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Abstract

Background: Due to the presence of high noise level in tomographic series of energy filtered transmission electron
microscopy (EFTEM) images, alignment and 3D reconstruction steps become so difficult. To improve the alignment
process which will in turn allow a more accurate and better three dimensional tomography reconstructions, a
preprocessing step should be applied to the EFTEM data series.

Results: Experiments with real EFTEM data series at low SNR, show the feasibility and the accuracy of the proposed
denoising approach being competitive with the best existing methods for Poisson image denoising. The effectiveness
of the proposed denoising approach is thanks to the use of a nonparametric Bayesian estimation in the Contourlet
Transform with Sharp Frequency Localization Domain (CTSD) and variance stabilizing transformation (VST).
Furthermore, the optimal inverse Anscome transformation to obtain the final estimate of the denoised images, has
allowed an accurate tomography reconstruction.

Conclusion: The proposed approach provides qualitative information on the 3D distribution of individual chemical
elements on the considered sample.
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Backround
Transmission Electron Tomography (TET) is one of the
most widely used methods for structural analysis in biol-
ogy and is capable to reveal subcellular structures at the
nanometric scale. The combination of TET with chem-
ical mapping (such energy filter transmission electron
microscopy: EFTEM) gives qualitative information on the
distribution of the chemical elements by the generation of
3D chemical maps in the analyzed samples [1] thus over-
coming the limitation of 2D maps. In an EFTEM mode,
the transmitted electrons lose different energies according
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to their interaction with the atoms present in the sample.
These energies are characteristic of each type of inter-
action where electron magnetic fields can be used to
separate these electrons. Thus, it is possible to construct
a filtered image using only those electrons having lost a
precise energy. This approach allows for the computation
of elemental maps as images calculated after removing the
unspecific signals. The inherent presence of low signal-
to-noise ratio (SNR) in biological specimens when an
EFTEM is performed, remains a major issue to generate
high resolution and good quality EFTEM-3D maps. thus
limiting the use of 3D chemical mapping in biology. This
paper aims to improve the quality of the acquired images
by applying denoising approaches respecting the physical
significance of the pixel values of EFTEM maps (which
represent the number of electrons having lost a character-
istic energy) to produce 3D chemical maps of very high
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quality of the sample to be analyzed. There is much inter-
est in developing novel methods to remove the noise in its
different forms from images in such a way that the original
image is discernible and the signal quality is not modified.
However, existing image-enhancement methods amplify
noise when they amplify weak edges since they cannot dis-
tinguish noise from weak edges [2, 3]. Here, we extend our
preliminary work, by considering more general optimal
inverses for the Anscombe transformation in an iterative
process. on the other hand, it has been shown that there
are two types of noise in electron microscopy [4, 5]. The
first one comes from the sensor such as the CCD cam-
era, while the second comes from the inelastic interactions
of the electrons beam with the specimen. The noise from
the camera is dominant and is modeled as a Poisson
process. Therefore, we have assumed that the EFTEM
images are corrupted by additive Poisson noise. Therefore,
EFTEM images are denoised using a Bayesian denoiser in
the Contourlet Transform with Sharp Frequency Local-
ization (CTSD) [6] domain iteratively in order to improve
progressively the effectiveness of the Anscombe trans-
formation (i.e. variance stabilizing transformation VST)
[7, 8]. Furthermore, we demonstrate that the assump-
tion of a Poisson noise with a combination of a
Bayesian denoiser in CTSD domain and the Anscombe
transformation allow for a significant enhancement of
the chemical map computation which in turn will
enhance the 3D reconstructed volume of EFTEM images
with a computational cost at worst twice that of
our previous non-iterative Bayesian denoiser [9]. We
demonstrate through experiments with real EFTEM
images contaminated by additive Poisson noise that
the performance of the proposed method substan-
tially surpasses that of previously published meth-
ods. The proposed method is qualitatively evaluated
in an observer study to assess the improvement of 3-
D visualizations of EFTEM series and quantitatively in
terms of SNR.
This paper is organized as follows: “Results” section

defines the evaluation criteria considered and the com-
puted maps including a comparative analysis of the
performance of the proposed denoising method in
this study with previously published denoising methods
[3, 9–12] on different real data sets. Furthermore, numer-
ical experiments in this section are presented to demon-
strate the effectiveness of the proposed method over
recent denoising approaches. “Discussion” section dis-
cusses the performance and effectiveness of the proposed
method. Concluding remarks are given in “Conclusion”
section. Finally, “Methods” section describes first the
EFTEM images used in this work and which are a
specific data collected at different energies 650, 680
and 710 eV from a biological sample, namely Fonse-
caea pedrosoi. It also describes the propose iterative

denoising method for the purpose to perform chemical
maps computation and therefore to enhance the qual-
ity of the 3D reconstructed volume of the EFTEM
images.

Results
In order to assess the performance of the proposed
method described in “Methods” section, a quantitative
evaluation has been carried out against our previously
published denoising approach[9] including recent denois-
ing methods. For the sake of comparison, we have
only chosen denoising methods using the same Bayesian
denoiser with the scale-mixture approximation to the
alpha-stable prior, called "α-stable mixture" in different
domains. The three domains that we have considered
are the Wavelet transform [13], the Contourlet transform
[14] and the CTSD domains, respectively, as shown in
the workflow at the end of this paper (Fig. 5). Knowing
that the bloc of Hot spot in the workflow represents a
pre-processing of removing the aberrant pixels from the
EFTEM images using the ImageJ plugin EFTEM-TomoJ
[1, 15]. The EFTEM-TomoJ and TomoJ blocs are the plu-
gins under ImageJ used to compute the elemental map
and the 3D tomography reconstruction of our tilt series
respectively.
Since the aim of this study is to enhance the qual-

ity of the reconstructed volume of the sample, we have
not assessed our proposed method on the 3D volumes
for evaluating its effectiveness before and after doing the
reconstruction. In addition to the visual quality of the
3D volumes, we have used two evaluations criteria: the
SNR and the weber contrast (CW ) [16] of the iron aggre-
gates present at the cell wall (signal) in the 3D volume
using the resin area as the background. Both the SNR and
CW are calculated using the projections from the cen-
tral plans (20 to 38) which contains the aggregates in the
reconstructed volume. Figure 1 shows the central plan of
the reconstructed volume and the different areas before
denoising.
The SNR was calculated in decibels using the following

equation:

SNRwall = 10 log10

[(
W − R
σresin

)2]
(1)

whereW and R are the average values of the amplitude of
the net wall signal and the resin, respectively, αresin is the
standard deviation of the resin.
In order to calculate the weber contrast in the wall area,

we used the following formula:

CW =
[
W − R

R

]
(2)
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Fig. 1 Central plane (number 31 of sections 0 to 63) of the
reconstructed volume before denoising. The gray levels are voxels
proportional directly to the quantity of the present iron. a cytoplasm,
b resin, c iron aggregate area d iron aggregates on the cell wall which
are considered as the useful signal and is used to evaluate the
different algorithms

where CW is the contrast in the wall area, W and R
are the mean values of the pixels in the wall and resin
zones, respectively. The detection of the iron aggregate is
an important task for further following biologic process.
The texture of the different regions in the EFTEM image
isn’t considered in this work. Figure 2 shows the visual
results of the central plan and the eighteen projections
of the reconstructed volume using the estimated images
for each denoising method. One can clearly see that the
visual quality of the proposed iterative Bayesian denoiser
in the CTSD domain with the VST for the Poisson noise
outperforms the considered denoising methods. By com-
bining the noisy observation with a previously obtained
estimate of the noise free data, our denoiser overcomes
the limitations of our original Bayesian denoiser in [9].
The zooming on a textured area of the sample proves
not only that our denoiser ensures a good compromise
between the noise rejection and the conservation of the
finer details in the image, but also there are some details
that were hidden due to the noise but after the denoising
they became visually clear as shown in Fig. 3.
To demonstrate that the proposed denoising process

maintain the contents of the original images, we plot the
profile of the images before and after the proposed denois-
ing process, as we did in our previous work [17], using
ImageJ 1.48v. In Fig. 4, we plot a 26-pixel integrated inten-
sity profile along the region of interest ROI ’iron aggregate

area’ on both original noisy images and denoised images.
We clearly observe that the contents of the denoised
images are not affected.
Figure 5 summarizes all the methods that we have used

in this study where (A) is the reference. We reconstructed
the 3D volume of the original images (i.e. without denois-
ing) to compare its quality with the quality of those with
denoising. The outputs of (B), (C), (D) and (E) are the
tilt series denoised using the Bayesian denoiser in the
wavelet, the contourlet SD, the contourlet SD in iterative
way and in the contourlet domains, respectively. The bloc
of Hot spot in the workflow represents a pre-processing
of removing the aberrant pixels from the EFTEM images
using the ImageJ plugin EFTEMTomoJ [1, 14]. This step
is applied before and after the denoising step to make the
alignement process during the reconstruction easier. The
EFTEM-TomoJ and TomoJ blocs are the plugins under
ImageJ used to compute the elemental map using the 3-
window technique which requires three energy-filtered
images and the 3D tomography reconstruction of our tilt
series, respectively.
To measure performance improvement, we have cal-

culated the SNR (Table 1) and the weber contrast CW
using the reconstructed volumes before and after denois-
ing of the whole database (228 images) for each denoising
method, which means 912 images total. After analysing
the results, one can see that the SNR and the CW are
enhanced in all the applied methods and the Bayesian
estimator in the wavelet and the contourlet transform
domains is comparable to the Bayesian estimator in the
CTSD domain. One can also notice that the proposed iter-
ative denoiser outperforms the previous methods, espe-
cially our previous work [9] and gives much better results
in terms of both SNR and CW , where the SNR is enhanced
by about 11 dB compared to the Bayesian estimator in
the CTSD domain [9]. The main reason is that the iter-
ative combination with a previous estimate refines the
stabilization and helps to tackle the problem of the low
SNR for this type of images. These findings suggest that

Table 1 SNR and contrast CW of the wall area

Projections SNRwall CW W R resinstd

Original 2.66 0.06 21.30 20.00 0.96

Baysian denoiser in WT
domain

9.99 0.10 22.01 19.95 0.65

Baysian denoiser in CTSD
domain

8.05 0.07 21.33 19.91 0.56

Baysian denoiser in CT
domain

9.01 0.08 21.63 19.91 0.61

Proposed iterative
Bayesian denoiser with
VST in CTSD domain

19.21 0.10 22.08 19.95 0.23

(resinstd denotes the standard deviation of the resin area)
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Fig. 2 Results of the iterative denoising process on images. The charts correspond to profiles obtained from the lines drawn in each image

the proposed iterative Bayesian denoising in the CTSD
domain with VST is an accurate method adapted to cap-
ture the fine details that are hidden because of the Poisson
noise.
We should note, that the accurate and judicious assump-

tion of the Poisson distribution instead of the Gaussian
one to model the additive noise in the observation data
EFTEM, helped to improve the considered Bayesian esti-
mators.

Discussion
After analysing the results, one can see that the SNR and
the CW are enhanced in all the applied methods and
the Bayesian estimator in the wavelet and the contourlet
transform domains is comparable to the Bayesian esti-
mator in the CTSD domain. One can also notice that
the proposed iterative denoiser outperforms the previous
methods, especially our previous work [9] and gives much
better results in terms of both SNR and CW, where the

SNR is enhanced by about 11 dB compared to the Bayesian
estimator in the CTSD domain [9]. The main reason is
that the iterative combination with a previous estimate
refines the stabilization and helps to tackle the problem of
the low SNR for this type of images. These findings sug-
gest that the proposed iterative Bayesian denoising in the
CTSD domain with VST is an accurate method adapted
to capture the fine details that are hidden because of the
Poisson noise. We should note, that the accurate and judi-
cious assumption of the Poisson distribution instead of
the Gaussian one to model the additive noise in the obser-
vation data EFTEM, helped to improve the considered
Bayesian estimators.

Conclusion
This paper has proposed a novel iterative method based
on a nonparametric Bayesian estimator in CTSD domain
with VSTwhich is capable to denoise EFTEM images. The
iterative combination with a previous estimate (denoised
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Fig. 3 Visual comparisons of the reconstructed volumes, the images are the projection of 18 central plan images and the central image of the 3D
volume
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Fig. 4 Visual comparison of the projections of the EFTEM images using the iterative Bayesian denoising in the CTSD domain with VST for the Poisson
noise and the Bayesian estimator in the CTSD domain [9]. The image was zoomed on a textured area of the Fonsecaea pedrosoi, where the yellow
arrows indicate the iron aggregates on the cell wall

image) refines the stabilization which leads to a bet-
ter quality of the images in terms of a higher SNR and
contrast which in turn enhances the 3D tomographic
reconstruction. In order to illustrate the potential of the
proposed denoising method and analyze the importance
of embedding the VST framework within the iterations,
we have compared our results using simplified version of
the developed algorithm (without iteration and without
VST) in different domains with the proposed denois-
ing algorithm. After applying the non iterative Bayesian
estimator in the different domains, we have obtained

good results where the SNR is considerably enhanced.
To further address the problems associated with miss-
ing details in the denoised images, we have refined our
previous method by taking into account the geometri-
cal information of the images (i.e. contours). Therefore,
we have applied iteratively the Bayesian denoiser in the
CTSD domain where we have used the Anscombe trans-
form to normalize the image noise. Then denoising the
EFTEM images with a nonlinear nonparametric Bayesian
estimator is performed to reconstruct the images to their
original range via an optimal inverse transformation. This

Fig. 5Workflow
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algorithm gave us better results as shown in Fig. 2, where
details hidden after previous denoising approach, are now
preserved, as shown in Fig. 3. Our future will focus
on studying other nonparametric Bayesian estimators, in
particular, the estimator based on Bessel-K-form (BKF)
density [18–20].

Methods
Nature of data
The denoising methods were applied on experimen-
tal data collected from a biological sample (Fonsecaea
pedrosoi). These experimental data consist of EFTEM
tomographic tilt series acquired using a Saxton scheme
from -60° to 60° with TEMography Software from JEOL
Ltd (interested readers are referred to [1]. In our case, we
have used three series of different energies 650, 680 (cor-
responding to pre-edges representing the background of
the chemical element Fe) and 710 eV (corresponding to
the Fe L2 peak representing the characteristic iron signal)
with an energy window of 20 eV; each one containing 76
gray-scale images of size 512×512 pixels each. Figure 6
shows three examples of images number 1, 32 and 76 from

each series at different energies (650, 680 and 710 eV)
and three angles (-60°, 0° and 60°). Three principal image
areas are considered in quantitative assessments, namely:
(a) cytoplasm, (b) resin, (c) iron aggregate area and iron
aggregates on the cell wall. The yellow circles in the 710
eV images corresponds to iron aggregates, which are con-
sidered as the useful signal and are used to evaluate the
different algorithms.

Proposed denoiser
This paper proposes to denoise the EFTEM images using
an iterative way. Our inputs are EFTEM images affected
by an additive Poisson noise imaged at different energies.
The histogram of the noisy images is positively skewed
as shown in Fig. 7. To denoise them, we apply a VST
approach to standardize the image noise as the first step.
Then, we calculate the standard deviation (STD) of differ-
ent regions in the same image as shown in Fig. 8, in order
to confirm that it is not stable as it should be in the case
of a Poisson noise. This explains why we need firstly to
apply the VST to standardize the image noise. Then, we
denoise the images by considering them like they areas

Fig. 6 Example images (tilt angles of -60°, 0° and 60°) for tomographic EFTEM series acquired at 650, 680 and 710 eV
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Fig. 7 Histogram of EFTEM image (The EFTEM image number 06 of the 650eV tilt series with its corresponding histogram)

being contaminated with an additive white Gaussian noise
(AWGN). The iterative proposed algorithm is based on a
nonparametric denoising method in the CTSD domain.
Once obtaining After getting the denoised images, we
apply the optimal inverse of the VST using ; in our case we
used the most common one for this purpose which is the
Anscombe transformation (AT) [7].
The Anscombe transform converts a Poisson noise to

Gaussian noise with variance 1 [7] so, from a mathemati-
cal viewpoint, our model is

y = x + ε (3)

where y and x are respectively the noisy EFTEM image
and the original clean image to recover, ε is an additive
Gaussian noise.

Basic assumption
Our input is a noisy EFTEM image y composed of pix-
els y(m, n), modeled as an independent realization of a
Poisson process with parameter x(m, n) ≥ 0:

y(m, n) ∼ P(y(m, n)|x(m, n))

=
{

x(m,n)y(m,n)e−x(m,n)

y(m,n)! y ∈ N ∪ {0}
0 elsewhere

(4)

knowing that the mean and variance of y coincide and are
equal to x:

E
{
y|x} = var

{
y|x} = x (5)

Proposed iterative algorithm
Our goal is to homogenize the noise variance in all image
regions. Therefore, we first apply the Anscombe for-
ward transformation to each image. This transformation
step normalizes the image noise [21, 22] and yields an
image a(y):

a(y) = yAT = 2
√
y + 3/8 (6)

The observations a(y) can be treated as corrupted
by AWGN with homogeneous variance. After apply-
ing AT, we apply a Bayesian denoiser in the CTSD
domain (BDCTSD), proposed in our previous work [9] to
enhance the observed images in terms of visual qual-
ity, contrast and SNR. For the sake of clarity, we first
describe the Bayesian denoiser in this section. The trans-
formed observed image is represented in the contourlet-
SD domain by:

CTSDk(a) = sk + εk (7)

where CTSDk(a), sk and εk are the contourlet coefficients
in the kth directional subband of the observed noisy image,
noise-free image and noise respectively.
Because the contourlet has the similar characteristics

as the wavelet, so we can straightforwardly extended
the Bayesian denoiser proposed in the wavelet domain
[11, 12], into the contourlet domain.
In our study, similarly to the wavelet domain, the applied

Bayesian denoiser in the contourlet domain is based
on adapting a prior statistical model for sk and then
imposes it on the contourlet coefficients to describe their
distribution.
In the other hand, it has been shown that the sta-

tistical behavior of contourlet coefficients is successfully
modeled by families of heavy-tailed distributions such
as the α-stable. More precisely, Sadreazami et al. [23]
demonstrated through the plots of histograms and the
computation of kurtosis of the contourlet coefficients that
symmetric α-stable family, is more appropriate distribu-
tion for modeling the contourlet coefficients of natural
images than families with exponential tails such as the
generalized Gaussian. In view of this, we propose to use
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Fig. 8 Standard deviation values (STD) in different regions of an EFTEM image

the α-stable prior with the scale mixture approximation,
called "α-stable mixture" to model the contourlet subband
coefficients [9].
The denoised contourlet coefficients of the image are

then estimated by the L2-based Bayes rules, which corre-
spond to posterior conditional mean (PCM) estimate as
shown in our previous work [9]. The inverse contourlet
transform is computed through the processed contourlet
coefficients to get the denoised image).
The Bayesian denoiser BDCTSD, is viewed as an efficient

filter for AWGN. If denoising is ideal, we have:

BDCTSD(yAT ) = BDCTSD(a(y)) = E[ yAT |y] (8)

The so-called exact unbiased inverse of a [7]

Ipa : E
[
a(y)|x] �→ E

[
y|x] = x (9)

is used to generate the denoised image to the original
range of y, thus yielding an estimate of x:

x̂ = Ipa(BDCTSD(yAT )) (10)

where BDCTSD denotes the Bayesian denoiser in the CTSD
proposed in [9].
The main steps of the proposed denoising algorithm are

as follows:

• Step 1: Normalize the variance noise of the observed
EFTEM data by applying the VST to each image of
the three tilt series. This step produces an EFTEM
data set such that each image yAT like it is
contaminated with AWGN.

• Step 2: Apply the Bayesian denoiser in the CTSD
domain (BDCTSD) [9] to the transformed noisy data.
The (BDCTSD) consists on: (a) calculate the CTSD
coefficients of the yAT , (b) denoise the detail
coefficients of the CTSD at each scale and each
orientation, (c) reconstruct the denoised image by
applying the inverse CTSD to the estimated
coefficients. This is done for each image separately.
We should recall that for the Bayesian denoiser in the
contourlet transform and the contourlet-SD, we
selected the number of levels for the Directional
Filter Bank (DFB) at each pyramidal level equal to (2,
3, 4, 5) pkva filters and we did not downsample the
low-pass subband at the first level of decomposition,
based on [6].

• Step 3: Apply the optimal inverse AT to generate the
denoised image to the original range of y.

Figure 9 resumes the steps of the proposed denoising
algorithm.
In order to enhance the performance of our proposed

denoiser, we follow the same steps as in the paper of
Lucio Azzari and Alessandro Foi [7]. We use an iterative
algorithm based on convex combination of x̂i−1 and y:

yi = λiy + (1 − λi)̂xi−1 (11)

where 0 < λ ≤ 1 and x̂i is the estimate of x̂ at iter-
ation i. λ depends on the number of iterations K and
λK and is defined as λi = 1 − i−1

K−1 (1 − λK ) where
the parameters K, λK are adaptively selected based on
the quantiles of y [7]. In the experimental study, all our
results have K ≤ 4, because there isn’t a significant
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Fig. 9 Flowchart of the Bayesian Denoiser in the CTSD domain with Variance Stabilization using Anscombe transform

enhancement of the results in terms of SNR neither of
CW by increasing the number of iterations. Furthermore,
the running time of the proposed algorithm increases. We
use x̂i−1 instead of the previous x̂i, at each iteration of
the algorithm. We apply the Anscombe transformation

to image yi, yielding fi = a(̂yi) = ŷATi . Then we per-
form a Bayesian denoising process BDCTSD to obtain a
denoised image Di = BDCTSD[ a(yi)]. After getting Di,
we return it to its original range by applying the exact
unbiased inverse of fi [24]: We transform the image

Fig. 10 Flowchart of the Bayesian Denoiser with Variance Stabilization using Anscombe Transform
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yi to the CTSD domain after applying the Anscombe
transform,

x̂i = Iλifi (Di) (12)

As in [7], we do the convex combination with a linear
binning which can be especially beneficial at the first
iterations.

x̂i = B−1
hi[

Iλifi
(
BDCTSD

[
fi

(
Bhi [ λi×y + (1 − λi×̂xi−1)]

)]] (13)

Bhi is the binning operator and hi is the size of the small
block at ith iteration (i.e. bin hi×hi). This operator can
be applied to yi, yielding a smaller image where each bin
of hi×hi pixels from yi represents a single pixel equal to
their sum. Note that Bhi [ yi] is subject to the same condi-
tional probability of yi which means that the adoption of
binning does not interfere with the VST [7], neither with
BDCTSD [9].B−1

hi is the inverse binning operator. The entire
denoising algorithm is summarized in Fig. 10.
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