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Abstract

Recently, so-called tree-based phylogenetic networks have attracted considerable attention. These networks can be
constructed from a phylogenetic tree, called the base tree, by adding additional edges. The primary aim of this
study is to provide sufficient criteria for tree-basedness by reducing phylogenetic networks to related graph
structures. Even though it is generally known that determining whether a network is tree-based is an NP-complete
problem, one of these criteria, namely edge-basedness, can be verified in linear time. Surprisingly, the class of edge-
based networks is closely related to a well-known family of graphs, namely, the class of generalized series-parallel
graphs, and we explore this relationship in full detail. Additionally, we introduce further classes of tree-based
networks and analyze their relationships.
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Introduction
Phylogenetic networks are of considerable interest, as
they allow the representation of non-treelike evolution-
ary events, such as hybridization and horizontal gene
transfer.
Various classes of phylogenetic networks have been

introduced and studied. One of them is the class of so-
called tree-based networks. Roughly, a phylogenetic
network is tree-based if it can be obtained from a
phylogenetic tree by adding additional edges.
[1] first introduced this concept for binary rooted

phylogenetic networks, and more recently, [2] extended
it to binary unrooted networks, [3] to non-binary rooted
networks, and [4, 5] to non-binary unrooted networks.
In the present study, we focus on unrooted networks

and consider both the binary and non-binary cases.
We first introduce three procedures that reduce a

phylogenetic network to related graphs. This leads to
sufficient criteria ensuring that a phylogenetic network
is tree-based (whether it is binary or not). Some of these

criteria are based on classical graph theory, particularly
on the theory of Hamiltonian paths, cycles, and graphs.
Another sufficient criterion for tree-basedness is a prop-
erty to which we refer as edge-basedness. This criterion is
again related to classical graph theory, namely, to general-
ized series-parallel graphs (GSP graphs). We will intro-
duce this concept in full detail, highlight the relationship
between edge-based graphs and GSP graphs and analyze
its implications. In particular, we remark that edge-
basedness can be tested in linear time because GSP graphs
can be recognized in linear time. This is also of practical
relevance, as in general, the problem of determining
whether a network is tree-based is NP-complete [2].
The remainder of this paper is organized as follows. In

Section Methods, we introduce some basic phylogenetic
and graph-theoretical concepts and terminology. We
then introduce three procedures: leaf cutting, shrinking,
and connecting. These reduce a phylogenetic network to
related graphs. This leads to sufficient criteria for tree-
basedness (e.g., edge-basedness) and some classes of
phylogenetic networks that are necessarily tree-based.
After summarizing the relationships between these

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: email@mareikefischer.de
1Institute of Mathematics and Computer Science, University of Greifswald,
Walther-Rathenau-Straße 47, 17489 Greifswald, Germany
Full list of author information is available at the end of the article

Visual Computing for Industry,
Biomedicine, and Art

Fischer et al. Visual Computing for Industry, Biomedicine, and Art            (2020) 3:12 
https://doi.org/10.1186/s42492-020-00043-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s42492-020-00043-z&domain=pdf
http://orcid.org/0000-0002-9429-0859
http://orcid.org/0000-0002-4275-5546
http://creativecommons.org/licenses/by/4.0/
mailto:email@mareikefischer.de


classes, we conclude the paper in Section Discussion and
Conclusion, where we discuss our results and indicate
possible directions of future research.

Methods
We use mathematical proofs based on the definitions
and methods presented in this section.

Phylogenetic and basic graph-theoretical concepts
Throughout this paper, G = (V(G), E(G)) (or G = (V, E)
for brevity) will denote a graph with vertex set V(G)
and edge set E(G). We note that in this study, graphs
may contain parallel edges and loops. If we require
graphs without parallel edges and/or loops, we will
specifically use the term simple graphs, and when
parallel edges are allowed but loops are not, we will
use the term loopless graphs. Furthermore, we will use
the notation NG(v) (or N(v) for brevity if there is no ambi-
guity) to denote the neighborhood of a vertex v in G, that
is, the set of vertices adjacent to v in G. We note that if G is
a simple graph without parallel edges and loops, we have
∣NG(v) ∣ = deg(v).
Let now X denote a finite set (e.g., of taxa or species)

with |X| ≥ 1. An unrooted phylogenetic network Nu (on X)
is a connected simple graph G = (V, E) with X ⊆V and no
vertices of degree 2, where the set of degree-1 vertices (re-
ferred to as the leaves or taxa of the network) is bijectively
labeled by X. Such an unrooted network is called unrooted
binary if every inner vertex u ∈V ∖X has degree 3. It is
called a phylogenetic tree if the underlying graph structure
is a tree. In the following, we denote by Ė the set of inner
edges of Nu, that is, those edges that are not incident to a
leaf. A phylogenetic network Nu = (V, E) on X is called
tree-based if there is a spanning tree T = (V, E′) in Nu

(with E′ ⊆ E) whose leaf set is equal to X. This spanning
tree is then called a support tree for Nu. Moreover, the
tree T′ that can be obtained from T by suppressing poten-
tial degree-2 vertices is called a base tree for Nu. We note
that the existence of a support tree T for Nu implies the
existence of a base tree T′ for Nu.
In the analysis of networks, or more generally, con-

nected graphs, it is often useful to decompose them into
simpler parts, which can then be analyzed individually.
Therefore, let G = (V, E) be a connected graph. A cut
edge, or bridge, of G is an edge e whose removal discon-
nects the graph. Similarly, a vertex v is a cut vertex
(sometimes also called an articulation) if deleting v and
all its incident edges disconnects the graph. Moreover, a
set C of vertices whose removal disconnects the graph is
called a separating set or vertex cut.
If after the removal of a cut edge, one of the induced

connected components of the resulting graph is a single

vertex, the corresponding cut edge is called trivial. We
call Nu a simple network if all of its cut edges are trivial.
A blob in a connected graph (and more specifically,

in a network) is a maximal connected subgraph that
has no cut edge. Note, however, that a blob may con-
tain cut vertices. An example of such a blob can be
seen in Fig. 1. Moreover, we note that we consider a
network to be a “tree” with blobs as vertices [6]. In
contrast, a block in a connected graph G is a max-
imal biconnected subgraph of G, that is, a maximal
induced subgraph that remains connected if any of its
vertices is removed. In particular, a block does not
contain cut vertices.
Following [5], we call a graph G (or a network Nu)

proper if the removal of any cut edge or cut vertex in
the graph (or the network) leads to connected compo-
nents, each containing at least one leaf.
Finally, two important operations on graphs that will

be used in the following are edge subdivision and vertex
suppression. Let now G be a graph with some edge
e = {u, v}. Then, we say that we subdivide e by deleting e,
adding a new vertex w, and adding the edges {u,w} and
{w, v}. The new degree-2 vertex w is sometimes also
called an attachment point. We note that we also often
refer to the vertex adjacent to a vertex x of degree 1 (i.e.,
adjacent to a leaf x) as the attachment point of x, even if
it is a vertex of degree higher than 2. Conversely, given a
degree-2 vertex w with adjacent vertices u and v, sup-
pressing w implies deleting w and its two incident edges
{u,w} and {w, v}, and adding a new edge {u, v}.

Further graph-theoretical concepts
Before we can introduce three procedures for reducing a
phylogenetic network to related graphs, we recall some
basic concepts from classical graph theory. Most

Fig. 1 Unrooted non-binary phylogenetic network Nu on leaves 1, 2,
3, and 4. The gray areas correspond to the blobs of Nu. Notice that
the biggest blob contains a cut vertex (depicted as a square vertex).
Moreover, notice that Nu can be considered as a tree with blobs as
vertices, as the cut edges and blobs of Nu induce a “tree structure”
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importantly, we recall the notion of Hamiltonian paths
and Hamiltonian cycles.
A Hamiltonian path in a graph is a path that visits

each vertex exactly once. If this path is a cycle, we
call the path a Hamiltonian cycle. Moreover, a graph
that contains a Hamiltonian cycle is called a Hamil-
tonian graph. A graph is called Hamilton connected if
for every two vertices u, v, there is a Hamiltonian
path from u to v. In particular, we note that every
Hamilton connected graph is Hamiltonian because
the strong property of Hamilton connectedness also
holds for adjacent vertices, so that the edge e = {u, v}
together with the Hamiltonian path from u to v
forms a Hamiltonian cycle. As has been noted by [2],
there is a strong connection between Hamiltonian
paths and tree-basedness of phylogenetic networks.
However, before we can elaborate on this in more de-
tail, we should introduce a few more concepts.
We first recall that the toughness t(G) of a graph G

(or, analogously, of a phylogenetic network Nu) is de-
fined as

t Gð Þ ¼ min
C

Cj j
c G−Cð Þ

where the minimum is taken over all separating sets C of
G, G − C denotes the (disconnected) graph that is ob-
tained by deleting all vertices of C from G and all edges
incident to C; and cðG−CÞ denotes the number of con-
nected components in G−C . The concept of toughness
plays an important role in the study of Hamiltonian
graphs [7, 8], and thus, as we will show, for tree-
basedness of a network as well.
Subsequently, we will consider chordal graphs. We re-

call that a graph is called chordal if each cycle of length
4 or more has a chord, that is, an edge that connects
two vertices of the cycle that are not adjacent in the
cycle [9]. We call a phylogenetic network chordal if its
underlying graph is chordal.
Finally, we recall that if a graph G can be converted

into another graph G′ by a sequence of vertex dele-
tions, edge deletions, and suppression of degree-2 ver-
tices, G′ is called a topological subgraph of G [10]. In
the present study, we will consider a restricted ver-
sion of topological subgraphs. In particular, we call a
graph G′ a restricted topological subgraph of a graph
G if G can be converted into G′ by a sequence of the
following operations:

1. Deletion of a leaf (and its incident edge).
2. Suppression of a vertex of degree 2.
3. Deletion of a copy of a multiple edge, that is, if e1 =

e2∈ E(G), then e2 is deleted.

4. Deletion of a loop, that is, if e = {u, u}∈ E(G), then
e is deleted.

We note that in this case, G′ is also a topological
subgraph, as the above operations are restricted
versions of the respective operations that lead to
topological subgraphs: leaf deletion is a special type
of vertex deletion, and the deletions of a multiple
edge or of a loop are special types of edge
deletions.
Finally, a connected and loopless graph G is

called a GSP graph if it can be reduced to a single
edge, that is, to the complete graph K2, by only ap-
plying operations 1–3, that is, by only deleting
leaves, suppressing degree-2 vertices, or deleting
parallel edges [11]. Similarly, a connected and loop-
less graph G is called a series-parallel graph (SP
graph) if it can be reduced to K2 by operations 2
and 3, that is, by suppressing degree-2 vertices or
deleting parallel edges [11].
Both GSP and SP graphs belong to the class of 2-

terminal graphs, as shown by the following definition:
Definition 1 (adapted from [11])

1. The graph K2 consisting of two vertices u and v
(called terminals) and a single edge {u, v} is a
primitive GSP graph.

2. If G1 and G2 are two GSP graphs with terminals u1,
v1 and u2, v2, respectively, then the graph obtained
by any of the following three operations is a GSP
graph:
(a) Series composition of G1 and G2: identifying v1

with u2 and specifying u1 and v2 as the
terminals of the resulting graph.

(b) Parallel composition of G1 and G2:
identifying u1 with u2 and v1 with v2, and
specifying u1 and v1 as the terminals of the
resulting graph.

(c) Generalized series composition of G1 and G2:
identifying v1 with u2 and specifying u2 and v2
as the terminals of the resulting graph.

Now, the family of SP graphs consists of those GSP
graphs that are obtained using only the series (a) and
parallel (b) compositions of Definition 1.
In fact, there is a close relationship between GSP and

SP graphs, which is reflected in the following lemma:
Lemma 1 (adapted from Lemma 3.2 in [11])

A connected graph G is a GSP graph if and only if
each block of G (i.e. each maximal induced biconnected
subgraph of G) is an SP graph.

Fischer et al. Visual Computing for Industry, Biomedicine, and Art            (2020) 3:12 Page 3 of 26



Results
Reducing phylogenetic networks to related graphs
In the following, we will introduce three methods for re-
ducing phylogenetic networks to related simple graphs,
which will play a crucial role in what follows.

Leaf cutting
Let Nu be a phylogenetic network on a taxon set X
with at least two vertices, at least two of which are
leaves, that is, |V(Nu)| ≥ 2, |X| ≥ 2. Let G be the sim-
ple graph obtained by deleting all leaves labeled by X
from V(Nu) and their incident edges; we note that
this may result in some vertices of degree 2 and (e.g.,
if Nu is a tree) even in new leaves not labeled by X,
which we do not remove. We call the simple graph
obtained by this procedure the leaf cut graph of Nu

and denote it by LCUT ðNuÞ . An illustration of the
described procedure is shown in Fig. 2.
Based on the leaf cutting procedure, we can define a

special class of phylogenetic networks, namely, H -con-
nected networks, which will be of interest later on.
Definition 2 Let Nu be a proper phylogenetic network

on leaf set X with |X| ≥ 2 such that LCUT ðNuÞ is Hamilton
connected. Then, Nu is called aH-connected network.
We now consider another network reduction proced-

ure, namely, leaf shrinking. We will apply this procedure
not only to phylogenetic networks but also to more
general connected graphs; thus, we directly define it for
general graphs.

Leaf shrinking
Let G be a connected graph with at least two vertices, at
least two of which are leaves, i.e., |V(G)| ≥ 2, |VL(G)| ≥ 2
(where VL(G) denotes the set of degree-1 vertices of G).
We shrink G to a smaller simple graph by constructing
restricted topological subgraphs as described in Section
Methods; that is, we delete vertices of degree 1, suppress

vertices of degree 2, and delete a copy of parallel edges
or loops. This is performed as follows:

We call the simple graph obtained by this
procedure the leaf shrink graph of G and denote it
by LSðGÞ . This notation leads to no ambiguity be-
cause we will show in Theorem 2 that LSðGÞ is
unique. We note that by steps 6–13 in Algorithm 1,
the smallest graph (in terms of the number of verti-
ces and the number of edges) to which a graph G
may be reduced is the complete graph on 2 vertices
K2, that is, a single edge (Fig. 3 and Fig. 4).
Based on the leaf shrinking procedure, we can again

introduce a special class of phylogenetic networks,
namely, edge-based phylogenetic networks (Fig. 4). We
will elaborate on edge-based phylogenetic networks
subsequently.
Definition 3 Let G be a connected graph with |V(G)| ≥

2 and |VL(G)| ≥ 2. If the leaf shrink graph LSðGÞ of G is a
single edge, G is called edge-based. Else, G is called non-
edge-based. If G =Nu is a proper phylogenetic network
with |V(Nu)| ≥ 2 and |X| ≥ 2 and LSðNuÞ is a single edge,
we call Nu an edge-based network. Else, Nu is called non-
edge-based.

Fig. 2 Network Nu on labelset X = {1,2,3,4} and the simple graph
resulting from the leaf cutting procedure. Note that this procedure
results in one new leaf not labeled by X
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Remark 1 We note that the definition of edge-based
graphs is highly similar to that of GSP graphs; the only
difference is that a fourth operation–the deletion of
loops–is allowed. However, subsequently, we will show
that there is a direct relationship between these two clas-
ses of graphs.
The last network reduction procedure that we want to

introduce is the so-called leaf connecting procedure.

Leaf connecting
Let Nu be a phylogenetic network that is not a tree1 on a
taxon set X with at least two leaves, that is, |X| ≥ 2.
Then, we transform Nu into a simple graph without ver-
tices of degree 1 as follows: First, as a pre-processing
step, if there exists an internal vertex v of Nu such that
there is more than one leaf attached to v, we delete all
but one of the leaves adjacent to v. If this results in
deg(v) = 2, we suppress v. We note that this can only
occur if v is adjacent to only one internal vertex of Nu

and at least two leaves. In particular, this implies that
suppressing v cannot lead to parallel edges (see Fig. 5,
where in the pre-processing step, vertex x is suppressed).
We note that this pre-processing step may be required

to be repeated several times, but this does not affect
tree-basedness. If a network is tree-based, there exists a
base tree that, in particular, covers all leaves attached to
some vertex v. By deleting all but one of them and sup-
pressing the resulting degree-2 vertices, we obtain a base
tree for the pre-processed network. Conversely, given a
base tree for a pre-processed network, we can obtain a
base tree for the original network by subdividing edges
(if necessary) and adding leaves to these attachment
points or to existing vertices of the base tree.
After the pre-processing step, we continue as follows:

� We select two leaves x1 and x2 (if they exist). We
call their respective attachment points u1 and u2,
respectively. We delete x1 and x2 as well as edges
{x1, u1} and {x2, u2} and add an edge e := {u1, u2}. If
this edge is a parallel edge, that is, if there is another
edge e′ connecting u1 and u2, we add two more
vertices a and b and replace e by two new edges,
namely e1 := {u1, a} and e2 := {a, u2}. Similarly, we
replace e′ by two new edges, namely, e

0
1≔fu1; bg and

e
0

2≔fb; u2g. Finally, we add a new edge {a, b}. We
repeat this procedure until no pair of leaves is left.

� If there is one more leaf x left, we remove x, and if
its attachment point u then has degree 2, we
suppress u. If this results in two parallel edges
e = {y, z} and e′ = {y, z}, we re-introduce u on edge e,
add a new vertex a to the graph, delete e′, and intro-
duce two new edges e

0

1≔fy; ag and e
0

2≔fa; zg. Finally,
we add an edge {u, a}.

We note that the order in which the leaves are joined
may alter the resulting graph. Thus, if |X| > 2, there may
be more than one graph that can be obtained from Nu

in this manner. We refer to the set of these graphs as
LCONðNuÞ. Two illustrations of this concept are shown
in Fig. 5 and Fig. 6.
To summarize, leaf cutting, shrinking and connecting

are three different procedures for reducing a phylogen-
etic network to related simple graphs. In general, the
resulting graphs differ. However, all of them lead to suf-
ficient criteria for tree-basedness, which will be intro-
duced in the following. We begin by considering the
class of edge-based phylogenetic networks in more
detail.1Note that for a tree, the pre-processing step would always result in a

single edge.

Fig. 3 Network Nu on labelset X = {1,2,3,4} and the simple graph
resulting from the leaf shrinking procedure. At first, leaves 1, 2, 3,
and 4 are deleted, resulting in a graph with one new leaf without
label, which is subsequently removed. Afterwards, all resulting
degree-2 vertices are suppressed

Fig. 4 Network Nu on labelset X = {1,2,3,4} and the simple graph
resulting from the leaf shrinking procedure, which is an edge. At
first, leaves 1,2,3 and 4 are deleted, resulting in a graph with one
new leaf without label (cf. Fig. 2). Then, this new leaf is removed as
well, which results in a triangle. Now, one vertex of degree 2 is
suppressed and the parallel edge is deleted resulting in one single
edge. Thus, Nu is called edge-based. Note that this graph resulting
from the leaf shrinking procedure differs from the graph resulting
from the leaf cutting procedure depicted in Fig. 2
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Classes of tree-based networks
Determining whether an unrooted phylogenetic network
is tree-based is generally NP-complete [2]. Accordingly,
for practical purposes, it would be useful to know some
sufficient properties that can be verified in polynomial
time and ensure that a given network is indeed tree-
based (even if these criteria are not necessary). In this
section, we will introduce a class of tree-based unrooted
phylogenetic networks, namely, edge-based networks.
Even tough edge-basedness can be verified in linear
time, we will additionally mention other classes of net-
works which are also guaranteed to be tree-based, but
are based on properties like being Hamiltonian or
Hamilton connected. Although these properties are diffi-
cult to verify [12], they have been extensively studied in
the context of classical graph theory. Thus, they link
phylogenetic network theory to classical graph theory.
Moreover, various graphs are already known to be
Hamiltonian or Hamilton connected [13–17]. Therefore,
these properties may help to further enhance the under-
standing of phylogenetic networks.

Edge-based networks
In this section, we thoroughly analyze the class of edge-
based graphs and networks. Our aim is to show that
edge-basedness ensures tree-basedness. However, we
first show that there is a direct relationship between
loopless edge-based graphs and GSP graphs. We then
show that the order of the restriction operations is
irrelevant for both of them in the following sense: If a

graph G is edge-based (or GSP), not only does there
exist a sequence of restriction operations that reduces G
to K2, but also any sequence of restriction operations
will lead to a graph on two vertices that can then be
further reduced to K2 (Algorithm 1). Finally, we return
to the phylogenetic setting and show that edge-based
networks are always tree-based.

Relationship between edge-based graphs and GSP graphs
By comparing the definitions of GSP graphs and edge-
based graphs a slight difference between the two classes is
observed. Specifically, both can be reduced to a single
edge by certain restriction operations; however, loop dele-
tion is a valid restriction operation in the case of edge-
based graphs, but not in the case of GSP graphs. Never-
theless, in the following, we will show that there is a direct
relationship between both classes of graphs.
Theorem 1 Let G be a connected graph. Then G is a

GSP graph if and only if

(i) G is loopless and
(ii) G can be reduced to K2 by deleting leaves, suppressing

vertices of degree 2, deleting copies of parallel edges and
deleting loops, that is, by applying restriction operations
1–4 (Section Further graph-theoretical concepts).

Proof First, we assume that G is a GSP graph. Then, by
definition, G does not contain loops, that is, (i) holds.
Moreover, G can be reduced to K2 by applying restric-
tion operations 1–3 (p. 3), and thus (ii) holds as well.

Fig. 5 Network Nu and the simple graph resulting from the leaf connecting procedure. First, according to the pre-processing phase of the leaf
connecting procedure, leaf 4 is deleted from the network because x is adjacent to two leaves. Then, x has degree 2 and thus needs to be
suppressed. Then, first a pair of leaves is chosen and removed from the network, before the last leaf is removed (for (a), first leaves 1 and 2 are
removed, followed by leaf 3; for (b), first leaves 1 and 3 are removed, followed by leaf 2 and for (c), first leaves 2 and 3 are removed, followed by
leaf 1). Note that the graphs depicted in (a), (b) and (c) are isomorphic. Thus, here LCONðNuÞ consists of a single simple graph (in general,
LCON can consist of several simple graphs; as an example see Fig. 6). Note, however, that the simple graph in LCONðNuÞ differs from the
simple graphs obtained from the leaf cutting and leaf shrinking procedures (cf. Fig. 2 and Fig. 4). Moreover, note that even though new vertices
(a and b) were introduced, the total number of vertices of the simple graph in LCONðNuÞ did not increase compared to Nu or even compared
to Nu after the pre-processing step
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We now assume that G is a connected graph without
loops that can be reduced to K2 by applying restriction op-
erations 1–4: To show that G is a GSP graph, we should
show that G can also be reduced to K2 by only applying
operations 1–3, that is, by deleting leaves, suppressing
degree-2 vertices, and deleting copies of parallel edges, but
not deleting loops. As G is by assumption a graph without
loops, loops can only arise during the reduction process.
Let ~G be a restricted topological subgraph of G that con-
tains a loop. We assume that ~G is the first graph with
loops that arises when G is reduced to K2. This implies
that in the transformation of G into ~G , there must have
been a restricted topological subgraph G′ of G containing
a parallel edge e = {u, v}, where one of u and v (without
loss of generality, v) was a degree-2 vertex, and the step
from G′ to ~G was the suppression of v. Then, deleting the
loop {u, u} from ~G yields some restricted topological sub-

graph Ĝ of G. However, Ĝ can alternatively be reached

from G′ by first deleting a copy of the parallel edge e = {u,
v} (yielding a graph G′′) and then deleting vertex v. Thus,

Ĝ can be obtained from G by only applying operations 1–
3 (Fig. 7). As the deletion of loops can always be circum-
vented in this manner, G in particular can be reduced to
K2 by only applying operations 1–3. Together with the fact
that G is loopless, this implies that G is a GSP graph. This
completes the proof.
As the following corollary shows, Theorem 1 implies

that there is a one-to-one correspondence between loop-
less edge-based graphs and GSP graphs.

Corollary 1 Let G be a connected graph. Then G is
a GSP graph if and only if it is loopless and edge-
based.

Proof We first assume that G is a GSP graph. Then, by
Theorem 1, G is loopless and can be reduced to K2 by
deleting leaves, suppressing degree-2 vertices, deleting

copies of parallel edges and deleting loops. Let Ĝ be a

Fig. 6 Network Nu (adapted from [5]) and the set LCONðNuÞ resulting from the leaf connecting procedure. G1 is obtained by deleting leaves 1,2
and 3,4 and connecting their attachment points respectively, while G2 is obtained by connecting leaves 1,3 and 2,4 and G3 is obtained by
connecting leaves 1,4 and 2,3. Note that in case of G1, 4 vertices (a,b,a’,b’) have to be introduced in order to prevent the graph from becoming a
multigraph. For G2 and G3 this step is not necessary. Note, however, in any case the number of vertices of a graph in LCONðNuÞ cannot
increase compared to Nu, because in each step 2 leaves are deleted and at most 2 new vertices are created
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restricted topological subgraph of G with jV ðĜÞj ¼ 2 .

Then, either Ĝ ¼ K2 or Ĝ can be reduced to K2. How-
ever, the latter reduction cannot require the deletion of
leaves or suppression of degree-2 vertices (as this would
reduce the number of vertices to less than 2, and then
K2 could not be a restricted topological subgraph). This
implies that G can be reduced to K2 by applying
Algorithm 1, and thus G is edge-based.
We now assume that G is loopless and edge-based.

The latter implies that G can be reduced to K2 by apply-
ing Algorithm 1. Together with Theorem 1 and the fact
that G is loopless, the implication is that G is a GSP
graph, which completes the proof.
We note that GSP graphs can be recognized in linear

time [11, 18]. A naïve approach would be, for example, to
consider the maximal biconnected components (or blocks)
of a graph G, which can be computed in linear time [19],
and use the fact that a graph G is GSP if and only if each
block of G is an SP graph (Lemma 1), which can again be
recognized in linear time [20]. Owing to the one-to-one
correspondence between GSP graphs and loopless edge-
based graphs, this implies that edge-basedness can also be
tested in linear time. In particular, it can be determined in
linear time whether an unrooted phylogenetic network is
edge-based. As we will later show that edge-basedness im-
plies tree-basedness (Theorem 3), this is of great relevance
because, in general, the problem of determining whether a
network is tree-based is NP-complete [2].
However, before analyzing the relationship between

edge-basedness and tree-basedness, we first state another
interesting property of edge-based and GSP graphs, namely,
that the order of the restriction operations is irrelevant.

Order of restriction operations
Theorem 2 Let G be a graph. Then, LSðGÞ is unique. In
particular, if G is an edge-based graph, all sequences of
restriction operations in concordance with Algorithm 1
lead to K2.
Remark 2 Theorem 2 implies that the order of the

restriction operations is irrelevant provided that the

rules of Algorithm 1 are followed, that is, if two or
more operations are possible, it is irrelevant which is
chosen. However, we recall that if j V ðLSðGÞ j¼ 2 ,
the choice of the restriction operation is limited to
deleting copies of parallel edges or deleting loops to
prevent the number of vertices from dropping below
2.
The proof of Theorem 2 requires the following lemmas.
Lemma 2 Let G be a graph with vertex set V(G) and

edge set E(G) such that G has some graph H as a
restricted topological subgraph. Let G′ result from G by
precisely one of the following operations:

1. Choose a vertex u∈V(G), introduce a new vertex x
and an edge {u, x} (‘Add leaf x ’).

2. Choose an edge e∈ E(G) and subdivide it into two
edges by introducing a new degree-2 vertex (‘Add a
degree-2 vertex’).

3. Choose an edge e∈ E(G) and add a copy e′ of e to
E(G).

4. Choose a vertex u∈ E(G) and add a loop, i.e., add
edge e = {u, u} to E(G).

Then, H is also a restricted topological subgraph of G′.
Proof We can convert G′ into G by undoing the re-

spective operation. Then, as G can be reduced to H, so
can G′ (using the conversion to G as a first step and
adding the sequence that converts G to H). This com-
pletes the proof.
The proofs of the following two lemmas can be found

in Appendix.
Lemma 3 Let G be a connected graph with vertex set

V(G) and edge set E(G). Let G′ result from G by deleting one
loop. Then, a graph H (with H ≠ G) is a restricted topo-
logical subgraph of G if and only if H is a restricted topo-
logical subgraph of G′.
Lemma 4 Let G be a connected graph with vertex set

V(G) and edge set E(G). Let G′ result from G by deleting
one copy of a parallel edge. Then, a graph H (with H ≠ G)
is a restricted topological subgraph of G if and only if H is
a restricted topological subgraph of G′.

Fig. 7 Two alternative ways to reach graph Ĝ from G’ (and thus from G)
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The last two lemmas immediately imply the following
corollary, which plays a fundamental role in the proof of
Theorem 2.

Corollary 2 Let G be a graph and let G′ be its
underlying simple graph. Moreover, let H be a graph
with LSðHÞ = H (that is, H cannot be reduced to a
graph H′ ≠ H by Algorithm 1). Then, H is a re-
stricted topological subgraph of G if and only if H is
a restricted topological subgraph of G′.

Proof G′ has the same structure as G but without paral-
lel edges and loops. If G′ has H as a restricted topological
subgraph, by repeatedly applying operations 3 and 4 of
Lemma 2, so does G. If G has H as a restricted topological
subgraph, by repeatedly applying Lemma 3 and Lemma 4,
so does G′. This completes the proof.
We are finally in a position to prove Theorem 2.
Proof (Theorem 2) Let G be a graph with leaf shrink

graph H, and we assume that LS(G) is not unique, that is,
we assume that G also has a leaf shrink graph H' with H ≠
H'. More precisely, we assume that there exists a sequence
σ of restriction operations as in Algorithm 1 that does not
lead to H, but to H'. This implies that G has H as a re-
stricted topological subgraph, but it also has some re-
stricted topological subgraph that does not have H as a
restricted topological subgraph (as σ does not lead to H).
We consider a minimal graph with this property in

terms of the number of vertices. Thus, we assume that
G has H as a restricted topological subgraph, but there
exists a restricted topological subgraph G′ of G that does
not have H as a restricted topological subgraph, and
there is no other graph with this property containing
fewer vertices than G. By Corollary 2, we may assume
that G has no loops and no parallel edges.
We now consider the reduction of G to G′. As G has no

parallel edges and no loops, the first step in the transform-
ation of G into G′ must be the deletion of a leaf or the sup-
pression of a degree-2 vertex. Moreover, the resulting
graph G′′ after one step must already be such that H is not
a restricted topological subgraph; otherwise, G′′ would also
have G′ as a restricted topological subgraph (as it is on the
path from G to G′), it would have H as a restricted topo-
logical subgraph, and it would have strictly fewer vertices
than G, which would contradict the minimality of G.
Let us now consider G′′. Then, G′′ can be arrived at from

G by deleting a leaf x or suppressing a vertex u of degree 2,
and H is a restricted topological subgraph of G but not of
G′′. Moreover, we consider ~G , which shall be a graph that
can be obtained from G at one step (i.e., after one restriction
operation) in the transformation of G into H. As ~G has H as
a restricted topological subgraph, and as ~G has strictly fewer

vertices than G, we know that all restricted subgraphs of ~G
have H as a restricted topological subgraph.

We now consider the case that a leaf x has been deleted in
the transformation of G into G′′. We note that x is also
present in ~G, as x cannot be affected by any restriction oper-
ation other than the deletion of x (G′′ and ~G cannot be
equal and both differ from G by the removal of precisely one

vertex). Thus, we now delete x from ~G to obtain a graph Ĝ
that has H as a restricted topological subgraph. By Lemma 2,
we can undo the step that has been performed in the trans-

formation of G into ~G, that is, we can re-add to Ĝ the leaf
that has been deleted or the suppressed degree-2 vertex, and
the resulting graph (which is precisely G′′) has H as a re-
stricted topological subgraph. This contradicts the construc-
tion of G′′.
If now a degree-2 vertex u has been suppressed in the

transformation of G into G′′, then either u is still present
as a degree-2 vertex in ~G, or u is a leaf in ~G (if a leaf adja-
cent to u has been deleted). In the former case, that is, if u
still has degree 2 in ~G, we can suppress u to obtain a graph

Ĝ that has H as a restricted topological subgraph. By
Lemma 2, we can undo the step that has been performed
in the transformation of G into ~G , that is, we can re-add

to Ĝ the leaf that has been deleted or the suppressed
degree-2 vertex, and the resulting graph, which is precisely
G′′, has H as a restricted topological subgraph. This con-
tradicts the construction of G′′.
Thus, the only remaining case is when a degree-2 ver-

tex u has been suppressed in the transformation of G
into G′′, and u is a leaf in ~G . However, this can occur
only if a leaf x adjacent to u has been deleted in the
transformation of G into ~G, and if u is a degree-2 vertex
adjacent to a leaf, then deleting the leaf and its incident
edge is equivalent to suppressing u, that is, the resulting
graphs G′′ and ~G are isomorphic. This is illustrated by
Fig. 8. Thus, as H is a restricted topological subgraph of
~G , it is also a restricted topological subgraph of G′′,
but this contradicts the construction of G′′.
Therefore, all cases lead to a contradiction, which

shows that the initial assumption is false. In particu-
lar, all sequences of restriction operations as in
Algorithm 1 eventually lead to H. This completes the
proof.

Edge-basedness implies tree-basedness
We now state the last main theorem of this section,
which shows that all edge-based networks (Definition 3)
are also tree-based.
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Theorem 3 Let Nu be a proper phylogenetic network
on leaf set X with |X| ≥ 2. If Nu is edge-based, it is also
tree-based.
We note that the converse does not hold: Fig. 3 shows

a tree-based network Nu that is not edge-based.
To prove Theorem 3, we will exploit the one-to-one

correspondence between loopless edge-based graphs and
GSP graphs (Corollary 1). Moreover, we will use the fact
that a graph is GSP if and only if its blocks are SP graphs
(Lemma 1).
The strategy for the proof of Theorem 3 is thus to de-

compose an edge-based network Nu into its blocks
(which are SP graphs by Lemma 1, as Nu is loopless by
definition and hence a GSP graph by Corollary 1), obtain
a certain spanning tree for each block, and use these
spanning trees to construct a support tree for Nu. This
requires the following additional technical lemma, the
proof of which is given in Appendix.
Lemma 5 Let G = (V, E) be a simple and biconnected

SP graph with at least three vertices. Then, there exists a
spanning tree T in G whose leaves correspond to the
degree-2 vertices of G. In particular, no vertex v ∈ V (G)
with deg (v) > 2 is a leaf in T.
Remark 3 In the following, given a simple and bicon-

nected SP graph G with at least three vertices, we call a
spanning tree T having only degree-2 vertices of G as
leaves a valid spanning tree. Additionally, given the triv-
ial SP graph K2, we also call a spanning tree for K2

(which is K2 itself) a valid spanning tree.

With this we are now in a position to prove Theorem 3.
Proof of Theorem 3 Let Nu be a proper phylogenetic

network on a leaf set X with |X| ≥ 2. If |V(Nu)| = |X| = 2
and Nu consists of a single edge, Nu is trivially tree-
based. Thus, we may assume that |V(Nu)| ≥ 3.
As Nu is edge-based and loopless, it is a GSP graph by

Corollary 1, and we can decompose it into its blocks,
that is, into its maximal biconnected components (Fig. 9).
By Lemma 1, these blocks are SP graphs. More
precisely, each block of Nu is either a trivial SP graph
(i.e., a single edge corresponding to a cut edge of Nu)
or a simple and biconnected SP graph with at least
three vertices.
We now consider all blocks B of Nu and construct a

support tree T for Nu as follows:
If B ¼ fu; vg is a single edge (i.e., B is a cut edge

of Nu), we add this edge to T, whereas if B is a sim-
ple and biconnected SP graph with at least three ver-
tices, we add all edges of a valid spanning tree TB of
B (i.e., of a spanning tree for B having only degree-2
vertices of B as leaves, which must exist by Lemma
5), to T.
Then, T is a support tree for Nu because:

� T covers all vertices of Nu (as it covers all vertices of
each block B of Nu).

� T is a tree, that is, T is connected and acyclic. To
see this, we note that any two blocks B1 and B2 of
Nu share at most one common vertex, which is a

Fig. 8 Two isomorphic graphs G̃ and G” that are constructed by either deleting leaf x or suppressing vertex u
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cut vertex of Nu. Let TB1 be a valid spanning tree of
B1 and let TB2 be a valid spanning tree for B2

(where both TB1 and TB2 are potentially single
edges). Further, we assume that B1 and B2 share a
common vertex v. Then identifying the copy of v in
TB1 with the copy of v in TB2 yields a spanning tree
for B1∪B2, as identifying the two copies of v cannot
induce cycles because B1 and B2 (and thus TB1 and
TB2Þ do not share any vertices other than v. As
every block of Nu contains at least one cut vertex of
Nu and as T covers all cut vertices of Nu, it
iteratively follows that T is connected and acyclic.

� The leaf set of T corresponds to X. To see this, we
consider the leaves of the induced spanning trees TB
for each block B of Nu.
� If B is a non-trivial SP graph, its valid spanning tree

TB has only degree-2 vertices of B as leaves. Let v
be such a leaf. As Nu does not contain degree-2
vertices (because it is a phylogenetic network), v
must be a cut vertex of Nu. However, by the
preceding argument, v is then contained in at least
one other spanning tree TB0 for some other block
B0 of Nu and thus cannot be a leaf in T (as in T,
the two copies of v contained in TB and TB0 ,
respectively, are identified, and thus deg(v) ≥ 2 in T).

� Similarly, if B is a trivial SP graph {u, v}, and if {u,
v} is an internal cut edge of Nu, neither u nor v can

be leaves in T (as again, both u and v are contained
in at least one other spanning tree, and after
identifying all copies of u and all copies of v,
respectively, we have deg(u), deg(v) ≥ 2 in T).

� Finally, if B ¼ fx; vg is a trivial SP graph
corresponding to an external cut edge of Nu, where
x∈X and v is an internal vertex of Nu, x is a leaf
in T and v is an internal vertex in T. This is
because each leaf x of Nu is contained in exactly
one block of Nu (and thus, it will be a leaf in T, as
there is only one copy of x), whereas there exists at
least one other block B0 containing a copy of v, and
the two copies of v will be identified in T.

To summarize, T is a spanning tree of Nu that con-
tains all leaves x ∈ X but does not induce any additional
leaves. Thus, T is a support tree for Nu, and Nu is tree-
based. This completes the proof.
In conclusion, edge-based networks are always tree-

based and, more importantly, whether a network is
edge-based can be verified in linear time.
Additionally, we note that to verify the edge-basedness

of a network, we can use the fact that a network can be
seen as a “blobbed” tree [6], that is, as a tree with blobs
as vertices. In particular, we have the following decom-
position, which is the final result of this section.
Proposition 1 Let Nu be a proper unrooted phylogen-

etic network with at least two leaves. Then, Nu is edge-
based if and only if every non-trivial blob of Nu is edge-
based.
The proof of this proposition again exploits the one-

to-one correspondence between loopless edge-based
graphs and GSP graphs and uses the following theorem,
which implies that a GSP graph can be reduced to any
of its edges.2

Theorem 4 (Theorem 4.1 in [11]).
Let G be a GSP graph. Then, for any edge e = {u, v} of

G, G is a GSP graph with terminals u and v.
We now use this theorem to prove Proposition 1.
Proof of Proposition 1 We first note that if Nu contains

only trivial blobs, it is a tree and is therefore trivially
edge-based. Thus, we now consider the case that Nu

contains at least one non-trivial blob. If Nu is edge-
based, then all non-trivial blobs of Nu are also necessar-
ily edge-based. If there was a non-trivial blob of Nu with
a restricted topological subgraph that could not be re-
duced to an edge, this subgraph would also be contained
as a restricted topological subgraph in Nu; this implies
that Nu would have a restricted topological subgraph
that could not be reduced to an edge. However, by The-
orem 2, all restricted topological subgraphs of Nu must

Fig. 9 Decomposition of the edge-based network Nu into its
maximal biconnected components that are either trivial SP graphs,
i.e., single edges (corresponding to cut edges of Nu), or simple and
biconnected SP graphs with at least three vertices. For the latter,
valid spanning trees are depicted in bold, respectively. The edges of
these spanning trees together with all cut edges (also depicted in
bold) yield a support tree for Nu and thus Nu is tree-based

2See proof of Theorem 4.1 in [11].
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have a single edge as a restricted topological subgraph,
and this is a contradiction.
If all non-trivial blobs of Nu are edge-based, then we

can inductively show that Nu is edge-based. If Nu con-
tains only one non-trivial blob, there is nothing to show.
We now assume that the statement is true for all net-
works with at most m non-trivial blobs, and let Nu con-
tain m + 1 non-trivial blobs. Then, we use the fact that
Nu must contain a cut edge e = {a, b} whose removal re-
sults in two connected components, each containing at
least one non-trivial blob. We denote these components
by Nu

a and Nu
b and assume that a is contained in Nu

a and
b is contained in Nu

b . We now re-introduce the cut edge
{a, b} to both components by attaching a new leaf a to
Nu

b and b to Nu
a . Without loss of generality, we first con-

sider Nu
a . As Nu

a contains at most m non-trivial blobs, it
is edge-based by the inductive hypothesis. Moreover, by
Theorem 4, we can reduce it to any of its edges, in
particular, to its leaf edge e = {a, b}.
Similarly, as Nu

b contains at most m non-trivial blobs,
it is also edge-based and can be reduced to its leaf edge
e = {a, b}. In total, this implies that Nu can be reduced to
edge e = {a, b}. In particular, Nu is edge-based. This com-
pletes the proof.

Other networks that are necessarily tree-based
After having thoroughly analyzed edge-based networks,
we will now consider other classes of networks that are
necessarily tree-based by using some classical graph the-
oretical arguments.
Theorem 5 Let Nu be a proper phylogenetic network on leaf

set X with |X| ≥ 2, and consider LCUT ðNuÞ as well as the set
LCONðNuÞ as defined in Section Reducing phylogenetic net-
works to related graphs. Then, the following statements hold:

1. If Nu contains two leaves x and y with attachment
points u and v, respectively, such that the edge {u, v}
is contained in the edge set of Nu and such that
there is a path in Nu from u to v visiting all inner
vertices of Nu, then Nu is tree-based.

2. If Nu is an H-connected network (i.e., if LCUT ðNuÞ
is Hamilton connected), then Nu is tree-based.

3. If there is a graph G in LCON ðNuÞ such that G is
Hamiltonian and contains a Hamiltonian cycle
which uses an edge of G which is not contained in
Nu and which did not result from deleting the last
leaf in case ∣Xr∣ is odd (where Xr denotes the
reduced leaf set of Nu after a potential pre-
processing step), then Nu is tree-based.

4. If there is a graph G in LCON ðNuÞ such that G is
Hamiltonian and such that at least two new
vertices, say a and b, had to be added when
connecting the attachment points u and v of two

leaves x and y during the construction of G in order
to prevent parallel edges, then Nu is tree-based.

We note that the converse of this theorem does not
hold. Fig 10 demonstrates that the converse of the
first part of Theorem 5 does not hold, as it depicts a
tree-based network that does not contain a path from
one attachment point of a leaf to any other and visits
all inner vertices. Such a path would imply a Hamil-
tonian path from one leaf to another (when the
remaining leaves are disregarded), which does not
exist.
Moreover, Fig. 2 shows an example of a tree-based

network for which LCUT ðNuÞ is not Hamilton con-
nected. Accordingly, the implication in the second part
of Theorem 5 cannot be reversed.
Fig 6 shows an example of a tree-based network for

which there is no G in LCON ðNuÞ such that G is
Hamiltonian. G1, G2 and G3 in LCON ðNuÞ do not
contain a Hamiltonian cycle. Thus, conditions three
and four in Theorem 5 are also sufficient but not
necessary.
Moreover, before proceeding with the proof of the

theorem, we mention that concerning LCON ðNuÞ , the
exact order in which the leaves are connected can play a
fundamental role. Fig 11 shows a tree-based phylogen-
etic network (based on the famous Petersen graph), and
two different graphs in LCONðNuÞ . However, only one

Fig. 10 Binary tree-based unrooted phylogenetic network Nu on
X = {x1,x2 x3,x4}. The corresponding support tree is highlighted in
bold. Nu-xi is not tree-based for i = 1, …,4, because there is no
spanning tree in Nu-xi whose leaf set is equal to X∖{xi} (Figure taken
from [5])
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of them is Hamiltonian, whereas the other is not because
the Petersen graph is non-Hamiltonian (see, for example,
properties of the Petersen graph in the “House of
graphs” database (graph ID 660 [21]);.
We now prove Theorem 5.
Proof of Theorem 5

1. If Nu contains two leaves x and y with attachment
points u and v, respectively, such that the edge {u, v} is
contained in the edge set of Nu and such that there is a
path in Nu from u to v visiting all inner vertices of Nu,
then we can construct a support tree T for Nu as
follows: We consider the path from u to v visiting all
inner vertices of Nu and add all leaves of Nu together
with their pending edges to it. As all attachment points
of leaves are already contained in the path (because
this path visits all inner vertices), the re-introduction of
all leaves implies that T indeed covers all vertices of
Nu. As we did not add the edge {u, v}, there is no cycle.
In total, T is a spanning tree of Nu. Moreover, its leaf
set must coincide with that of Nu: All leaves of Nu are
also leaves of T (because a degree-1 vertex of Nu natur-
ally has degree 1 in T as well). Moreover, all vertices
on the path from u to v have degree at least 2, except
for u and v. However, as u and v were attachment
points of leaves, after their re-attachment, they also
have degree at least 2 in T. Accordingly, T cannot have
any leaves that are not leaves of Nu. Therefore, T is a
support tree of Nu, and thus Nu is tree-based.

2. Let Nu be a H-connected network, that is, let
LCUT ðNuÞ be Hamilton connected. We consider
any two leaves x and y of Nu and
their respective attachment points, u and v. As
LCUT ðNuÞ is Hamilton connected, there is a
Hamiltonian path from u to v in LCUT ðNuÞ.

We now consider this path in Nu and extend it by
all pending edges of all leaves. This leads to a tree T
that covers all inner vertices on the original path
from u to v and all leaves as they were re-attached.
There cannot be any cycles, as the Hamiltonian
path itself has no cycle, and adding leaves, which are
of degree 1, cannot create cycles. Thus, T is a span-
ning tree of Nu. Moreover, the leaf set of T coin-
cides with that of Nu: All vertices on the path
from u to v except for u and v have degree 2 before
the re-attachment of their leaves. u and v have degree
1 in the path, but their leaves x and y were also re-
attached; thus, in the final tree, they have degree
2. Therefore, the only degree-1 vertices in T are
the leaves of Nu.
Accordingly, T is a support tree, and thus Nu is
tree-based.

3. Let us now assume that there is a G in LCON ðNuÞ
such that G contains a Hamiltonian cycle that uses
at least one of the edges that Nu does not contain
(i.e., that were introduced in the transformation of
Nu into G). We consider such a graph G and such a
Hamiltonian cycle. We note that as this cycle
covers all vertices of G, it covers, in particular, all
vertices to which the leaves of Nu are attached.
Moreover, it covers all vertices of G that are not in
Nu, namely, precisely the vertices of type a and b that
may have been added in the construction of G to
prevent parallel edges. We will now transform this
cycle into a support tree of Nu as follows.

� If no new vertices were added when G was
constructed, then no connection of leaves led to
parallel edges. However, as Nu has at least two

Fig. 11 Tree-based network Nu (support tree depicted in bold) that is based on the Petersen graph. G1 and G2 are both in LCONðNuÞ, but only
G1 is Hamiltonian (a Hamiltonian cycle is depicted in bold)
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leaves, at least one edge of G is not an edge of Nu.
By assumption, such an edge {u, v} is covered by the
Hamiltonian cycle of G under consideration. Then,
we consider the same cycle in Nu but break the edge
{u, v} to obtain an acyclic tree. This path tree has
only two vertices of degree 1, namely u and v.
However, as the edge {u, v} was added in the
construction of G, both u and v are leaf attachment
points in Nu. We now re-attach all leaves to trans-
form this path tree into a tree T so that its only
leaves are the leaves of Nu (because the degrees of
both u and v are now at least 2), and, by construc-
tion, it covers all vertices of Nu. Thus, T is a support
tree of Nu, and therefore Nu is tree-based.

� If there is a pair of vertices a and b that were added
to G when it was constructed to prevent parallel
edges between u and v, we construct a support tree
T as follows: First, all edges of the cycle in G that
were already present in Nu are considered.
Moreover, except for one fixed pair a and b that was
added to prevent parallel edges, all other such pairs
a′, b′ between vertices u′ and v′ are removed, as we
do not have edges {u′, a′}, {a′, b′} and {b′, v′} in Nu.
(We note that up to permuting the names of u′ and
v′, these edges must be contained in the
Hamiltonian cycle; otherwise, a′ and b′ cannot be
covered.) Instead, we add to T the corresponding
edge {u′, v′}, which must be contained in Nu;
otherwise, a′ and b′ would not have been added
during the construction of G. Moreover, if the
number of leaves of Nu is odd (after a potential pre-
processing step), then during the construction of G,
there may have been another added vertex a′′ for
the last leaf x with attachment point w, again to pre-
vent parallel edges between u′′ and v′′. If this is the
case, we must have edges {u′′, v′′}, {x,w}, {u′′,w},
and {w, v′′} in Nu. We note that G does not contain
{x, w} and {u′′, v′′}, but {w, a′′}, {u′′, a′′}, and
{a′′, v′′}. To cover a′′ and w, the Hamiltonian
cycle must contain the edge {w, a′′} and either the
pair {u′′, a′′} and {w, v′′}, or the pair {v′′, a′′} and
{w, u′′}. In either case, u′′ and v′′ are covered by
the Hamiltonian cycle in G, so that one path be-
tween them visits only a′′ and b′′, whereas the
other covers all other vertices of G. Thus, for T, we
retain edge {u′′, v′′} as a replacement for the path
containing a′′ and b′′, and add edges {x, w} and
{u′′, w } to re-attach leaf x. Subsequently, we
re-attach all other leaves of Nu.
Finally, we should handle the fixed pair a and b.
As before, these two vertices can only be covered
by the Hamiltonian cycle of G if u and v are con-
nected via one path visiting all vertices of G ex-
cept u and v, and by one path using only a and

b. However, the existence of a and b implies that
there is an edge {u, v} in Nu. For T, we do not
consider this edge, that is, we do not translate it
from the Hamiltonian cycle of G into Nu.
Thereby, when we delete a and b (this is required
as they are not present in Nu), u and v will be
connected via a path visiting all inner vertices of
Nu, but as the edge {u, v} is not contained in T, T
is acyclic. Moreover, by construction T covers all
vertices of Nu. As it was created from a Hamil-
tonian cycle, it is clear that all vertices along this
cycle have degree at least 2 in T, except for u
and v, which is where we broke the cycle. How-
ever, as u and v are attachment points of leaves,
they have degree at least 2 in T as well. Thus, in
total, all inner vertices of Nu are inner vertices of
T as well. Thus, T is a support tree of Nu, and
hence Nu is tree-based.

4. We now assume that G∈LCONðNuÞ is
Hamiltonian and G contains two vertices a and b
that were added when two leaf attachment points u
and v were joined in the construction of G from Nu.
As we have seen before, to cover a and b, the
Hamiltonian cycle must contain a path from u to v
visiting only a and b (and another path from u to v
visiting all other vertices of G). Accordingly, the
edge {a, b} must be used. That Nu is tree-based now
follows from Part 3 of this theorem.

This completes the proof.
We are now in the position to show that some clas-

ses of phylogenetic networks are tree-based using
well-known graph theoretical properties.

Corollary 3 Let Nu be a proper unrooted phylogenetic
network with at least two leaves and such that LCUT ð
NuÞ is not Hamiltonian and such that there is a graph G
in LCONðNuÞ which is a 10-tough chordal graph. Then,
Nu is tree-based.
Proof According to [8], every 10-tough chordal

graph is Hamiltonian. Thus, G is Hamiltonian. How-
ever, as LCUT ðNuÞ is not Hamiltonian, the cycle in
G must use edges that are not contained in Nu. Thus,
Nu is tree-based by Theorem 5, Part 3. This completes
the proof.
We note that even though Corollary 3 implies a con-

nection between chordal graphs and tree-basedness, not
all chordal graphs are tree-based. This can be seen in
Fig. 12. However, we will now prove that this cannot
happen when Nu is binary.

Theorem 6 Let Nu be a proper unrooted phylogenetic
network with at least two leaves. Then, if Nu is binary
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and chordal, Nu is edge-based (and thus, by Theorem 3,
also tree-based).
Proof Let Nu be a proper unrooted phylogenetic net-

work with at least two leaves, so that Nu is binary and
chordal. If Nu is a tree, there is nothing to show because
Nu is trivially edge-based and tree-based. Thus, we
assume that Nu is not a tree. This implies that Nu must
contain at least one non-trivial blob (if it contained only
trivial blobs, Nu would be a tree).
By Proposition 1, it now suffices to consider such a non-

trivial blob of Nu, which we denote by G. As G is a non-
trivial blob, G has no cut edges and no leaves; in particu-
lar, G has only vertices of degree 2 and 3, and as Nu has
leaves, the existence of a degree-2 vertex u in G is ensured.
Moreover, G is still chordal (as the deletion of leaves does
not affect chordality). We now note that in the given
chordal graph, every vertex belongs to a triangle by
Lemma 9 in Appendix. Therefore, this applies also to u;
thus, u and its neighbors v and w form a triangle.
Accordingly, we have a chordal graph in which all vertices

have degree at least 2 and at most 3, and we have one vertex
u of degree 2, which belongs to a triangle uvw. We now re-
peat the following procedure:
First, we suppress u. As v and w are adjacent (they

belong to the triangle uvw), we have a parallel edge
e = {v, w}. Deleting this parallel edge will strictly decrease
the degrees of v and w. Thus, if the degrees of v and w
were both 2 before the deletion of the parallel edge, we
now obtain two new leaves. However, in this case, the

edge e = {v,w} is the only remaining edge, and thus Nu is
edge-based. If now v or w has degree 2 after the deletion
of the parallel edge, we re-name this vertex as u. Again, as
the current graph is still chordal (we did not increase the
cycle length of any cycle), the new vertex u of degree 2 be-
longs to a triangle, whose suppression yields a parallel
edge, and so forth. We can repeat this procedure, as
shown in Fig. 13, until only one edge remains. This com-
pletes the proof.
Remark 4 A generalization of chordal graphs are

the so-called perfect graphs (also known as Berge
graphs). A perfect graph is a graph G such that nei-
ther G nor its complement �G contains an odd cycle
of length greater than or equal to 5. An interesting
question is whether the fact that all binary chordal
networks are edge-based (Theorem 6) generalizes to
binary perfect networks. If we only consider LCUT ð
NuÞ, this is not necessarily the case, as there are net-
works Nu such that LCUT ðNuÞ is perfect but not
edge-based (Fig. 14).

Relationships between different classes of tree-based
networks
In the previous sections, we introduced a variety of net-
works that are necessarily tree-based, ranging from
edge-based to H-connected networks. We conclude this
section by analyzing the relationships between these
classes.

Fig. 12 a Chordal graph that – considered as an unrooted non-binary phylogenetic network – is not tree-based, because there is no Hamiltonian
path between leaves 1 and 2. b Attaching at least two more leaves to either d, e or f produces a tree-based network (a support tree is depicted
in bold)
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Fig 15 shows a Venn diagram of different classes of
proper phylogenetic networks in connection with tree-
basedness.
Whenever the intersection of different classes of such

networks is non-empty, Fig. 15 contains representative
examples. To summarize, we have the following.

� There exist proper phylogenetic networks that are
tree-based (Fig. 6 in [5]).

� Not all proper phylogenetic networks are tree-based
(Fig. 7 in [5]).

� All proper edge-based phylogenetic networks are
tree-based (Theorem 3).

� All proper binary and chordal phylogenetic networks
are edge-based and thus tree-based (Theorem 6).

� Proper chordal phylogenetic networks are not
necessarily tree-based (Fig. 12).

� Proper H-connected phylogenetic networks are tree-
based (Theorem 5, Part 2).

However, we note that the intersection of networks
that are edge-based, H -connected, and non-chordal is
empty because such networks do not exist. We will

explain this subsequently (Remark 5). Moreover, even if
the network is chordal, the classes of H-connected and
edge-based networks have only a small overlap, as we
will show in the following (Theorem 7).
Accordingly, these are indeed highly different types of

networks. We will subsequently fully characterize their
overlap, that is, we will describe which phylogenetic net-
works are H-connected and edge-based. In particular, we
will show that they are all chordal. We begin with the
following theorem.
Theorem 7 Let Nu be an edge-based and H-connected

phylogenetic network. Then, LCUT ðNuÞ contains less
than four vertices.
Remark 5 This theorem in fact shows that there are no

edge-based, H-connected, and non-chordal phylogenetic
networks because non-chordal networks require a cycle
of length at least 4 (without a chord) and thus at least
four vertices in LCUT ðNuÞ.
Before we can prove Theorem 7, two more lemmas

are required.
Lemma 6 Let Nu be an H-connected phylogenetic net-

work such that LCUT ðNuÞ consists of more than just one
edge. Then, LCUT ðNuÞ contains no cut vertices and no
cut edges.
Proof Let Nu be an H-connected phylogenetic network

such that LCUT ðNuÞ consists of more than one edge.
We assume that LCUT ðNuÞ contains a cut vertex v.
Then there are at least two more vertices u and w
that become disconnected by the removal of v. Thus,
the only paths from u to w in LCUT ðNuÞ are all via
v. This implies that there cannot be a Hamiltonian
path from u to v because any sequence of vertices
starting at u and proceeding through w (and possibly
other vertices) to v would visit v at least twice. Thus,
if Nu contains cut vertices, Nu is not H -connected,
which is a contradiction.

Fig. 13 Proper unrooted phylogenetic network Nu (consisting of one non-trivial blob and two trivial blobs (leaves)) that is binary and chordal.
After deleting its leaves, it can be reduced to a single edge by a sequence of vertex suppression and edge deletion operations. First, we consider
the triangle uvx and suppress u. This results in a parallel edge between v and x, which gets deleted. Then, the triangle vwx is considered and w
is suppressed. Deleting the resulting parallel edge between v and x leads to a single edge. This implies that Nu is edge-based

Fig. 14 Proper phylogenetic network such that LCUT(Nu) is a perfect
graph. Nu is tree-based (the support tree is highlighted in bold), but
not edge-based
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If now LCUT ðNuÞ contains a cut edge e = {u, v}, this
implies that u and v are cut vertices, leading to a contra-
diction. This completes the proof.
Lemma 7 Let G = (V, E) be a Hamilton-connected

graph with at least 4 vertices. Then for all v ∈V, we have
deg(v) > 2.
Proof We first note that in a Hamilton-connected

graph, there are clearly no isolated vertices, that is,
deg(v) > 0 for all v ∈V. Moreover, there cannot be any
vertices of degree 1 in G because, by the same argu-
ments used in the proof of Lemma 6, G cannot contain
a cut edge (but each edge incident to a leaf would be a
cut edge). Thus, deg(v) > 1 for all v ∈V. Let now u, v, w
be in V such that deg(v) = 2, and u and w are the two
neighbors of v in G; further, let x denote some other ver-
tex in V, which must exist as |V| ≥ 4. Then, there is no
Hamiltonian path from u to w visting both v and x. If a
path from u to w starts by visiting v, x cannot be con-
tained in it unless either u or w is visited twice. If now a
path from u to w visits x before v, then v can only be
reached by visiting either u or w twice. In both cases,
the corresponding path from u to w is not Hamiltonian
and this is a contradiction, as G is Hamilton-connected.
This completes the proof.
We are now in the position to prove Theorem 7.
Proof of Theorem 7 We assume toward a contradiction

that there exists an H -connected and edge-based
phylogenetic network Nu such that LCUT ðNuÞ con-
tains at least four vertices. As Nu is H-connected, by
Lemma 7, LCUT ðNuÞ contains no vertices of degree
at most 2 because, by assumption, it contains at least
four vertices. We now consider LSðNuÞ . When we
generate LSðNuÞ from LCUT ðNuÞ (we note that we
can proceed from Nu to LSðNuÞ via LCUT ðNuÞ as
the order of restriction operations is irrelevant by

Theorem 2), there are no degree-2 vertices to sup-
press. Moreover, there are no parallel edges because
if LCUT ðNuÞ contained parallel edges, so would Nu,
which contradicts the definition of a phylogenetic net-
work. Additionally, there can be no leaves, as this
would imply degree-1 vertices (which cannot exist by
Lemma 7). Accordingly, there is no leaf to delete, no
degree-2 vertex to suppress, and no parallel edge to delete,
that is, LSðNuÞ ¼ LCUT ðNuÞ; as there is nothing to
shrink. As jV ðLCUT ðNuÞÞj≥4, we have jV ðLSðNuÞÞj≥4,
implying that Nu cannot be edge-based. This is a contra-
diction. Therefore, the assumption is false and such a
network cannot exist. This completes the proof.
We now characterize all cases in which a phylogenetic

network is H-connected and edge-based. We will show
that the number of networks in this class is quite small.
In fact, we can fully characterize their LCUT graphs.
Theorem 8 Let Nu be an H-connected and edge-based

phylogenetic network. Then, one of the following two cases
holds:

� Nu is a tree with at most one inner edge, i.e., LCUT
ðNuÞ consists of either only one vertex or one edge.

� Nu contains precisely one cycle, and this cycle is a
triangle, and LCUT ðNuÞ consists only of this triangle.

In particular, Nu is chordal.
Proof Let Nu be an H-connected and edge-based phylo-

genetic network. By Theorem 7, LCUT ðNuÞ contains at
most three vertices. We now distinguish two cases:

� If jV ðLCUT ðNuÞÞj≤2, then Nu is clearly a tree
(because the vertices of LCUT ðNuÞ cannot form a
cycle) with at most one inner edge (because there is
at most one edge in LCUT ðNuÞ as there are at most

Fig. 15 Venn diagram of different classes of proper phylogenetic networks and their connection to tree-basedness
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two vertices). Therefore, the first case of the
theorem holds.

� We now assume that jV ðLCUT ðNuÞÞj ¼ 3. Then,
we are clearly not in the first case of the theorem,
and we may further assume that the three vertices
u, v, and w of LCUT ðNuÞ do not form a cycle. As
LCUT ðNuÞ is connected, u, v, and w form a path,
that is, LCUT ðNuÞ contains precisely two edges
e1 = {u, v} and e2 = {v, w}. Then, both e1 and e2 are
cut edges, as their removal would disconnect u and
w. As Nu is H-connected, LCUT ðNuÞ does not
contain any cut edges by Lemma 6, and this is a
contradiction. Thus, the three vertices u, v, and w
must form a triangle. As there cannot be another
vertex in LCUT ðNuÞ, this completes the proof.

By Theorem 8, all H-connected and edge-based phylo-
genetic networks are chordal, and they have either a
single vertex, a single edge, or a triangle as their LCUT
graph. However, the number of networks with these
properties is not restricted because an arbitrary number
of leaves can be attached to such LCUT graphs.

Discussion and conclusions
The primary aim of this study was to link tree-basedness
of phylogenetic networks to classical graph theory. More
precisely, we established links between tree-basedness
and the theory of Hamiltonian or Hamilton connected
graphs, as well as between tree-basedness and the family
of GSP graphs.
The close links of tree-based networks and Hamilton-

ian or Hamilton connected graphs provide sufficient cri-
teria whereby a network may be tree-based; however,
none of these criteria is necessary. It is conceivable that
future research will establish even more links between
Hamiltonicity of graphs and tree-basedness of phylogen-
etic networks. Furthermore, as an increasing number of
classes of graphs are being discovered to be Hamilton
connected [16, 17], an increasing number of known
graphs are expected to lead to tree-based networks.
However, none of these links to Hamiltonicity leads to

network classes for which tree-basedness can be efficiently
verified, as the previously mentioned graph theoretical
counterparts of tree-basedness (e.g., testing if a graph is
Hamiltonian) are known to be NP-complete [12].
Nevertheless, we introduced a class of networks that

are necessarily tree-based, namely, the class of edge-
based networks. Interestingly, these networks are closely
related to another important concept in classical graph
theory, namely, the class of GSP graphs. In the present
study, we showed that the links between tree-basedness,
edge-basedness and GSP graphs lead to a sufficient cri-
terion for tree-basedness that can be verified in linear

time. In this regard, edge-based phylogenetic networks
form a class of tree-based networks that can easily be
found. For example, we showed that all unrooted, binary,
chordal phylogenetic networks are edge-based. As men-
tioned in Remark 4, an interesting question is whether
this generalizes to other classes of proper phylogenetic
networks, for example, perfect binary ones. It would also
be of interest to analyze whether edge-based networks
frequently occur in practice, that is, when phylogenetic
networks are constructed from biological data. As re-
search on reconstructing phylogenetic networks from
data is still at its beginning, this is difficult to predict.
However, it is conceivable that edge-based networks will
be of practical relevance in the future.
We concluded our study by analyzing the relationships

between the classes of tree-based networks summarized
in Fig. 15. It is expected that future research will
characterize more classes of tree-based networks, enhan-
cing our results.

List of important definitions
Definition (Unrooted phylogenetic network):
Let X denote a finite set with |X| ≥ 1. An unrooted

phylogenetic network Nu (on X) is a connected, simple
graph G = (V, E) with X ⊆V and no vertices of degree 2,
where the set of degree-1 vertices (referred to as the
leaves or taxa of the network) is bijectively labeled by X.
Such an unrooted network is called unrooted binary if
every inner vertex u ∈V ∖ X has degree 3. It is called a
phylogenetic tree if the underlying graph structure is a
tree.
Definition (Tree-based phylogenetic network)
A phylogenetic network Nu = (V, E) on X is called tree-

based if there is a spanning tree T = (V, E′) in Nu (with
E′ ⊆ E) whose leaf set is equal to X. This spanning tree is
then called a support tree for Nu. Moreover, the tree T′
that can be obtained from T by suppressing potential
degree-2 vertices is called a base tree for Nu.
Definition (GSP graph (adapted from [11]))

1. The graph K2 consisting of two vertices u and v
(called terminals) and a single edge {u, v} is a
primitive GSP graph.

2. If G1 and G2 are two GSP graphs with terminals u1,
v1 and u2, v2, respectively, then the graph obtained
by any of the following three operations is a GSP
graph:

(a) Series composition of G1 and G2: identifying v1 with
u2 and specifying u1 and v2 as the terminals of the
resulting graph.
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(b) Parallel composition of G1 and G2: identifying u1
with u2 and v1 with v2, and specifying u1 and v1 as
the terminals of the resulting graph.

(c) Generalized-series composition of G1 and G2:
identifying v1 with u2 and specifying u2 and v2 as
the terminals of the resulting graph.

Definition (SP graph (adapted from [11]))

1. The graph K2 consisting of two vertices u and v
(called terminals) and a single edge {u, v} is a
primitive SP graph.

2. If G1 and G2 are two SP graphs with terminals
u1, v1 and u2, v2, respectively, then the graph
obtained by any of the following two operations is
an SP graph:

(a) Series composition of G1 and G2: identifying v1 with
u2 and specifying u1 and v2 as the terminals of the
resulting graph.

(b) Parallel composition of G1 and G2: identifying u1
with u2 and v1 with v2, and specifying u1 and v1 as
the terminals of the resulting graph.

Definition (Leaf cut graph)
Let Nu be a phylogenetic network on taxon set X with

|V(Nu)| ≥ 2 and |X| ≥ 2. We call the simple graph G result-
ing from deleting all leaves labeled by X from V(Nu) and
their incident edges the leaf cut graph of Nu and denote it
by LCUT ðNuÞ.
Definition (H-connected network)
Let Nu be a proper phylogenetic network such that

LCUT ðNuÞ is Hamilton connected. Then, Nu is called
an H-connected network.
Definition (Leaf shrink graph)
Let G be a simple graph with |V(G)| ≥ 2 and |VL(G)| ≥ 2.

We call the simple graph resulting from Algorithm 1
the leaf shrink graph of G and denote it by LSðGÞ.
Definition (Edge-based graph/network)
Let G be a connected graph with |V(G)| ≥ 2 and

|VL(G)| ≥ 2. If the leaf shrink graph LSðGÞ of G is a
single edge, G is called edge-based. Else, G is called non-
edge-based. If G =Nu is a proper phylogenetic network
with |V(Nu)| ≥ 2 and |X| ≥ 2 and LSðNuÞ is a single edge,
we call Nu an edge-based network. Else, Nu is called
non-edge-based.
Definition (Set of leaf connecting graphs)
Let Nu be a phylogenetic network on X (with |X| ≥ 2)

that is not a tree. We call the set of simple graphs
resulting from the leaf connecting procedure (described
on page 5) the set of leaf connecting graphs of Nu and
denote it by LCON ðNuÞ.

Appendix
Lemma 3 Let G be a connected graph with vertex set V(G)
and edge set E(G). Let G′ result from G by deleting one
loop. Then, a graph H (with H ≠ G) is a restricted
topological subgraph of G if and only if H is a restricted
topological subgraph of G′.
Proof By Lemma 2, if H is a restricted topological sub-

graph of G′, then it is also a restricted topological sub-
graph of G, and thus this direction is clear.
We now assume that there is a graph G such that H is

a restricted topological subgraph of G, but if we delete
one loop of G to obtain G′, H no longer is a restricted
topological subgraph. If such graphs exist, we may con-
sider a minimal one in terms of the number of edges.
Thus, we assume that G is minimal with this property,
that is, for all graphs with fewer edges, we know that if
H is a restricted topological subgraph, this property still
holds after the deletion of a loop.
As G has H as a restricted topological subgraph, there is

a sequence of the restriction operations that convert G
into H. However, there is also a loop {u, u} whose deletion
converts G into G′. Thus, the first operation to convert G
into H cannot be the deletion of this loop. Accordingly,
the first step is either the deletion of a leaf (together with
its incident edge), the suppression of a degree-2 vertex
(which ‘melts’ two edges into one), the deletion of one
copy of a parallel edge, or the deletion of some other loop.
In all cases, we obtain a graph G′′ containing fewer edges
than G and having H as a restricted topological subgraph,
as it is on the path from G to H. However, as G is minimal
with the property that the deletion of a loop can cause a
loss of H as a restricted topological subgraph, we can
delete the loop {u, u} from G′′ to obtain ~G , which again
has H as a restricted topological subgraph. By Lemma 2,
we can undo the first step from G to G′′, that is, we can
re-add the deleted leaf, degree-2 vertex, parallel edge or
loop (we note that this implies we convert ~G into G′),
without losing the property that H is a restricted topological
subgraph. Thus, H is a restricted topological subgraph
of G′, which contradicts our assumption. Therefore, such
graphs cannot exist, implying that the question whether H
is a restricted topological subgraph of a graph G cannot
depend on the loops of G. This completes the proof.

Lemma 4 Let G be a connected graph with vertex set
V(G) and edge set E(G). Let G′ result from G by deleting
one copy of a parallel edge. Then, a graph G (with H ≠ G)
is a restricted topological subgraph of G if and only if H is
a restricted topological subgraph of G′.

Proof By Lemma 2, if H is a restricted topological sub-
graph of G′, then it is also a restricted topological sub-
graph of G; thus, this direction is clear.
We now assume that there is a graph G such that H is

a restricted topological subgraph of G, but if we delete a
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copy of a parallel edge of G to obtain G′, H no longer is
a restricted topological subgraph. If such graphs exist,
we may consider a minimal one in terms of the number
of edges. Thus, we assume that G is minimal with this
property, that is, for all graphs with fewer edges we
know that if H is a restricted topological subgraph, this
property still holds after the deletion of a parallel edge.

As G has H as a restricted topological subgraph, there is
a sequence of restriction operations that convert G into H.
However, there is also an edge e for which multiple copies
exist, such that the deletion of e converts G into G′. Ac-
cordingly, the first operation to convert G into H cannot
be the deletion of e. Thus, the first step is either the dele-
tion of a leaf (together with its incident edge), the suppres-
sion of a degree-2 vertex (which ‘melts’ two edges into
one), the deletion of one copy of a parallel edge other than
e, or the deletion of a loop. In all cases, we obtain a graph
G′′ containing fewer edges than G and having H as a re-
stricted topological subgraph, as it is on the path from G to
H. However, as G is minimal with the property that the de-
letion of a parallel edge can cause a loss of H as a re-
stricted topological subgraph, if e is contained in
G′′, we can delete one copy of e from G′′ to obtain
~G , which again has H as a restricted topological
subgraph. By Lemma 2, we can now undo the first
step from G to G′′, that is, we can re-add the deleted
leaf, degree-2 vertex, parallel edge, or loop (we note that
this implies that we convert ~G into G′) to ~G, without losing
the property that H is a restricted topological subgraph.
Thus, H is a restricted topological subgraph of G′, which
contradicts our assumption.
If now G′′ does not contain e, then one concludes that e

disappeared in the transformation of G into G′′ by one of
the other operations. We note that a leaf deletion only affects
a degree-1 vertex and its incident edge, which thus cannot
be a parallel edge (otherwise, the vertex would have degree
at least 2). Moreover, the deletion of a loop (even if it was
parallel, that is, even if it existed multiple times) would not
cause the disappearance of an edge e that is present mul-
tiple times in G. Neither would the deletion of another par-
allel edge unrelated to e. Thus, e may disappear in the first
step only if there are precisely two copies of e = {u, v} that
lead to a vertex v that is incident only to these two edges e,
that is, deg(v) = 2. Then, the suppression of v would lead to
a loop {u, u}, and indeed no copy of e would be present in
G′′. However, in this case, by Lemma 3, we can
delete loop {u, u} to obtain G′′′, and G′′′ still has H
as a restricted topological subgraph. As above, we
can now undo the first step (from G to G′′) in G′′′
by Lemma 2. This leads to a graph ~G that still has H
as a restricted topological subgraph. Again by Lemma
2, we can then add vertex v and connect it to vertex
u with one new edge e = {u, v}. This is equivalent to

introducing a new leaf, thus preserving H as a re-
stricted topological subgraph. However, the resulting
graph is G′, which cannot have H as a restricted
topological subgraph by assumption. Therefore, this is
a contradiction.
Accordingly, in both cases, we arrive at a contradic-

tion, and therefore such graphs cannot exist. Hence, the
question whether H is a restricted topological subgraph
of a graph G cannot depend on copies of multiple edges.
This completes the proof.

Lemma 5 Let G = (V, E) be a simple and biconnected
SP graph with at least three vertices. Then, there exists a
spanning tree T in G whose leaves correspond to degree-2
vertices of G. In particular, no vertex v ∈ V (G) with
deg(v) > 2 is a leaf in T.

We note that such a spanning tree is called a valid
spanning tree (Remark 3). To prove Lemma 5, we re-
quire the following lemma by [22], in which N(v) de-
notes the neighborhood of a vertex v in G, that is, the
set of vertices adjacent to v.

Lemma 8 (adapted from [22])
Let G = (V, E) be a simple and biconnected SP graph

with |V| ≥ 5. Then one of the following conditions holds:

1. G has two adjacent degree-2 vertices x and y;
2. G has two different degree-2 vertices x and y and

N(x) =N(y);
3. G has a degree-4 vertex z adjacent to two degree-2

vertices x and y such that N(z) \ {x, y} = {N(x)∪
N(y)} \ {z};

4. G has a degree-3 vertex w with N(w) = {x, y, z} such
that both x and y are degree-2 vertices, N(x) = {z,w}
and edge {y, z} ∉ E;

5. G has two adjacent degree-3 vertices x and y such
that N(x)∩N(y) = {z} and N(z) = {x, y};

6. G has two adjacent degree-3 vertices w1 and w2 such
that N(w1) = {x, z1,w2}, N(w2) = {y, z2,w1},
N(x) = {z1,w1} and N(y) = {z2,w2};

7. G has a degree-3 vertex w with N(w) = {x, y, z} such
that N(z) = {w, y} and edge {x, y}∈ E;

8. G has two non-adjacent degree-3 vertices w1 and w2

such that N(w1) = {x, y, z1}, N(w2) = {x, y, z2},
N(z1) = {x,w1} and N(z2) = {y,w2};

9. G has two non-adjacent degree-3 vertices w1 and w2

such that N(w1) = {x, y, z1}, N(w2) = {x, y, z2},
N(z1) = {x,w1} and N(z2) = {x,w2};

10. G has a degree-3 vertex w with N(w) = {x, z1, z2}
such that there is a degree-2 vertex y∈N(z1)∩
N(z2) and N(x) = {z1,w}.

Based on this we can now prove Lemma 5.
Proof of Lemma 5 We use induction on the number

n∶ = ∣V∣ of vertices of G. For n = 3, …, 6, we
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generated a catalog of all simple and biconnected SP
graphs with n vertices as follows: We retrieved all simple
and connected graphs with n = 3, …, 6 vertices from the
“House of graphs” database [21] and filtered them for
biconnected SP graphs using the computer algebra sys-
tem Mathematica [23]. First, each downloaded graph G
was checked for biconnectedness using the Mathematica
function KVertexConnectedGraphQ[G, 2]. For each of

the remaining graphs, it was then checked whether a re-
duction to K2 via the series reduction rules (page 3) was
possible. If not, the graph was discarded. The remaining
simple and biconnected SP graphs are shown in Fig. 16.
We exhaustively analyzed all these graphs to show that
in all cases, there exists a valid spanning tree having only
degree-2 vertices of the respective SP graph as leaves
(which is also shown in Fig. 16). This completes the base
case of the induction.
We now assume that the statement holds for all sim-

ple and biconnected SP graphs with up to n − 1 vertices
and let G = (V, E) be a simple and biconnected SP graph
with n ≥ 7 vertices.
By Lemma 8, we can distinguish ten cases:

1. G has two adjacent degree-2 vertices x and y (as
shown in Fig. 17): Let x′ ≠ y be the second vertex
adjacent to x and let y′ ≠ x be the second vertex ad-
jacent to y. We note that as n ≥ 7, we cannot have
y′ = x′, because in this case, x′ would be a cut ver-
tex, contradicting the fact that G is biconnected.
We now construct a simple and biconnected SP
graph G′ with n − 1 vertices from G by suppressing
vertex x (Fig. 17). By the inductive hypothesis (as
G′ is a simple and biconnected SP graph on 6 ≤ n −

Fig. 16 Catalog of all simple and biconnected SP graphs on n ≤ 6
vertices (diamond vertices represent one possible pair of terminals,
respectively) and a valid spanning tree (depicted in bold)

Fig. 17 Case 1 in the proof of Lemma 5. The dotted lines depict
some path between x′ and y′ that must exist since G is biconnected

Fig. 18 Case 2 in the proof of Lemma 5 for n ≥ 7. The dotted line
depicts some path between u and v (possibly consisting of a single
edge) that must exist since G is biconnected and n ≥ 7

Fig. 19 Case 3 in the proof of Lemma 5. The dotted line depicts
some path between x′ and y′ which must exist since G is
biconnected and n ≥ 7
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1 < n vertices), there exists a valid spanning tree T′
in G′. We can now obtain a valid spanning tree T
for G as follows:
� If edge {x′, y}∈ E(T′) (we note that {x′, y}∈

E(G′) \ E(G)), we replace this edge by {x′, x} and
{x, y} to obtain T. In this case, x is not a leaf
of T.

� If edge {x′, y} ∉ E(T′), we add either {x′, x} or
{y, x} to T′ to obtain T. This implies that x is a
leaf in T, but as x was a degree-2 vertex in G,
this is valid.

In both cases, T is a valid spanning tree for G.

2. G has two different degree-2 vertices x and y and
N(x) =N(y) (as shown in Fig. 18): Let N(x) =N(y) =
{u, v}. We now construct a simple and biconnected
SP graph G′ with n − 2 vertices from G by sup-
pressing vertices x and y, and deleting all but one
copy of the resulting parallel edge {u, v} (Fig. 18).

As G′ is a simple and biconnected SP graph with 5 ≤ n −
2 < n vertices, by the inductive hypothesis, G′ has a valid
spanning tree T′. We note that u and v are potentially
leaves in T′ (as they are potentially degree-2 vertices in G′).
We now distinguish two cases:

� If edge {u, v} ∉ E(T'), we can for example add edges
{u, x} and {v,y} (or {u,y} and {v,x}) to T' to obtain a
valid spanning tree T for G. This ensures that u and
v are interior vertices of T, whereas x and y are
leaves (this is allowed because they are degree-2
vertices in G).

� If edge {u, v} ∈ E(T'), note that at most one of u
and v can be a leaf in T' (otherwise, T' would not be
connected).
– If u is a leaf in T', we can replace edge {u, v} by

{u, y} and {y, v}, and add edge {u, x} to T' to
obtain a valid spanning tree T' for G. This
ensures that u is not a leaf in T'.

– If v is a leaf in T', we can, for example, again
replace edge {u, v} by {u, y} and {y, v}, and add
edge {v, x} to T' to obtain a valid spanning tree T
for G. This ensures that v is not a leaf in T.

– Finally, if neither u nor v is a leaf in T', we can,
for example, replace edge {u, v} by {u, y} and {y,
v}, and add edge {u, x} (or {v, x}) to T' to obtain a
valid spanning tree T for G.

3. G has a degree-4 vertex z adjacent to two degree-2
vertices x and y such that N(z) \ {x, y} = {N(x)∪
N(y)} \ {z} (as shown in Fig. 19): Let N(z) \ {x,
y} = {N(x)∪N(y)} \ {z} = {x′, y′}, where x′∈N(x) \

{z} and y′∈N(y) \ {z}. We now construct a simple
and biconnected SP graph G′ with n − 2 vertices
from G by suppressing vertices x and y and deleting
all but one copy of the resulting parallel edges
(Fig. 19). We note that z is a degree-2 vertex in
G′, and x′ and y′ may also be of degree 2 in G′.
By the inductive hypothesis (as G′ is a simple
and biconnected SP graph with 5 ≤ n − 2 < n verti-
ces), there exists a valid spanning tree T′ for G′.
As z, x′, and y′ are potentially degree-2 vertices
in G′, they are potentially leaves in T′. However,
they cannot simultaneously be leaves because T′
would not be connected. Thus, we distinguish
different cases:

� x′ and y′ are leaves in T′. This cannot happen
because T′ would not be connected.

� z and y′ are leaves in T′. In this case, we add the
edges {z, x} and {y′, y} to T′ to obtain a valid

Fig. 20 Case 4 in the proof of Lemma 5. The dotted line depicts
some path between z and y′ which must exist since G is
biconnected and n ≥ 7

Fig. 21 Case 5 in the proof of Lemma 5 for n ≥ 7. The dotted line
depicts some path between x and y′ which must exist since G is
biconnected and n ≥ 7
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spanning tree T for G (in which z and y′ are
internal vertices and x and y are leaves).

� x′ and z are leaves in T′. In this case, we add the
edges {x′, x} and {z, y} to T′ and obtain a valid
spanning tree T for G (in which z and x′ are
internal vertices, and x and y are leaves).

� x′ is a leaf in T′. In this case, we add the edges {x′, x}
and either {z, y} or {y′, y} to T′ and obtain a valid
spanning tree T for G (in which x′ is an internal
vertex, and x and y are leaves).

� y′ is a leaf in T′. In this case, we add the edges {y′,
y} and either {z, x} or {x′, x} to T′ and obtain a valid
spanning tree T for G (in which y′ is an internal
vertex, and x and y are leaves).

� z is a leaf in T′. In this case, we add the edges {z, x}
and {y′, y} (or {z, x} and {z, y}, or {z, y} and {x′, x}) to
T′ and obtain a valid spanning tree T for G (in
which z is an internal vertex, and x and y are leaves).

� Neither x′, y′, nor z is a leaf in T′. In this case, we
can, for example, add the edges {x′, x} and {y′, y} to
T′ and obtain a valid spanning tree T for G.

4. G has a degree-3 vertex w with N(w) = {x, y, z} such
that both x and y are degree-2 vertices, N(x) = {z,w},
and edge {y, z} ∉ E (as shown in Fig. 20): Let
y′ ≠ w be the second vertex adjacent to y. We can-
not have y′ = z because {y, z} ∉ E. We now construct
a simple and biconnected SP graph G′ with n − 1
vertices from G by suppressing vertex y (Fig. 20). By
the inductive hypothesis (as G′ is a simple and
biconnected SP graph with 6 ≤ n − 1 < n vertices), G′
has a valid spanning tree T′, and we can obtain a
valid spanning tree T for G from T′ as follows:

� If edge {w, y′}∈ E(T′), we replace this edge by the
edges {w, y} and {y, y′} to obtain T.

� If edge {w, y′} ∉ E(T′), we add either {w, y} or {y′, y}
to T′ to obtain T, that is, we add y as a leaf to T
(this is allowed because y has degree 2 in G).

5. G has two adjacent degree-3 vertices x and y such
that N(x)∩N(y) = {z} and N(z) = {x, y} (as shown in
Fig. 21): Let x′ be the vertex in N(x) \ {y, z}, and let
y′ be the vertex in N(y) \ {x, z}. We now construct a
simple and biconnected SP graph G′ with n − 2 ver-
tices from G as follows (Fig. 21):

� Suppress the degree-2 vertex z.
� Delete one copy of the resulting parallel edge {x, y}.
� Suppress the resulting degree-2 vertex x.

As G′ is a simple and biconnected SP graph with 5 ≤
n − 2 < n vertices, by the inductive hypothesis, G′ has a
valid spanning tree T′. We note that as y is a degree-2
vertex in G′, it may be a leaf in T′. We now construct a
valid spanning tree T for G from T′ by distinguishing
two cases:

� If edge {x′, y}∈ E(T′) (we note that {x′, y}∈ E(G′) \
E(G)), we replace edge {x′, y} by edges {x′, x} and {x,
y}, and add edge {y, z} to obtain T. This ensures that
the degree-3 vertices x and y of G are not leaves in
T, and thus T is a valid spanning tree for G (we note
that z is a leaf in T, but as deg(z) = 2 in G, this is
valid).

� If edge {x′, y} ∉ E(T′), we add the edges {y, x} and
{x, z} to T′ to obtain T. Again, z is a leaf in T,
but x and y are not, and thus T is a valid
spanning tree for G.

6. G has two adjacent degree-3 vertices w1 and w2 such
that N(w1) = {x, z1,w2}, N(w2) = {y, z2,w1}, N(x) = {z1,
w1}, and N(y) = {z2,w2} (as shown in Fig. 22):

We note that as n ≥ 7, z1 and z2 are distinct; other-
wise, z1 = z2 would be a cut vertex, contradicting the
fact that G is biconnected. We now construct a
simple and biconnected SP graph G′ with n − 2 verti-
ces from G as follows (Fig. 22):

� Suppress the degree-2 vertex x and delete one copy
of the resulting parallel edge {z1, w1}.

� Suppress the degree-2 vertex y and delete one copy
of the resulting parallel edge {z2, w2}.

We note that w1 and w2 are degree-2 vertices in G′
and z1 and z2 may be of degree 2 in G′ as well.
By the inductive hypothesis (as G′ is a simple and

biconnected SP graph with 5 ≤ n − 2 < n vertices), G′
has a valid spanning tree T′, in which w1, w2, z1, and

Fig. 22 Case 6 in the proof of Lemma 5 for n ≥ 7. The dotted line
depicts some path between z1 and z2 which must exist since n ≥ 7
and G is biconnected
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z2 are potentially leaves. However, at most two of
them can simultaneously be leaves in T′; otherwise, T′
would be disconnected. We now construct a valid
spanning tree T for G from T′ by distinguishing the
following cases:

� If w1, w2, z1, and z2 are internal vertices of T′,
we can, for example, add the edges {w1, x} and
{w2, y} to T′ and obtain a valid spanning tree T
for G.

� If w1 is a leaf in T′ (and w2, z1 and z2 are internal
vertices in T′), we add the edge {w1, x} and either
{w2, y} or {z2, y} to T′ and obtain a valid spanning
tree T for G.

� If w2 is a leaf in T′ (and w1, z1, and z2 are internal
vertices in T′), we add the edge {w2, y} and either
{w1, x} or {z1, x} to T′ and obtain a valid spanning
tree T for G.

� If z1 is a leaf in T′ (and w1, w2, and z2 are
internal vertices in T′), we add the edge {z1, x}
and either {w2, y} or {z2, y} to T′ and obtain a
valid spanning tree T for G.

� If z2 is a leaf in T′ (and w1, w2 and z1 are
internal vertices in T′), we add the edge {z2, y}
and either one of the edges {w1, x} or {z1, x} to T′
and obtain a valid spanning tree T for G.

� z1 and z2 are leaves in T' (and w1 and w2 are internal
vertices in T'). This case cannot happen because T'
would not be connected.

� If w1 and w2 are leaves in T′ (and z1 and z2 are
internal vertices in T′), we add the edges {w1, x} and
{w2, y} to T′ and obtain a valid spanning tree T for G.

� If w1 and z1 are leaves in T′ (and w2 and z2 are
internal vertices in T′), edges {w1,w2} and {w2, z2}
must be in T′ (as w2 is an internal vertex in T′). We
remove edge {w1,w2} from T′ (to prevent cycles)
and add edges {z1,w1}, {w1, x}, as well as {w2, y} to T′.
This yields a valid spanning tree T for G, in which
w1, w2, z1 and z2 are internal vertices, and x and y
are leaves.

� w1 and z2 are leaves in T' (and w2 and z1 are
internal vertices in T'). This case cannot happen
because T' would not be connected.

� w2 and z1 are leaves in T' (and w1 and z2 are
internal vertices in T'). This case cannot happen
because T' would not be connected.

� If w2 and z2 are leaves in T′ (and w1 and z1 are
internal vertices in T′), edges {w1, w2} and {w1, z1}
must be in T′ (as w1 is an internal vertex in T′).
We remove edge {w1, w2} from T′ (to prevent
cycles) and add edges {z2,w2}, {w2, y}, as well as {w1,
x} to T′. This yields a valid spanning tree T for G, in
which w1, w2, z1, and z2 are internal vertices and x
and y are leaves.

7. G has a degree-3 vertex w with N(w) = {x, y, z} such
that N(z) = {w, y} and edge {x, y}∈ E (as shown in
Fig. 23): As n ≥ 7 and G is biconnected, there exists
a vertex u∈N(y) \ {w, x, z} (and as G is bicon-
nected, u lies on some path from x to y). In particu-
lar, deg(y) ≥ 4 in G. We now construct a simple and
biconnected SP graph G′ with n − 1 vertices from G
by suppressing z and deleting one copy of the
resulting parallel edge {w, y}. We note that as
deg(y) ≥ 4 in G, we have deg(y) ≥ 3 in G′. In

Fig. 23 Case 7 in the proof of Lemma 5. The dotted line depicts
some path between u and x which must exist since n ≥ 7 and G
is biconnected

Fig. 24 Case 8 in the proof of Lemma 5 for n ≥ 7. The dashed edge
{x, y} may be present or not and the dotted line depicts some path
between x′ and y, which must exist since G is biconnected and n ≥ 7

Fig. 25 Case 9 in the proof of Lemma 5. The dotted line depicts
some path between x and y which must exist as n ≥ 7 (since G
is biconnected)
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particular, y is not a degree-2 vertex in G′, whereas
w is. As G′ is a simple and biconnected SP graph
with 6 ≤ n − 1 < n vertices, by the inductive hypoth-
esis, G′ has a valid spanning tree T′, in which vertex
w is potentially a leaf. We can now obtain a valid
spanning tree T for G from T′ by adding the edge
{w, z} to T′. This ensures that w is not a leaf in T (but
z is; this is valid because z is a degree-2 vertex in G).

8. G has two non-adjacent degree-3 vertices w1 and w2

such that N(w1) = {x, y, z1}, N(w2) = {x, y, z2}, N(z1) =
{x,w1}, and N(z2) = {y,w2} (as shown in Fig. 24): As G
is biconnected and n ≥ 7, there exists a vertex x′∈
N(x) \ {z1,w1,w2, y}. In particular, deg(x) ≥ 4 in G. We
now construct a simple and biconnected SP graph G′
with n − 1 vertices from G by suppressing z1 and de-
leting one copy of the resulting parallel edge {x,w1}.
We note that w1 is a degree-2 vertex in G′, whereas
deg(x) ≥ 3 in G′. By the inductive hypothesis (as G′ is
a simple and biconnected SP graph with 6 ≤ n − 1 < n
vertices), there exists a valid spanning tree T′ for G′
(potentially containing vertex w1 as a leaf). We can
now obtain a valid spanning tree T for G from T′ by
adding the edge {w1, z1}.

9. G has two non-adjacent degree-3 vertices w1 and w2

such that N(w1) = {x, y, z1}, N(w2) = {x, y, z2}, N(z1) =
{x, w1} and N(z2) = {x,w2} (as shown in Fig. 25): In this
case, we can construct a simple and biconnected SP
graph G′ with n − 1 vertices from G by suppressing
z1 and deleting one copy of the resulting parallel edge
{x,w1} (Fig. 25). We note that w1 is then a degree-2
vertex in G′. By the inductive hypothesis (as G′ is a
simple and biconnected SP graph with 6 ≤ n− 1 < n
vertices), there exists a valid spanning tree T′ for G′, in
which w1 is potentially a leaf (x cannot be a leaf in T′
by the inductive hypothesis, as deg(x) ≥ 3 in G′). We
can now obtain a valid spanning tree T for G from T′
by adding the edge {w1, z1}. This ensures that w1 is not
a leaf in T, and thus T is a valid spanning tree for G.

10. G has a degree-3 vertex w with N(w) = {x, z1, z2} such
that there is a degree-2 vertex y∈N(z1)∩N(z2) and
N(x) = {z1,w} (as shown in Fig. 26): As G is bicon-
nected and n ≥ 7, there exists a vertex z

0

1∈Nðz1Þ n fw;
x; y; z2g in G and z

0

1 lies on some path between z1
and z2 (as G is biconnected). In particular, deg(z1) ≥ 4
and deg(z2) ≥ 3 in G. We now construct a simple and
biconnected SP graph G′ with n − 1 vertices from G
by suppressing x and deleting one copy of the result-
ing parallel edge {z1,w} (Fig. 26). We note that w is a
degree-2 vertex in G′, whereas deg(z1) ≥ 3 and
deg(z2) ≥ 3 in G′. As G′ is a simple and biconnected
SP graph with 6 ≤ n − 1 < n vertices, by the inductive
hypothesis, there exists a valid spanning tree T′ for G′,
in which w is potentially a leaf. We can now obtain
a valid spanning tree T for G from T′ by adding the
edge {w, x}, and thereby w becomes an internal vertex
of T and x a leaf. This completes the proof.

Lemma 9 Let G = (V, E) be a simple chordal graph
without cut edges and with deg(v) ≥ 2 for all v ∈V. Then,
for every vertex v ∈V, there exist two other vertices u and
w such that u, v and w form a triangle in G, i.e. such
that the edges {u, v}, {u, w} and {v, w} are all in E.
Proof Let G be a simple chordal graph without cut

edges such that deg(v) ≥ 2 for all v ∈V.

First, we show that every vertex belongs to a cycle. We
assume that there is a vertex v in V that does not belong to
any cycle. As deg(v) ≥ 2, v has at least two neighbors a and
b. If we now remove the edge e = {a, v}, the resulting graph
must still be connected; otherwise, e would be a cut edge,
but G has no cut edge. However, this implies that there is a
path P from a to v that does not use edge e. Therefore, re-
introducing edge e closes a cycle. Thus, v belongs to a cycle
in G.

We now assume that v does not belong to a triangle.
Then, v belongs to a cycle of length at least 4. As G is
chordal, this cycle must have a chord. Thus, v also belongs
to a smaller cycle. Recursively, this shows that v must be-
long to a triangle, as all cycles of length larger than 3, by
the definition of chordality, have a chord. This completes
the proof.
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