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Abstract

Background: Multidrug resistance efflux pumps and biofilm formation are mechanisms by which bacteria can
evade the actions of many antimicrobials. Antibiotic resistant non-typhoidal Salmonella serovars have become wide
spread causing infections that result in high morbidity and mortality globally. The aim of this study was to evaluate
the efflux pump activity and biofilm forming capability of multidrug resistant non-typhoidal Salmonella (NTS)
serovars isolated from food handlers and animals (cattle, chicken and sheep) in Lagos.

Methods: Forty eight NTS serovars were subjected to antibiotic susceptibility testing by the disc diffusion method
and phenotypic characterization of biofilm formation was done by tissue culture plate method. Phenotypic
evaluation of efflux pump activity was done by the ethidium bromide cartwheel method and genes encoding
biofilm formation and efflux pump activity were determined by PCR.

Results: All 48 Salmonella isolates displayed resistance to one or more classes of test antibiotics with 100%
resistance to amoxicillin-clavulanic acid. Phenotypically, 28 (58.3%) of the isolates exhibited efflux pump activity.
However, genotypically, 7 (14.6%) of the isolates harboured acrA, acrB and tolC, 8 (16.7%) harboured acrA, acrD and
tolC while 33 (68.8%) possessed acrA, acrB, acrD and tolC. All (100%) the isolates phenotypically had the ability to
form biofilm with 23 (47.9%), 24 (50.0%), 1 (2.1%) categorized as strong (SBF), moderate (MBF) and weak (WBF)
biofilm formers respectively but csgA gene was detected in only 23 (47.9%) of them. Antibiotic resistance frequency
was significant (p < 0.05) in SBF and MBF and efflux pump activity was detected in 6, 21, and 1 SBF, MBF and WBF
respectively.

Conclusion: These data suggest that Salmonella serovars isolated from different food animals and humans possess
active efflux pumps and biofilm forming potential which has an interplay in antibiotic resistance. There is need for
prudent use of antibiotics in veterinary medicine and scrupulous hygiene practice to prevent the transmission of
multidrug resistant Salmonella species within the food chain.
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Background
Salmonella are motile rod-shaped (bacilli) Gram nega-
tive bacteria of the family Enterobacteriaceae. Non-
typhoidal salmonella serovars mostly cause gastroenter-
itis, bacteremia, and focal infection. Ingestion of contam-
inated animal products, such as poultry, pork, and other
meats is a major route of transmission in humans. Direct
contact is also a potential route of transmission in ani-
mals such as chicks, ducklings and other animals that
may also transmit the bacterium to humans [1].
Antimicrobial resistance remains a global public health

concern threatening the effectiveness of antibacterial
therapy. Different variants of bacterial pathogens isolated
globally have now become multidrug resistant. Antibac-
terial resistance occurs by numerous mechanisms in-
cluding enzymatic inactivation, modification of drugs,
drug target alteration or protection, and efflux of drugs
through efflux pumps. Antibiotic resistance has been
seen in both typhoidal and non-typhoidal serovars [2].
Food animals and handlers contribute largely to the
spread of zoonotic multidrug resistant non-typhoidal
Salmonella. Efflux generally involves transportation of a
substance out of the cell. Efflux pumps play an essential
role in the physiology of bacteria by mediating the entry
and extrusion of essential nutrients, metabolic waste and
xenobiotics. Bacterial efflux systems generally fall into
five classes, the major facilitator (MF) superfamily, the
ATP-binding cassette (ABC) family, the resistance-
nodulation-division (RND) family, the small multidrug
resistance (SMR) family and the multidrug and toxic
compound extrusion (MATE) family [3]. Salmonella has
at least one MDR pump from each family with the ex-
ception of the SMR family of efflux pumps, all of the
identified MDR efflux systems also exist in E. coli with
the exception of MdsABC (mds-multidrug transporter
for Salmonella) which is unique to Salmonella [4]. The
best characterised of the RND pumps in Salmonella is
AcrB and its tripartite complex AcrAB-TolC which has
many different substrates making this efflux pump (and
other RND homologues) a key mediator of multidrug re-
sistance in Gram negative bacteria including many

Enterobacteriaceae [5]. Another recently described fam-
ily of transport protein is the Proteobacterial antimicro-
bial compound efflux (PACE) systems that is said to be
considered across many Gram-negative pathogens in-
cluding, Klebsiella, Burkholderia, Salmonella, Pseudo-
monas and Enterobacter species. They have been shown
to mediate resistance to several antimicrobials including
chlorhexidine, dequalinium, acriflavine, benzalkonium
and proflavine [6]. Biofilm formation contributes largely
to the resistance of bacteria to different classes of anti-
microbials. They can act synergistically with efflux
pumps leading to elevated levels of clinical significance.
Salmonella biofilms are encased in a matrix largely com-
posed of two major components; curli and cellulose.
They are involved in many functions including adhesion,
cell aggregation, environmental persistence and biofilm
formation [7]. This study was aimed at evaluating the
antibiotic resistance profile of NTS serovars as well as
their biofilm forming and efflux pump activity
potentials.

Methods
Study design and bacterial strains
This descriptive study was conducted in Lagos south-
western Nigeria. Forty eight NTS serovars isolated from
food animals comprising 28 isolates from chicken, 3
from cattle, 9 from sheep and 8 from apparently healthy
food handlers as previously reported [8].

Antibiotic susceptibility testing
Antibiotic susceptibility testing (AST) was done accord-
ing to the guidelines of the European committee on anti-
microbial susceptibility testing [9] using the disc
diffusion method. A loop full of a 24 h brain heart infu-
sion broth culture of isolates were streaked on nutrient
agar plate incubated for 24 h at 37 °C. One or two col-
onies were picked and emulsified in 5 mL of normal sa-
line and adjusted to 0.5 McFarland standard. Using a
sterile swab stick, bacterial suspensions were applied to
the surface of Muller-Hinton agar (Oxoid, Basingstoke,
UK) after which test antibiotic discs were applied and

Table 1 List of Primers Used in Targeting Genes Encoding Efflux Pump and Biofilm Forming Ability

Primer Sequence (5′-3′) Product Size (bp) Reference

acrA-FW
acrA -RV

CTCTCAGGCAGCTTAGCCCTAA
AACAGTCAAAACTGAACCTCTGCA

106 [14]

acrB-FW
acrB-RV

GGTCGATTCCGTTCTCCGTTA
ATGACGTTTACTTCCAGGTAG

104 [14]

acrD-FW
acrD-RV

AATTGTGCGTGAAGCGGT
GCTACAGCGCCATAGTAA

100 [15]

tolC-FW
tolC-RV

AAGCCGAAAAACGCAACCT
GATGGTCACTTACCGACTCTG

100 [14]

csgA-FW
csgA-RV

GCAATCGTATTCTCCGGTAG
GATGAGCGGTCGCGTTGTTA

418 [16]
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incubated at 37 °C for 24 h. Zones of inhibition were
measured and interpreted as Resistance (R), Intermidiate
(I) and Sensitive (S) with break points of 22–19 for cef-
tazidime (30 μg), 19–19 for cefuroxime (30 μg), 17–14
for gentamicin (10 μg), 17–17 for cefixime (5 μg), 24–22
for ofloxacin (5 μg), 19–19 for amoxilin + clavulanic acid
(30 μg), 11–11 for nitrofurantion (300 μg), 25–22 for cip-
rofloxacin (5 μg), 15–11 for tetracycline (30 μg), 19–15
for nalidixic acid (30 μg) and 22–17 for Imipenem
(30 μg) (range implies the values between sensitivity ≤
and resistance >). AST was done in duplicates and
Escherichia coli ATCC 25922 was used as quality control
organism.

Phenotypic characterization of biofilm formation
Tissue culture plate method
Biofilm formation was evaluated by the tissue plate
method according to Christensen et al. [10] and Cavant
et al. [11] with slight modifications. Isolates were inocu-
lated into brain heart infusion broth (Oxoid, Basing-
stoke, UK) supplemented with 2% of sucrose and
incubated for 18 h at 37 °C. A one in 100 dilution of the
culture was made with fresh sterile brain heart infusion
broth and 0.2 mL was dispensed into individual wells of
a 96 well tissue culture plate. Sterile broth served as
negative control and Salmonella Typhimurium 14028
was inoculated into separate wells as positive control. In-
cubation was done at 37 °C for 24 h. After incubation
content of each well was gently removed by tapping the
plates. The wells were washed four times with 0.2 mL of
phosphate buffer saline (PBS pH 7.2) to remove free-
floating planktonic bacteria. The plates were then
stained with crystal violet (0.1% w/v) and allowed to stay
for 45 min. Excess stain was rinsed off by washing with
deionized water thrice and plates were allowed to air
dry. Crystal violet incorporated by the adherent cells was
solubilized by adding 200 μL of 33% glacial acetic acid

(Merck, Darmstadt, Germany). The optical density (OD)
of each well was determined with an Emax® Plus Micro-
plate Reader (Molecular Devices San Jose, CA) at wave
length 570 nm. The experiment was performed in tripli-
cates and repeated three times. Absorbance was calcu-
lated by subtracting the OD570 of control from that of
the assays OD570 with mean value determined for each
isolate. Data obtained was used to classify OD570 values
< 0.120 as weak biofilm formers, values between 0.120–
0.240 as moderate biofilm formers, and > 0.240 as strong
biofilm formers.

Table 2 Percentage Susceptibility of Isolates to Various Classes of Antibiotics

Class of Antibiotics Antibiotics Sensitive (%) Resistant (%)

Beta-lactam Amoxicillin-clavulanic acid 0 100

Ceftazidime 6.2 93.8

Cefuroxime 6.2 93.8

Cefixime 72.9 27.1

Carbapenem Imipenem 100 0

Aminoglycoside Gentamicin 52.1 47.9

Quinolone Ciprofloxacin 60.4 39.6

Ofloxacin 68.7 31.3

Nalidixic acid 58.3 41.7

Tetracycline Tetracycline 31.2 68.8

Others Nitrofurantoin 100 0

Fig. 1 Efflux pump activity of Salmonella isolates determined by the
ethidium bromide cartwheel method. Isolates A, B, C, D, E, F, G, H
are positive for efflux pump activity as they did not fluoresce under
UV light. Isolate I lacks efflux pump activity and fluoresced because
of ethidium bromide retention
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Determination of efflux pump activity by Ethidium bromide
cartwheel method
The ethidium bromide cartwheel method according to
Martins et al. [12] was used in evaluating efflux pump
activity in isolates. Approximately 106 cells per mL of
Salmonella isolates were streaked on Muller-Hinton agar
plates containing 0 mg/L, 0.5 mg/L, 1 mg/l, 1.5 mg/L and
2mg/L concentrations of EtBr and incubated at 37 °C
for 24 h. After incubation, the plates were examined
under UV light. Fluorescence of isolates at different con-
centrations of EtBr were noted. Isolates without fluores-
cence indicated active efflux pump activity while those
that fluoresced lacked efflux pump activity.

Detection of efflux pump and biofilm encoding genes
Genomic DNA of isolates was extracted according to
the method of Kpoda et al. [13] Four efflux pump en-
coding genes (acrA, acrB, acrD tolC) and one biofilm
formation encoding gene (csg A) were assayed for by
monoplex PCR targeting specific primers listed in
Table 1. A 20 μL PCR reaction was used which con-
tained 10.8 μL nuclease free water, 0.6 μL forward pri-
mer, 0.6 μL reverse primer, 4 μL DNA template and 4 μl
of 5X PCR Master Mix (7.5 mM MgCl2, 1Mm dNTPs,
0.4M Tris-HCl, 0.1M (NH4)2SO4, 0.1% Tween-20, FIRE
Pol DNA Polymerase) (Solis BioDyne Estonia). PCR was
carried out in an Eppendorf thermal cycler (Eppendorf
AG, Hamburg, Germany) with PCR programming condi-
tions of initial DNA denaturation at 95 °C for 5 min,

Fig. 2 Occurrence of multidrug resistance and efflux pump activity of biofilm forming isolates. SBF: Strong biofilm formers, MBF: Moderate biofilm
former, WBF: Weak biofilm former, EF: Efflux pump activity

Fig. 3 Biofilm forming potential and antibiotic resistance frequency.
Values are expressed as means±SD, *P < 0.05
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followed by 30 cycles of denaturation at 95 °C for 30 s,
annealing at 57 °C for csgA, 56 °C for acrA, 54 °C for tolC
and 55 °C for acrB and 51 °C for acrD for 30 s and exten-
sion at 72 °C for 2 min, followed by a final extension at
72 °C for 10 min. PCR products were electrophoresed at
100 V for 1 h in 2% agarose gel stained with ethidium
bromide and visualized under ultraviolet trans-
illuminator (Cleaver Scientific Ltd). A 100 bp DNA lad-
der (Solis Biodyne, Estonia) was used as a molecular
weight marker.

Data analysis
Graphics and data analysis were performed by Microsoft
Excel (Microsoft Cooperation, 2013 USA) and GraphPad
Prism version 8.0.2 (GraphPad Software Inc. USA). One
way ANOVA test was used to determined association
between variables. Statistical significance was considered
for p < 0.05.

Results
All 48 (100%) Salmonella isolates were susceptible to
nitrofurantion and imipenem. They all (100%) were
however, resistant to amoxicillin-clavulanic acid. Forty
five (93.8%) of the isolates were resistant to ceftazidime
and cefuroxime, 13 (27.1%) were resistant to cefixime,
23 (47.9%) were resistant to gentamicin, 15 (31.3%) were
resistant to ofloxacin, 19 (39.6%) were resistant to cipro-
floxacin, 33 (68.8%) were resistant to tetracycline and 20
(41.7%) were resistant to nalidixic acid as shown in
Table 2. Twenty five (52.1%) of the isolates were multi-
drug resistant (MDR).
All Salmonella isolates were biofilm formers and 23

(47.9%), 24 (50.0%) and 1 (2.1%) of the isolates were
strong (SBF), moderate (MBF) and weak (WBF) bio-
film formers respectively. Also 28 (58.3%) of the

isolates phenotypically displayed efflux pump activity
as they did not fluoresce under UV light since they
did not retain ethidium bromide within their cells as
shown in Fig. 1. Of the 25 MDR isolates 7 were SBF
and 18 were MBF while the WBF was not MDR. Fur-
thermore, efflux pump activity was detected in 6, 21,
and 1 SBF, MBF and WBF respectively as shown in
Fig. 2. It was also observed that antibiotic resistance
frequency was significant (p < 0.05) in SBF and MBF
as shown in Fig. 3. Although all the isolates had the
ability to form biofilm, csgA gene was only detected
in 23 (47.9%) of the isolates as shown in Fig. 4.
acrA, acrB and tolC were detected in 7 (14.6%) of the

isolates, acrA, acrD and tolC were detected in 8 (16.7%)
of the isolates while 33 (68.8%) possessed all four genes
acrA, acrB, acrD and tolC. Although majority of isolates
from chicken, sheep and human harboured all four ef-
flux pump genes, some did not phenotypically exhibit ef-
flux pump activity as shown in Table 3.

Discussion
In this study all Salmonella isolates were sensitive to
imipenem and nitrofurantoin indicating a low pressure
on the use of these antibiotics. This is in line with the
study of Akinyemi et al. [17] who reported a 100% sensi-
tivity of Salmonella spp. isolated from different sources
in Nigeria to imipenem. Similarly, Albert et al. [18] in
their findings reported a total sensitivity of NTS isolated
from blood stream infection in Kuwait to imipenem.
However, antibiotic resistance to various classes of anti-
biotics was recorded in this study with 52.1% of MDR
isolates. Salmonella serovars showed high resistance to
third generation cephalosporins where 93.8% were resist-
ant to ceftazidime and cefuroxime and 27.1% were re-
sistant to cefixime. This is in line with the report of

Fig. 4 Agarose gel image of PCR products showing bands for csgA (418 bp). Lane M: Molecular maker, Lane 1, 5, 6, 9, 11, 12, 15, 18, 21, 22, 23, 27,
28, 29, 30, 31, 32, 34, 35 and 37 are positive for csgA
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Table 3 Source of Salmonella Serovars, their Biofilm Forming Potential, Efflux Pump Activity and Efflux Pump Genotype

S/N Code aSource bSerovar Biofilm Potential Efflux Pump Activity Efflux Pump Genotype

1 A1 Chicken S. Ebrie Moderate Positive acrA, acrB, tolC

2 A2 Chicken S. Budapest Moderate Negative acrA, acrD, tolC

3 A3 Chicken S. Muenster Moderate Positive acrA, acrB, acrD, tolC

4 A4 Chicken S. Dabou Strong Positive acrA, acrB, acrD, tolC

5 A5 Chicken S. Budapest Strong Positive acrA, acrB, acrD, tolC

6 A6 Chicken S. Tennyson Moderate Positive acrA, acrB, acrD, tolC

7 A7 Chicken S. Budapest Moderate Positive acrA, acrB, acrD, tolC

8 A8 Chicken S. Brandenburg Moderate Positive acrA, acrB, acrD, tolC

9 A9 Chicken S. Anecho Strong Positive acrA, acrB, tolC

10 A10 Chicken S. Minna Moderate Positive acrA, acrB, acrD, tolC

11 A11 Chicken S. Budapest Moderate Negative acrA, acrD, tolc

12 A12 Chicken S. Budapest Moderate Positive acrA, acrB, acrD, tolC

13 A13 Chicken S. Budapest Strong Negative acrA, acrD, tolC

14 A14 Chicken S. Budapest Moderate Positive acrA, acrB, tolC

15 A15 Chicken S. Budapest Strong Negative acrA, acrD, tolC

16 A16 Chicken S. Budapest Moderate Positive acrA, acrD, tolC

17 A17 Chicken S. Agodi Strong Negative acrA, acrB, acrD, tolC

18 A18 Chicken S. Budapest Moderate Positive acrA, acrB, acrD, tolC

19 A19 Chicken S. Essen Strong Negative acrA, acrB, acrD, tolC

20 A20 Chicken S. Budapest Moderate Positive acrA, acrB, acrD, tolC

21 A21 Chicken S. Anecho Strong Positive acrA, acrB, acrD, tolC

22 A22 Chicken S. Agodi Strong Negative acrA, acrD, tolC

23 A23 Chicken S. Kaapstad Moderate Positive acrA, acrB, acrD, tolC

24 A24 Chicken S. Anecho Strong Negative acrA, acrB, acrD, tolC

25 A25 Chicken S. Ealing Strong Negative acrA, acrB, acrD, tolC

26 A26 Chicken S. Wichita Moderate Negative acrA, acrB, acrD, tolC

27 A27 Chicken S. Budapest Moderate Positive acrA, acrB, acrD, tolC

28 A28 Chicken S. Budapest Strong Negative acrA, acrB, acrD, tolC

29 S1 Sheep S. Chomedey Strong Positive acrA, acrB, acrD, tolC

30 S2 Sheep S. Dahra Moderate Positive acrA, acrB, acrD, tolC

31 S3 Sheep S. Yovokome Moderate Positive acrA, acrB, acrD, tolC

32 S4 Sheep S. Sculcoates Strong Positive acrA, acrB, tolC

33 S5 Sheep S. Berlin Strong Negative acrA, acrB, acrD, tolC

34 S6 Sheep S. Essen Strong Negative acrA, acrB, acrD, tolC

35 S7 Sheep S. Livingstone Strong Negative acrA, acrB, acrD, tolC

36 S8 Sheep S. Mura Moderate Positive acrA, acrB, acrD, tolC

37 S9 Sheep S. Orion Strong Negative acrA, acrB, acrD, tolC

38 H1 Human S. Tyhpimurium Moderate Positive acrA, acrB, acrD, tolC

39 H2 Human S. Portland Moderate Positive acrA, acrB, acrD, tolC

40 H3 Human S. Limete Strong Negative acrA, acrB, tolC

41 H4 Human S. Takoradi Weak Positive acrA, acrD, tolC

42 H5 Human S. Chagoua Strong Negative acrA, acrB, acrD, tolC

43 H6 Human S. Huettwillen Strong Negative acrA, acrB, acrD, tolC

44 H7 Human S. Paratyphi C Strong Negative acrA, acrB, acrD, tolC
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Musa et al. [19] who reported multiple resistance pat-
terns of Salmonella species isolated from human stool
samples and raw meat to cefuroxime, ceftazidime and
ceftriaxone in Niger state Nigeria. In a previous study,
Akinyemi et al. [20] in Lagos Nigeria also reported in-
crease in Salmonella spp. resistance to third generation
cephalosporin. Resistance of NTS serovars to quinolones
in this study was also common. Twenty (41.7%), 15
(31.3%) and 19 (39.6%) Salmonella serovars were resist-
ant to nalidixic acid, ofloxacin and ciprofloxacin respect-
ively. Quinolones most especially ciprofloxacin remains
a drug of choice for the treatment of Salmonella. How-
ever the wide spread resistance to this antibiotic is wor-
risome. Katiyo et al. [21] in a study between 2004 and
2015 of NTS bacteremia in England revealed a high re-
sistance to ciprofloxacin and nalidixic acid. All
Salmonella isolates in this study had biofilm forming
capability which comprised 23 (47.9%) of SBF, 24 (50%)
of MBF and 1 (2.1%) of WBF. Of these biofilm formers 7
of the SBF and 18 of the MBF were MDR indicating the
probable role of biofilm in mediating multidrug resist-
ance as the only WBF was not MDR. In a similar study,
Farahani et al. [22] reported a 34.5% prevalence of
strong biofilm forming MDR S. Enteritidis isolated from
poultry and clinical isolates. Furthermore, csgA gene was
detected in 23 (47.9%) of Salmonella isolates in this
study. csgA gene is known to facilitate biofilm formation
in Salmonella species as it is part of the csgBAC operon
that encodes the structural genes of curli fimbriae [23].
Efflux pumps are important mechanisms that mediate
antibiotic resistance in Salmonella. The resistance-
nodulation-division (RND) family of efflux pump to
which the acrAB-tolC and acrD belong has been widely
reported in E. coli and Salmonella spp. and is known to
confer MDR [24]. In this study a combination of all four
gene acrA, acrB, acrD and tolC were detected in 33
(68.8%) of the Salmonella isolates, while acrA, acrB and
tolC were present in 7 (14.6%) and 8 (16.7%) harboured
acrA, acrD and tolC. Of these isolates that possessed
these genes, 28 (58.3%) comprising 6 SBF, 21 MBF and 1
WBF phenotypically exhibited efflux pump activity. The
presence of these genes could be linked to the observed
resistance profile of the isolates. In the report of
Yamasaki et al. [25] it was detected that the overexpres-
sion of acrD resulted in increased drug resistance in S.

Typhimurium. Similarly, Shen et al. [26] reported the in-
volvement of AcrAB-TolC efflux pump system in medi-
ating fluoroquinolone resistance in Salmonella serovars
isolated from meat and human in China. The role of
these efflux pumps transcends mediating antibiotic re-
sistance, their role in biofilm formation and other
physiological functions have been reported. Buckner
et al. [27] reported the role of acrD efflux pump in the
biology of Salmonella including virulence, basic metab-
olism and stress responses. Baugh et al. [28] also demon-
strated a link between biofilm formation and efflux
pump systems of Salmonella. Hence, the presence of
these efflux pumps in Salmonella isolates as observed in
this study bring to bear intrinsic mechanism explored by
this pathogen in extruding extraneous materials includ-
ing antibiotics and in maintaining viability.

Conclusion
In this study several Salmonella serovars isolated from
food animals and food handlers were multidrug resistant
which would have been mediated by efflux pump activity
and biofilm formation potentials which they possessed.
Beyond mediating antibiotic resistance, biofilm forma-
tion by Salmonella spp. also enable them to be persistent
in food processing environments hence promoting their
transmission and colonization of multiple hosts. There-
fore, food, personal and environmental hygiene is im-
perative with constant epidemiological surveillance to
track and control the transmission of the pathogen
within the food chain.
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