1 − zα
(z ∈ U)

which can easily be verified that for 0 ≤ γ < 1, 0 < α ≤ 2, −1 ≤ B < A ≤ 1, 0 < A ≤ 1,
n ≥ 0 and |z| ≤ r:

min
{
�

(
n(α − γ + 1)|B|

2 [nα|B| + (1 − γ )(A + n|B|)] .qα,n(z)
)}

= −1
2

(z ∈ U)

and this evidently completes the proof of Theorem 5. For various choices of the parame-
ters involved, several interesting results are obtained. Given below are few instances.

Corollary 3 Let fα,n(z) ∈ S∗
α,n(1,−1, γ ). Then:

n(α − γ + 1)
2 [nα + (1 − γ )(1 + n)]

(
fα,n ∗ gα

)
(z) ≺ gα(z)

for every function gα in Kα and:

� (
fα,n(z)

)
> − [nα + (1 − γ )(1 + n)]

n(α − γ + 1)
.

The constant factor:
n(α − γ + 1)

2 [nα + (1 − γ )(1 + n)]
is sharp.

Corollary 4 Let fα,1(z) ∈ S∗
α,1(1,−1, γ ). Then:

(α − γ + 1)
2(α − 2γ + 2)

(
fα,1 ∗ gα

)
(z) ≺ gα(z)

for every function gα in Kα and:

� (
fα,1(z)

)
> − (α − 2γ + 2)

(α − γ + 1)
.

The constant factor:
(α − γ + 1)

2 (α − 2γ + 2)
is sharp.

Corollary 5 [9, 10] Let f1,1(z) ∈ S∗
1,1(1,−1, γ ). Then:

(2 − γ )

2 (3 − 2γ )

(
f1,1 ∗ g1

)
(z) ≺ g1(z)

for every function g1 in K1 and:

� (
f1,1(z)

)
> − (3 − 2γ )

(2 − γ )
.

The constant factor:
(2 − γ )

2 (3 − 2γ )
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is sharp.

Corollary 6 [9–11] Let f1,1(z) ∈ S∗
1,1(1,−1, 0). Then:

1
3

(
f1,1 ∗ g1

)
(z) ≺ g1(z)

for every function g1 in K1 and:

� (
f1,1(z)

)
> −3

2
.

Theorem 6 Let fα,n(z) ∈ Kα,n(A,B, γ ). If 0 ≤ γ < 1, 0 < α ≤ 2, −1 ≤ B < A ≤ 1 and
n > 0, then:

n(α + 1)(α − γ + 1)|B|
2 [nα(α + 1)|B| + (1 − γ )(A + n(α + 1)|B|)]

(
fα,n ∗ gα

)
(z) ≺ gα(z) (24)

for every function gα in Kα and:

� (
fα,n(z)

)
> − [nα(α + 1)|B| + (1 − γ )(A + n(α + 1)|B|)]

n(α + 1)(α − γ + 1)|B| . (25)

The constant factor:
n(α + 1)(α − γ + 1)|B|

2 [nα(α + 1)|B| + (1 − γ )(A + n(α + 1)|B|)]
in the subordination result (24) cannot be replaced by a larger one, and the proof of which
is similar to that of Theorem 3.

Corollary 7 Let fα,n(z) ∈ Kα,n(1,−1, γ ). Then:
n(α + 1)(α − γ + 1)

2 [nα(α + 1) + (1 − γ )(1 + n(α + 1))]
(
fα,n ∗ gα

)
(z) ≺ gα(z) (26)

for every function gα in Kα and:

� (
fα,n(z)

)
> − [nα(α + 1) + (1 − γ )(1 + n(α + 1))]

n(α + 1)(α − γ + 1)
. (27)

The constant factor:
n(α + 1)(α − γ + 1)

2 [nα(α + 1) + (1 − γ )(1 + n(α + 1))]
cannot be replaced by a larger one.

Corollary 8 Let fα,1(z) ∈ Kα,1(1,−1, γ ). Then:
(α + 1)(α − γ + 1)

2 [α(α + 1) + (1 − γ )(α + 2)]
(
fα,1 ∗ gα

)
(z) ≺ gα(z) (28)

for every function gα in Kα and:

� (
fα,1(z)

)
> − [α(α + 1) + (1 − γ )(α + 2)]

(α + 1)(α − γ + 1)
. (29)

The constant factor:
(α + 1)(α − γ + 1)

2 [α(α + 1) + (1 − γ )(α + 2)]
cannot be replaced by a larger one.
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Corollary 9 [9, 10] Let f1,1(z) ∈ K1,1(1,−1, γ ). Then:
2 − γ

5 − 3γ
(
f1,1 ∗ g1

)
(z) ≺ g1(z) (30)

for every function g1 in K1 and:

� (
f1,1(z)

)
> − 5 − 3γ

2(2 − γ )
. (31)

The constant factor:
2 − γ

5 − 3γ
cannot be replaced by a larger one.

Corollary 10 [9, 10] Let f1,1(z) ∈ K1,1(1,−1, 0). Then:
2
5

(
f1,1 ∗ g1

)
(z) ≺ g1(z) (32)

for every function g1 in K1 and:

� (
f1,1(z)

)
> −5

4
. (33)

The constant factor:
2
5

cannot be replaced by a larger one.
For further illustrations on the applications of the subordination result stated in Lemma

1, interested reader can see [4, 6, 8–11].
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